

Data Integration and Analysis 05 Entity Linking and Deduplication

Matthias Boehm

Last update: Nov 06, 2020

Graz University of Technology, Austria
Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMK endowed chair for Data Management

Announcements/Org

#1 Video Recording

- Link in TeachCenter & TUbe (lectures will be public)
- Optional attendance (independent of COVID)

- #2 COVID-19 Restrictions (HS i5)
 - Corona Traffic Light: Orange + Lockdown
 - Max 25% room capacity (TC registrations)
 - Temporarily webex lectures and recording

max 18/98

#3 Exercises/Programming Projects

- Assigned projects so far
 - 35x SystemDS projects (64 students)
 - 9 x exercise projects (15 students)
 - Kickoff Invites Pending (for next Friday)

Agenda

- Motivation and Terminology
- Entity Resolution Concepts
- Entity Resolution Tools
- Example Applications

Motivation and Terminology

Recap: Corrupted/Inconsistent Data

#1 Heterogeneity of Data Sources

Update anomalies on denormalized data / eventual consistency

No Global Keys

■ Changes of app/prep over time (US vs us) → inconsistencies

#2 Human Error

- Errors in semi-manual data collection, laziness (see default values), bias
- Errors in data labeling (especially if large-scale: crowd workers / users)

#3 Measurement/Processing Errors

- Unreliable HW/SW and measurement equipment (e.g., batteries)
- Harsh environments (temperature, movement) → aging

Uniqueness & duplicates		Contradictions & wrong values			Missing Values	Ref. Integrity	[Credit: Felix Naumann]
ID	Name	BDav	Age	Sex	Phone	Zip _	

<u>ID</u>	Name	BDay	Age	Sex	Phone	Zip
3	Smith, Jane	05/06/1975	44	F	999-9999	98120
3	John Smith	38/12/1963	55	M	867-4511	11111
7	Jane Smith	05/06/1975	24	F	567-3211	98120

Zip	City		
98120	San Jose		
90001	Lost Angeles		

Typos

Terminology

[Douglas Burdick, Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, Wang-Chiew Tan: Expressive power of entity-linking frameworks. J. Comput. Syst. Sci. 2019]

Entity Linking

 "Entity linking is the problem of creating links among records representing real-world entities that are related in certain ways."

 "As an important special case, it includes entity resolution, which is the problem of identifying or linking duplicate entities

Other Terminology

- Entity Linking → Entity Linkage, Record Linkage
- Entity Resolution → Data Deduplication, Entity Matching

Applications

- Named entity recognition and disambiguation
- Archiving, knowledge bases and graphs
- Recommenders / social networks
- Financial institutions (persons and legal entities)
- Travel agencies, transportation, health care

Barack Obama
Barack Hussein Obama II
The US president (2016)

Barack and Michelle are married

Entity Resolution Concepts

[Xin Luna Dong, Theodoros Rekatsinas: Data Integration and Machine Learning: A Natural Synergy. Tutorials, **SIGMOD 2018**, **PVLDB 2018**, **KDD 2019**]

[Sairam Gurajada, Lucian Popa, Kun Qian, Prithviraj Sen: Learning-Based Methods with Human in the Loop for Entity Resolution, Tutorial, **CIKM 2019**]

[Felix Naumann, Ahmad Samiei, John Koumarelas: Master project seminar for Distributed Duplicate Detection. Seminar, **HPI WS 2016**]

Problem Formulation

Entity Resolution

 "Recognizing those records in two files which represent identical persons, objects, or events" [Ivan Fellegi, Alan Sunter: A Theory for Record Linkage, J. American. Statistical Assoc., pp. 1183-1210, 1969]

- Given two data sets A and B
- Decide for all pairs of records a_i b_j in A x B
 if match (link), no match (non-link), or not enough evidence (possible-link)

Naïve Deduplication

- UNION DISTINCT via hash group-by or sort group-by
- Problem: only exact matches

Name	Position	Affiliation	Research
Matthias Boehm	RSM	IBM Research – Almaden	Apache SystemML
Matthias Böhm	Prof	TU Graz	Apache SystemDS

Similarity Measures

- Token-based: e.g., Jaccard $J(A,B) = (A \cap B) / (A \cup B)$
- Edit-based: e.g., Levenshtein lev(A,B) → min(replace, insert, delete)
- Phonetic similarity (e.g., soundex, metaphone), Python lib Jellyfish

Entity Resolution Pipeline

Entity Linking Approaches

[Xin Luna Dong, Theodoros Rekatsinas: Data Integration and Machine Learning: A Natural Synergy. **PVLDB 2018**]

50 Years of Entity Linkage

Rule-based and stats-based

- Blocking: e.g., same name
- Matching: e.g., avg similarity of attribute values
- Clustering: e.g., transitive closure, etc.

