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Announcements/Org

= #1 Video Recording
= Link in TeachCenter & TUbe (lectures will be public)
= QOptional attendance (independent of COVID)

= #2 COVID-19 Restrictions (HS i5)
= Corona Traffic Light: Orange + Lockdown
= Max 25% room capacity (TC registrations)
= Temporarily webex lectures and recording

= #3 Exercises/Programming Projects
= Assigned projects so far
= 35x SystemDS projects (64 students)
= 9 x exercise projects (15 students)
= Kickoff Invites Pending (for next Friday)
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Agenda

= Motivation and Terminology
= Entity Resolution Concepts

= Entity Resolution Tools

= Example Applications
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Motivation and Terminology
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Motivation and Terminology -ErLa!.

Recap: Corrupted/Inconsistent Data

= #1 Heterogeneity of Data Sources
No Global

= Update anomalies on denormalized data / eventual consistency Keys

= Changes of app/prep over time (US vs us) = inconsistencies
= #2 Human Error
= Errors in semi-manual data collection, laziness (see default values), bias
= Errors in data labeling (especially if large-scale: crowd workers / users)
= #3 Measurement/Processing Errors
= Unreliable HW/SW and measurement equipment (e.g., batteries)
» Harsh environments (temperature, movement) = aging

Uniqueness & Contradictions & Missing [Credit: Felix
duplicates wrong values Values Ref. Integrity Naumann]

mm-mmm\

City
Smith, Jane  05/06/1975 999-9999 98120 m_

98120 San Jose
John Smith  38/12/1963 55 M 867-4511 11111

90001 Lost Angeles
Jane Smith  05/06/1975 24 F 567-3211 98120

Typos



Motivation and Terminology -Erla'!l

Te rm I n O I Ogy [Douglas Burdick, Ronald Fagin, Phokion G. Kolaitis,
Lucian Popa, Wang-Chiew Tan: Expressive power of
m Entity Linking entity-linking frameworks. J. Comput. Syst. Sci. 2019]

= “Entity linking is the problem of creating links among records "
representing real-world entities that are related in certain ways.”

= “As an important special case, it includes entity resolution, which is
the problem of

= Other Terminology
= Entity Linking = Entity Linkage, Record Linkage ©
= Entity Resolution = Data Deduplication, Entity Matching

= Applications

= Named entity recognition and disambiguation Hussein I
The US president (2016)

Archiving, knowledge bases and graphs

Recommenders / social networks

o " and
= Financial institutions (persons and legal entities) i
are married ....
= Travel agencies, transportation, health care
706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication .ISDS
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Entity Resolution Concepts

Data Integration and Machine
Learning: A Natural Synergy

aunu g

[Xin Luna Dong, Theodoros Rekatsinas: Data Integration and Machine Learning:
A Natural Synergy. Tutorials, SIGMOD 2018, PVLDB 2018, KDD 2019]

[Sairam Gurajada, Lucian Popa, Kun Qian, Prithviraj Sen: Learning-Based
Methods with Human in the Loop for Entity Resolution, Tutorial, CIKM 2019]

[Felix Naumann, Ahmad Samiei, John Koumarelas: Master project seminar
for Distributed Duplicate Detection. Seminar, HPI WS 2016]

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication B ISDS
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Entity Resolution Concepts -ErLa!.

Problem Formulation

= Entity Resolution
y [lvan Fellegi, Alan Sunter: A

= “Recognizing those records in two files which Theory for Record Linkage, J.

represent identical persons, objects, or events”  American. Statistical Assoc.,
pp. 1183-1210, 1969]

= Given two data sets A and B

= Decide for all pairs of records a,— b; in Ax B
if match (link), no match (non-link), or not enough evidence (possible-link)

" Naive Deduplication __Name | Position | _Affliation

= UNION DISTINCT via hash Matthias RSM IBM Research—  Apache
group-by or sort group-by Boehm Almaden SystemML

= Problem: only exact matches Matthias Prof TU Graz Apache
Bohm SystemDS

=» Similarity Measures
= Token-based: e.g., Jaccard J(A,B) = (A N B) / (A U B)
= Edit-based: e.g., Levenshtein lev(A,B) = min(replace, insert, delete)
= Phonetic similarity (e.g., soundex, metaphone), Python lib Jellyfish

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication B ISDS
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Entity Resolution Concepts Graze
ﬂ Entity Resolution Pipeline
(D

