

Data Integration and Analysis 07 Data Provenane and Blockchain

Matthias Boehm

Last update: Nov 20, 2020

Graz University of Technology, Austria
Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

Announcements/Org

#1 Video Recording

- Optional attendance (independent of COVID)
- #2 COVID-19 Restrictions (HS i5)
 - Corona Traffic Light: RED
 - Temporarily webex lectures and recording

cisco Webex

#3 Exercises/Programming Projects

- Assigned projects so far
 - 35x SystemDS projects (64 students)
 - 9 x exercise projects (15 students)
- One more Kickoff call for remaining students
 - Email to m.boehm@tugraz.at, invites this weekend

Agenda

- Backlog: Missing Value Imputation
- Motivation and Terminology
- Data Provenance
- Blockchain Fundamentals

Missing Value Imputation

Basic Missing Value Imputation

Missing Value

- Application context defines if 0 is missing value or not
- If differences between 0 and missing values, use NA or NaN?
- Could be a number outside the domain or symbol as '?'

Relationship to Data Cleaning

- Missing value is error, need to generate data repair
- Data imputation techniques can be used as outlier/anomaly detectors

Recap: Reasons

#1 Heterogeneity of Data Sources

#2 Human Error

#3 Measurement/Processing Errors

MCAR: Missing Completely

at Random

MAR: Missing at Random

MNAR: Missing Not at Random

Basic Missing Value Imputation

Missing Completely at Random

 Missing values are randomly distributed across all records (independent from recorded or missing values)

ID	Position	Salary (\$)	
1	Manager	null	(3500)
2	Secretary	2200	
3	Manager	3600	
4	Technician	null	(2400)
5	Technician	2500	
6	Secretary	null	(2000)

Missing at Random

- Missing values are randomly distributed within one or more sub-groups of records
- Missing values depend on the recorded but not on the missing values, and can be recovered
- E.g., missing low salary, age, weight, etc.

Not Missing at Random

Missing data depends on the missing values themselves

[Abdulhakim Ali Qahtan, Ahmed K. Elmagarmid, Raul Castro Fernandez, Mourad Ouzzani, Nan Tang: FAHES: A Robust **Disguised Missing Values** Detector. **KDD 2018**]

ID	Position	Salary (\$)
1	Manager	3500
2	Secretary	2200
3	Manager	3600
4	Technician	null
5	Technician	null
6	Secretary	2000

ID	Position	Salary (\$)
1	Manager	3500
2	Secretary	null
3	Manager	3600
4	Technician	null
5	Technician	2500
6	Secretary	null

<= 2400 missing

Basic Missing Value Imputation, cont.

- Basic Value Imputation
 - General-purpose: replace by user-specified constant, or drop records, or one-hot encode as separate column
 - Continuous variables: replace by mean, median
 - Categorical variables: replace by mode (most frequent category)
- Iterative Algorithms (chained-equation imputation for MAR)
 - Train ML model on available data to predict missing information
 - Initialize with basic imputation (e.g., mean)
 - One dirty variable at a time
 - Feature k → label, split data into training: observed / scoring: missing
 - Types: categorical → classification, continuous → regression
 - Noise reduction: train models over feature subsets + averaging

[Stef van Buuren, Karin Groothuis-Oudshoorn: mice: Multivariate Imputation by Chained Equations in R, J. of Stat. Software 2011]

Basic Missing Value Imputation, cont.

MICE example

■ Initialization: fill in the missing values with column mean (w/ or w/o NAs)

train(v)

Iterations: each column per iteration

V1	V2	V3	V4	V5
1	56	2	2	2
2	23	0	0	0
1	NA	0	0	2
2	24	-1	2	NA
NA	22	1	2	0

V1	V2	V3	V4	V5
1	56	2	2	2
2	23	0	0	0
1	25	0	0	2
2	24	-1	2	0.8
1.2	22	1	2	0

train(x)

V1	V2	V3	V4	V5
1	56	2	2	2
2	23	0	0	0
1	25	0	0	2
2	24	-1	2	0.8
1.2	22	1	2	0

\		•	,	
V1	V2	V3	V4	V5
1	56	2	2	2
2	23	0	0	0
1	25	0	0	2
2	24	-1	2	0.8
?	22	1	2	0

 \leftarrow test(x)

DNN Based MV Imputation

[Felix Bießmann et al: DataWig: Missing Value Imputation for Tables, J. of ML Research 2019]

DataWig

Missing values imputation for heterogeneous data including unstructured text
 Imputation of attribute color