1969 (Pre-ML)

Supervised learning

Random forest for matching

F-msr: >95% w. ~1M labels

Active learning for blocking & matching

F-msr: 80%-98% w. ~1000 labels

2018 (Deep ML)

~2000 (Early ML)

•

~2015 (ML)

Sup / Unsup learning

- Matching: Decision tree, SVM
 F-msr: 70%-90% w. 500 labels
- Clustering: Correlation clustering, Markov clustering

Deep learning

- Deep learning
- Entity embedding

Step 1: Data Preparation

#1 Schema Matching and Mapping

- See lecture 04 Schema Matching and Mapping
- Create homogeneous schema for comparison
- Split composite attributes

Autonomous, heterogeneous systems

#2 Normalization

- Removal of special characters and white spaces
- Stemming
- Capitalization (to upper/lower)
- Remove redundant works, resolve abbreviations

likes/liked/likely/liking

→ like

#3 Data Cleaning

- See lecture 06 Data Cleaning and Data Fusion
- Correct data corruption and inconsistencies

Step 2: Blocking and Sorting

#1 Naïve All-Pairs

Brute-force, naïve approach
 → n*(n-1)/2 pairs → O(n²) complexity

#2 Blocking / Partitioning

- Efficiently create small blocks of similar records for pair-wise matching
- Basic: equivalent values on selected attributes (name)
- Predicates: whole field, token field, common integer, same x char start, n-grams
- Hybrid: disjunctions/conjunctions
- Blocking Keys:

→ JR01111

Learned: Minimal rule set via greedy algorithms

→ Significant reduction: 1M records → 1T pairs

 \rightarrow 1K partitions w/ 1K records \rightarrow 1G pairs (1000x)

[Nicholas Chammas, Eddie Pantrige: Building a Scalable Record Linkage System, **Spark+Al Summit 2018**]

Step 2: Blocking, cont.

#3 Sorted Neighborhood

- Define sorting keys (similar to blocking keys)
- Sort records by sorting keys
- Define sliding window of size m (e.g., 100) and compute all-pair matching within sliding window

#4 Blocking via Word Embeddings and LSH

Compute word/attribute embeddings + tuple embeddings

Distributed Tuple Representation

- Locality-Sensitive Hashing (LSH) for blocking
- K hash functions $h(t) \rightarrow k$ -dimensional hash-code
- L hash tables, each k hash functions

[Muhammad Ebraheem et al: Distributed Representations of Tuples for Entity Resolution.

esentations of ty Resolution.

PVLDB 2018]

$$v[t1]=[0.45,0.8,0.85]$$
 [1.2,2.1,-0.4,-0.5] [1,1,-1,-1] [12] Hash $v[t2]=[0.4,0.85,0.75]$ [1.2,2.0,-0.5,-0.3] [1,1,-1,-1] [12] bucket

Step 3: Matching

#1 Basic Similarity Measures

- Pick similarity measure sim(r, r') and thresholds: high θ_h (and low θ_l)
- Record similarity: avg attribute similarity
- Match: $sim(r, r') > \theta_h$ Non-match: $sim(r, r') < \theta_l$ possible match: $\theta_l < sim(r, r') < \theta_h$

#2 Learned Matchers (Traditional ML)

- Phase 1: Learned string similarity measures for selected attributes
- Phase 2: Training matching decisions from similarity metrics
- Selection of samples for labeling (sufficient, suitable, balanced)
- SVM and decision trees, logistic regression, random forest, XGBoost

[Mikhail Bilenko, Raymond J. Mooney: Adaptive duplicate detection using learnable string similarity measures. **KDD 2003**]

[Hanna Köpcke, Andreas Thor, Erhard Rahm: Evaluation of entity resolution approaches on real-world match problems. **PVLDB 2010**]

[Xin Luna Dong: Building a Broad Knowledge Graph for Products. ICDE 2019]

Step 3: Matching, cont.

Deep Learning for ER

- Automatic representation learning from text (avoid feature engineering)
- Leverage pre-trained word embeddings for semantics (no syntactic limitations)

Example DeepER

[Muhammad Ebraheem et al: Distributed Representations of Tuples for Entity Resolution. **PVLDB 2018**]

Example Magellan

DL for text and dirty data

[Sidharth Mudgal et al: Deep Learning for Entity Matching: A Design Space Exploration. SIGMOD 2018]

Step 3: Matching, cont.

[Sairam Gurajada, Lucian Popa, Kun Qian, Prithviraj Sen: Learning-Based Methods with Human in the Loop for Entity Resolution, Tutorial, **CIKM 2019**]

Labeled Data

- Scarce (experts)
- Class skew

1000 2000 3000 4000 5000 6000 7000

Labeled Training examples

 $F_1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$

Transfer Learning

- Learn model from high-resource ER scenario (w/ regularization)
- Fine-tune using low-resource examples

93

92

Active Learning

Select instances for tuning to min labeling

[Jungo Kasai et al: Low-resource Deep Entity Resolution with Transfer and Active Learning. **ACL 2019**]

Step 4: Clustering

Recap: Connected Components

- Determine connected components of a graph (subgraphs of connected nodes)
- Propagate max(current, msgs) if != current to neighbors, terminate if no msgs

Clustering Approaches

Basic: connected components
 (transitive closure) w/ edges sim > θ_h
 → Issues: big clusters and dissimilar records