Prepare Blocking/

Data S i Matching Clustering

o o2
AD

Bl
B3 B2 n r5, r6, r8
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Entity Linking Approaches

[Xin Luna Dong, Theodoros Rekatsinas:
Data Integration and Machine Learning:
A Natural Synergy. PVLDB 2018]

50 Years of Entity Linkage

Rule-based and stats-based

e Blocking: e.g., same name Supervised learning

e Random forest for matching

® Match_ing: e.g., avg similarity E-msr: >05% w. ~1M labels
of att”l?Ut? values i e Active learning for blocking & matching
* Clustering: e.g., transitive F-msr: 80%-98% w. ~1000 labels
closure, etc.
~2000 (Early ML) 2018 (Deep ML)
1969 (Pre-ML) ~2015 (ML)
Sup / Unsup learning Deep learning
e Matching: Decision tree, SVM e Deep learning
F-msr: 70%-90% w. 500 labels e Entity embedding

e Clustering: Correlation clustering,
Markov clustering

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication B ISDS
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Step 1: Data Preparation

= #1 Schema Matching and Mapping Autonomous,
= See lecture 04 Schema Matching and Mapping heterogeneous
= Create homogeneous schema for comparison systems
= Split composite attributes

= #2 Normalization
= Removal of special characters and white spaces
= Stemming likes/liked/likely/liking
= Capitalization (to upper/lower) - like
= Remove redundant works, resolve abbreviations

= #3 Data Cleaning
= See lecture 06 Data Cleaning and Data Fusion
= Correct data corruption and inconsistencies

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication B ISDS
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Step 2: Blocking and Sorting

= #1 Naive All-Pairs

= Brute-force, naive approach
-2 n*(n-1)/2 pairs 2 0O(n?) complexity

= #2 Blocking / Partitioning
= Efficiently create small blocks of similar records for pair-wise matching

= equivalent values on selected attributes (name)

= whole field, token field, common integer, same x char start, n-grams
u disjunctions/conjunctions

= Blocking Keys: - JRO1111

ohn Roberts 20 Main St Plainville MA
[Nicholas Chammas, Eddie Pantrige:

o _ _ Building a Scalable Record Linkage
= Learned: Minimal rule set via greedy algorithms System, Spark+Al Summit 2018]
=» Significant reduction: 1M records = 1T pairs

=>» 1K partitions w/ 1K records = 1G pairs (1000x)

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication B ISDS
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Step 2: Blocking, cont.

= #3 Sorted Neighborhood

= Define sorting keys (similar to blocking keys)
= Sort records by sorting keys

= Define sliding window of size m (e.g., 100) and compute all-pair
matching within sliding window

= #4 Blocking via Word Embeddings and LSH

4 " beddi | beddi Distributed Tuple
Compute word/attribute embeddings + tuple embeddings Representation
= Locality-Sensitive Hashing (LSH) for blocking
= K hash functions h(t) =2 k-dimensional hash-code
= | hash tables, each k hash functions [Muhammad Ebraheem et al:
Distributed Representations of | ™
hi=[-1, 1,1], h2=[ 1,1, 1], Tuples for Entity Resolution.
0/ %0
X %*% Y h3=[-1,-1,1], hd=[-1,1,-1], PVLDB 2018]
v[t1l]=[0.45,0.8,0.85] [1.2,2.1,-0.4,-0.5]__ [1,1,-1,-1] [12] Hash

—
v[t2]=[0.4,0.85,0.75] [1.2,2.0,-0.5,-0.3] [1,1,-1,-1] [12] bucket

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication B ISDS
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Step 3: Matching

= #1 Basic Similarity Measures

= Pick similarity measure sim(r, r’) and thresholds: high 8, (and low 6,)

= Record similarity: avg attribute similarity

= Match: sim(r, r’) > 6, Non-match: sim(r, r’) <6,

possible match: 8, < sim(r, r’) < 6,

= #2 Learned Matchers (Traditional ML)

= Phase 1: Learned string similarity
measures for selected attributes

= Phase 2: Training matching decisions
from similarity metrics

= Selection of samples for labeling
(sufficient, suitable, balanced)

= SVM and decision trees, logistic
regression, random forest, XGBoost

[Mikhail Bilenko, Raymond J.
Mooney: Adaptive duplicate
detection using learnable string
similarity measures. KDD 2003]

[Hanna Kopcke, Andreas Thor, Erhard
Rahm: Evaluation of entity resolution
approaches on real-world match
problems. PVLDB 2010]

[Xin Luna Dong: Building a Broad

q€. Knowledge Graph for

=Dy
B50raph @ Products. ICDE 2019)]
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Step 3: Matching, cont.