Data Type	Featurizers	Loss
Numerical	Normalization Neural Network	Regression
Categorical	Embeddings	Softmax
Text	$\begin{array}{c} {\rm Bag\text{-}of\text{-}Words} \\ {\rm LSTM} \end{array}$	N/A

Query Planning w/ MV Imputation

Dynamic Imputation

- Data exploration w/ on-the-fly imputation
- Optimal placement of drop δ and impute μ
 (chained-equation imputation via decision trees)
- Multi-objective optimization

[Jose Cambronero, John K. Feser, Micah Smith, Samuel Madden: Query Optimization for Dynamic Imputation. **PVLDB 2017**]

XGBoost's Sparsity-aware Split Finding

Motivation

- Missing values
- Sparsity in general (zero values, one-hot encoding)

XGBoost

- Implementation of gradient boosted decision trees
- Multi-threaded, cache-conscious

Sparsity-aware Split Finding

- Handles the missing values by default paths (learned from data)
- An example will be classified into the default direction when the feature needed for the split is missing

[Tianqi Chen and Charlos Guestrin: XGBoost: A Scalable Tree Boosting System, **KDD 2016**]

Example	Age	Gender
X1	?	male
X2	15	?
Х3	25	female

Time Series Imputation

[Steffen Moritz and Thomas Bartz-Beielstein: imputeTS: Time Series Missing Value Imputation in R,

The R Journal 2017]

Example R Package imputeTS

Function	Option	Description
na.interpolation		
•	linear	Imputation by Linear Interpolation
	spline	Imputation by Spline Interpolation
	stine	Imputation by Stineman Interpolation
na.kalman		
	StructTS	Imputation by Structural Model & Kalman Smoothing
	auto.arima	Imputation by ARIMA State Space Representation & Kalman Sm.
na.locf		
	locf	Imputation by Last Observation Carried Forward
	nocb	Imputation by Next Observation Carried Backward
na.ma		
	simple	Missing Value Imputation by Simple Moving Average
	linear	Missing Value Imputation by Linear Weighted Moving Average
	exponential	Missing Value Imputation by Exponential Weighted Moving Average
na.mean		Minerica XI loss Torres et al loss Manage XI loss
	mean	MissingValue Imputation by Mean Value
	median	Missing Value Imputation by Median Value
	mode	Missing Value Imputation by Mode Value
na.random		Missing Value Imputation by Random Sample
na.replace		Replace Missing Values by a Defined Value

Excursus: Time Series Recovery

Motivating Use Case

- Given overlapping weekly aggregates y (daily moving average)
- Reconstruct the original time series X

Problem Formulation

- Aggregates y
- Original time series X (unknown)
- Mapping O of subsets of X to y
- **→** Least squares regression problem

$$\underbrace{\begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}}_{\mathbf{O}} \times \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}}_{\mathbf{x}} = \underbrace{\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}}_{\mathbf{y}}$$

Advanced Method

- Discrete Cosine Transform (DCT) (sparsest spectral representation)
- Non-negativity and smoothness constraints

[Faisal M. Almutairi et al: HomeRun: Scalable Sparse-Spectrum Reconstruction of Aggregated Historical Data. **PVLDB 2018**]

Data Provenance Motivation and Terminology

Excursus: FAIR Data Principles

#1 Findable

- Metadata and data have globally unique persistent identifiers
- Data describes w/ rich meta data; registered/indexes and searchable

#2 Accessible

- Metadata and data retrievable via open, free and universal comm protocols
- Metadata accessible even when data no longer available

#3 Interoperable

- Metadata and data use a formal, accessible, and broadly applicable format
- Metadata and data use FAIR vocabularies and qualified references

#4 Reusable

- Metadata and data described with plurality of accurate and relevant attributes
- Clear license, associated with provenance, meets community standards

Terminology

Data Provenance

Track and understand data origins and transformations of data (where?, when?, who?, why?, how?)

- Contains meta data, context, and modifications (transform, enrichment)
- Synonyms: data lineage, data pedigree
- Data Catalogs (curation/governance)
 - Directory of datasets including data provenance (meta data, artifacts)
 - Raw/original, curated datasets, derived data products

Blockchain

Data structure logging transactions in verifiable and permanent way

Applications and Goals

a) High-Level Goals

- #1 Versioning and Reproducibility (analogy experiments)
- #2 Explanability, Interpretability, Verification

b) Low-Level Goals

- #3 Full and Partial Reuse of Intermediates
- #4 Incremental Maintenance of MatViews, Models, etc
- #5 Tape/log of Executed Operations → Auto Differentiation
- #6 Recomputation for Caching / Fault Tolerance
- #7 Debugging via Lineage Query Processing