[Oktie Hassanzadeh, Fei Chiang, Renée J. Miller, Hyun Chul Lee: Framework for Evaluating Clustering Algorithms in Duplicate Detection. **PVLDB 2009**]

- Correlation clustering: +/- cuts based on sims → global opt NP-hard
- Markov clustering: stochastic flow simulation via random walks

Incremental Data Deduplication

Goals

- Incremental stream of updates
 → previously computed results obsolete
- [Anja Gruenheid, Xin Luna Dong, Divesh Srivastava: Incremental Record Linkage. **PVLDB 2014**]

Same or similar results AND significantly faster than batch computation

Approach

- End-to-end incremental record linkage for new and changing records
- Incremental maintenance of similarity graph and incremental graph clustering
- Initial graph created by correlation clustering
- Greedy update approach in polynomial time
 - Directly connect components from increment ΔG into Q
 - Merge of pairs of clusters to obtain better result?
 - Split of cluster into two to obtain better result?
 - Move nodes between two clusters to obtain better result?

Entity Resolution Tools

Python Dedupe

https://docs.dedupe.io/en/latest/API-documentation.html https://dedupeio.github.io/dedupe-examples/docs/csv example.html

- Overview
 - Python library for data deduplication (entity resolution)
 - By default: logistic regression matching (and blocking)

```
Example
           fields = [
             {'field':'Site name', 'type':'String'},
             {'field':'Address', 'type':'String'}]
           deduper = dedupe.Dedupe(fields)
                                                    Do these records refer
           # sample data and active learning
                                                      to the same thing?
           deduper.sample(data, 15000)
                                                        (y)es / (n)o /
           dedupe.consoleLabel(deduper)
                                                     (u)nsure / (f)inished
           # learn blocking rules and pairwise classifier
           deduper.train()
           # Obtain clusters as lists of (RIDs and confidence)
           threshold = deduper.threshold(data, recall weight=1)
           clustered dupes = deduper.match(data, threshold)
```


Magellan (UW-Madison)

[Pradap Konda et al.: Magellan: Toward Building Entity Matching Management Systems. **PVLDB 2016**]

System Architecture

- How-to guides for users
- Tools for individual steps of entire ER pipeline
- Build on top of existing Python/big data stack
- Scripting environment for power users

[Yash Govind et al: Entity Matching Meets Data Science: A Progress Report from the Magellan Project. **SIGMOD 2019**]

SystemER (IBM Almaden – Research)

[Kun Qian, Lucian Popa, Prithviraj Sen: SystemER: A Human-in-the-loop System for Explainable Entity Resolution. **PVLDB 2019**]

Learns explainable ER rules (in HIL)

DBLP.title = ACM.title

AND DBLP.year = ACM.year

AND jaccardSim(DBLP.authors, ACM.authors)>0.1

AND jaccardSim(DBLP.venue, ACM.venue)>0.1

→ SamePaper(DBLP.id, ACM.id)

[Mauricio A. Hernández, Georgia Koutrika, Rajasekar Krishnamurthy, Lucian Popa, Ryan Wisnesky: HIL: a high-level scripting language for entity integration. **EDBT 2013**]

Example Applications

DIA Exercise (alternative to projects)

Task: Distributed Entity Resolution on Apache Spark

- 1-3 person teams, data: Uni Leipzig Benchmarks https://dbs.uni-leipzig.de/
 research/projects/object matching/
- Implement end-to-end entity resolution
 pipeline with Apache Spark for data-parallel computation

Example 1: DBLP, ACM, Google Scholar Publications

- (title, authors, venue, year)
- Basic preprocessing via title capitalization, etc
- How about leveraging the linked PDF papers?

In practice:

multi-modal data, and feature engineering

Example 2: Amazon, Google Products

- (name, description, manufacturer, price)
- NLP for matching medium and long descriptions, e.g., word embeddings
- How about leveraging the product images (different angles)

Data Management – Autograding

Background

- WS20/21: automatic grading system for Data Management exercises
- Overview: export submissions, run ingestion programs, execute queries, compare results and test queries, auto comments/grades, upload
- Problem: Increasing automation requires better plagiarism detection
- Plagiarism Detection via Entity Resolution (planned)
 - Data preparation: file names/properties, runtime, correctness
 - Blocking: by programming language, results sets
 - Matching
 - Exact matches via basic diff + threshold
 - Code similarity via SotA embeddings

[Fangke Ye et al: MISIM: An End-to-End Neural Code Similarity System. **CoRR 2020**

arxiv.org/pdf/2006.05265.pdf]

Clustering

Connected components within each block (min sim threshold)

Summary and Q&A

- Motivation and Terminology
- Entity Resolution Concepts
- Entity Resolution Tools
- Example Applications

Fundamental Data
Integration Technique,
w/ lots of applications +
remaining challenges

- Next Lectures (Data Integration Architectures)
 - 06 Data Cleaning and Data Fusion [Nov 13]
 - 07 Data Provenance and Blockchain [Nov 20]