= Deep Learning for ER

= Automatic representation learning from text (avoid feature engineering)

= Leverage pre-trained word embeddings for semantics (no syntactic limitations)

= Example DeepER

tuple t
l Embedding lookup
“"5 [MUhammad Ebraheem et al: wl Composition | Similarity] Dense Classification
¥4 Distributed Representations j-\(av?aﬁff W fer | wer e
of Tuples for Entity Words  |(wt
Resolution. PVLDB 2018]
wj
= Example Magellan 1 ®
vl
= DL for text and dirty data
Words vi
Abs Difference
[Sidharth Mudgal et al: Deep /
Learning for Entity Matching: ka Hadamard Prod.
A Design Space Exploration. . .
Representation
706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication
"ISDS
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Entity Resolution Concepts -ErLa!.

Ste p 3 : M atch i ng’ CO nt. [Sairam Gurajada, Lucian Popa, Kun Qian, Prithviraj

Sen: Learning-Based Methods with Human in the
Loop for Entity Resolution, Tutorial, CIKM 2019]

= Labeled Data DBLP-ACM
= Scarce (experts) og 5 Decp Learning amnE g
= Class skew 97 | o Deflsflx(;&Tree
06 —%— Naive Bayes
FL 95
94 F=2- prec.Ls.Lon -recall
93 precision + recall
92

0 1000 2000 3000 4000 5000 6000 7000
# Labeled Training examples

=» Transfer Learning

= Learn model from high-resource ER scenario (w/ regularization)

* Fine-tune using low-resource examples Jungo Kasai et al: Low-resource

=» Active Learning Deep Entity Resolution with Transfer
and Active Learning. ACL 2019]

= Select instances for tuning to min labeling

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication B ISDS
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Step 4: Clustering

= Recap: Connected Components
= Determine connected components of a graph (subgraphs of connected nodes)
= Propagate max(current, msgs) if != current to neighbors, terminate if no msgs

Step 0 Step 1 Step 2 Step 3

9 e converged

L S

" Clustering Approaches [Oktie Hassanzadeh, Fei Chiang, Renée | —==—

= Basic: connected components J. Miller, Hyun Chul Lee: Framework for
’ P Evaluating Clustering Algorithms in

(transitive closure) w/ edges sim > 0, Duplicate Detection. PVLDB 2009]

— Issues: big clusters and dissimilar records
= Correlation clustering: +/- cuts based on sims > global opt NP-hard
= Markov clustering: stochastic flow simulation via random walks

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication B ISDS
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Entity Resolution Concepts -ErLa!.

Incremental Data Deduplication

= Goals [Anja Gruenheid, Xin Luna Dong,
Divesh Srivastava: Incremental

= |ncremental stream of updates Record Linkage. PVLDB 2014]

— previously computed results obsolete

= Same or similar results AND significantly faster than batch computation

= Approach
= End-to-end incremental record linkage for new and changing records
= |[ncremental maintenance of similarity graph and incremental graph clustering
= |nitial graph created by correlation clustering
= Greedy update approach in polynomial time
= Directly connect components from increment AG into Q
= [Vierge of pairs of clusters to obtain better result?
= Split of cluster into two to obtain better result?
= [Viove nodes between two clusters to obtain better result?

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication B ISDS
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Entity Resolution Tools
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Pyt h O n De d u pe https://docs.dedupe.io/en/latest/APl-documentation.html

https://dedupeio.github.io/dedupe-examples/docs/csv_example.html

= Overview
= Python library for data deduplication (entity resolution)
= By default: logistic regression matching (and blocking)

= Example fields = [
{'field':'Site name', 'type':'String'},
{'field':'Address', 'type':'String'}]
deduper = dedupe.Dedupe(fields)
Do these records refer

# sample data and active learning to the same thing?
deduper.sample(data, 15000) (y)es / (n)o /
dedupe.consolelLabel (deduper) (u)nsure / (f)inished

# learn blocking rules and pairwise classifier
deduper.train()

# Obtain clusters as lists of (RIDs and confidence)
threshold = deduper.threshold(data, recall weight=1)
clustered _dupes = deduper.match(data, threshold)

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21
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Magellan (UW-Madison)

= System Architecture

N o
|/ s

User

Select the best blocker: X, Y

How-to guides for users

Tools for individual steps
of entire ER pipeline

Build on top of existing v
Python/big data stack

Scripting environment

Scenarios

How-to
Guides

[Pradap Konda et al.: Magellan:
Toward Building Entity Matching
Management Systems. PVLDB 2016]

Facilities for Lay Users

GUIs, wizards, ...

[ ]
lnl Power Users

Development Stage

Production Stage

for power users

—

|

(==
(-
>blocker—- (-
X (-
e A L&
irs
blocker—C
O '
4
cross-validate Ia::e(ls
matcher U
A F 5
‘ B'k

|«

0.89F, (=)
blocker—D D )
Y 0.93F, ()¢
) | cross-validate -

matcher V

Select the best matcher: U, V

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication
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Supporting tools
PP N Workflow

(as Python commands)

Data samples Original data

Supporting tools
(as Python commands)

Python Interactive Environment
Script Language

Data Analysis Stack Big Data Stack

pandas, scikit-learn, matplotlib,

PySpark, mrjob, Pydoop.

[Yash Govind et al: Entity Matching Meets
Data Science: A Progress Report from the
Magellan Project. SIGMOD 2019]
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SystemER (IBM Almaden — Research)

[Kun Qian, Lucian Popa, Prithviraj Sen:
SystemER: A Human-in-the-loop System for
Explainable Entity Resolution. PVLDB 2019]

2 SystemER Graphic User Interface

-an auxillary tool for learning -effective active learning algorithm

-support csv and newline .
LR -can start without - . e Sl e :
delimited json labalsd data complex matching functions -scale up with distributing computing

-prior blocking is not needed -provide prebuilt functions -produce explainable ER models

labeled
data 3. Feature 4. Model
—_— Engineering —> Learning |—»

1. Data 2. Create
—

preparation Training Data —
= :
(re,8y) — e. 8., JaccardSim, Explainable
Sm) (rp,59) X normalizeName, ... ER model
Learns explainable
DBLP.title = ACM.title ER rules (|n H”.)
AND DBLP.year = ACM.year [Mauricio A. Hernandez, Georgia -
AND jaccardSim(DBLP.authors,ACM.authors)>0.1 Koutrika, Rajasekar Krishnamurthy,
AND jaccardSim(DBLP.venue,ACM.venue)>0.1 Lucian Popa, Ryan Wisnesky:
- SamePaper(DBLP.id,ACM.id) HIL: a high-level scripting language
for entity integration. EDBT 2013]
706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication .ISDS

Matthias Boehm, Graz University of Technology, WS 2020/21



TU

Grazm

Example Applications

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS



Example Applications -Erla'!l

DIA Exercise (alternative to projects)

= Task: Distributed Entity Resolution on Apache Spark

= 1-3 person teams, data: Uni Leipzig Benchmarks https://dbs.uni-leipzig.de/
research/projects/object_matching/
= |mplement end-to-end benchmark_datasets_for_entity resolution

pipeline with Apache Spark for

= Example 1: DBLP, ACM, Google Scholar Publications
» (title, authors, venue, year) In practice:
= Basic preprocessing via title capitalization, etc multi-modal data, and

= How about leveraging the linked PDF papers? feature engineering

= Example 2: Amazon, Google Products
» (name, description, manufacturer, price)
= NLP for matching medium and long descriptions, e.g., word embeddings
= How about leveraging the product images (different angles)

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication B ISDS
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Data Management — Autograding

= Background

u automatic grading system for Data Management exercises

= QOverview: export submissions, run ingestion programs, execute queries,
compare results and test queries, auto comments/grades, upload

= Problem: Increasing automation requires better plagiarism detection

= Plagiarism Detection via Entity Resolution (planned)
= Data preparation: file names/properties, runtime, correctness
= Blocking: by programming language, results sets
- MatChmg [Fangke Ye et al: MISIM: An
= Exact matches via basic diff + threshold End-to-End Neural Code

Similarity System. CoRR 2020

= Code similarity via SotA embeddings arxiv.ore/pdf/2006.05265.0df]

= Clustering

= Connected components within each block (min sim threshold)

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication B ISDS
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Summary and Q&A

Motivation and Terminology Fundamental Data

Entity Resolution Concepts Integration Technique,

Entity Resolution Tools w/ lots of applications +
remaining challenges

Example Applications i

Next Lectures (Data Integration Architectures)
= 06 Data Cleaning and Data Fusion [Nov 13]
= (07 Data Provenance and Blockchain [Nov 20]
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