Data Provenance

Overview Data Provenance

Def Data Provenance

Information about the origin and creation process of data

Example

Debugging suspicious query results

SELECT Customer, sum(0.Quantity*P.Price)
FROM Orders 0, Products P
WHERE 0.PID = P.PID
GROUP BY Customer

Customer	Sum
Α	7620
В	120
С	130
D	75

OID	Customer	Date	Quantity	PID
1	Α	2019-06-22	3	2
2	В	2019-06-22	1	3
3	Α	2019-06-22	101	4
4	С	2019-06-23	2	2
5	D	2019-06-23	1	4
6	С	2019-06-23	1	1

PID	Product	Price
1	Χ	100
2	Υ	15
4	Z	75
3	W	120

Overview Data Provenance, cont.

An Abstract View

■ Data: schema, structure → data items

[Boris Glavic: CS595 Data Provenance – Introduction to Data Provenance, Illinois Institute of Technology, 2012]

- Data composition (granularity): attribute, tuple, relation
- Transformation: consumes inputs, produces outputs
- Hierarchical transformations: query w/ views, query block, operators
- Additional: env context (OS, libraries, env variables, state), users

Goal: Tracing of Derived Results

- Inputs and parameters
- Steps involved in creating the result
- → Store and query data & provenance
- General Data Protection Regulation (GDPR)?

- 1. Read file1
- 2. Sort rows
- 3. Compute median
- 4. Write to file2

Classification of Data Provenance

Overview

- Base query Q(D) = O with database D = $\{R_1, ..., R_n\}$
- Forward lineage query: L_f(R_i", O') from subset of input relation to output
- **Backward lineage query:** $L_b(O', R_i)$ from subset of outputs to base tables

#1 Lazy Lineage Query Evaluation

- Rewrite (invert) lineage queries as relational queries over input relations
- No runtime overhead but slow lineage query processing

#2 Eager Lineage Query Evaluation

- Materialize annotations (data/transforms) during base query evaluation
- Runtime overhead but fast lineage query processing
- Lineage capture: Logical (relational)
 vs physical (instrumented physical ops)

[Fotis Psallidas, Eugene Wu: Smoke: Fine-grained Lineage at Interactive Speed. **PVLDB 2018**]

Why-Provenance

[Boris Glavic: CS595 Data Provenance -Provenance Models and Systems, Illinois Institute of Technology, 2012]

Product

X

W

Overview Why

- Goal: Which input tuples contributed to an output tuple t in guery Q
- Representation: Set of witnesses w for tuple t (set semantics!)
 - $w \subseteq I$ (subset of all tuples in instance I)
 - $t \in Q(w)$ (tuple in result of query over w)

Example Witnesses

	Customer	Date	PID	
o1	Α	2019-06-22	2	p1
o2	В	2019-06-22	3	p2
03	А	2019-06-22	2	р3
				n4

PID

Witnesses for t1:

Minimal witnesses for t1: $w1 = \{01,p2\}, w2 = \{03,p2\}$

	Customer	Product
t1	Α	Υ
t2	В	W

Others: Where/How Provenance

How-Provenance

[Boris Glavic: CS595 Data Provenance – Provenance Models and Systems, Illinois Institute of Technology, 2012]

Overview

- Model how tuples where combined in the computation
- Alternative use: need one of the tuples (e.g., union/projection)
- Conjunctive use: need all tuples together (e.g., join)

Provenance Polynomials

• Semiring annotations to model provenance $(\mathbb{N}[I], +, \times, 0, 1)$

Examples

$$q = \pi_a(R)$$

	а	b
r1	1	2
r2	1	3

$$r1 + r2$$

Provenance

Polynomials

$$q = \pi_b(R \bowtie S)$$

	а	b		С	а
r1	1	Р	s1	S	1
r 2	2	G	s2	S	2
	3	M	s3	W	2

Why Not?-Provenance

[Adriane Chapman, H. V. Jagadish: Why not? SIGMOD 2009]

Overview

- Why are items not in the results
- Example Problem:

"Window-display-books < \$20"

 \rightarrow (Euripides, Medea).

>= 20\$?

→ Why not (Hrotsvit, Basilius)?

Bug in the query / system?

Not in book store?

Author	Title	Price	Publisher
	Epic of Gilgamesh	\$150	Hesperus
Euripides	Medea	\$16	Free Press
Homer	Iliad	\$18	Penguin
Homer	Odyssey	\$49	Vintage
Hrotsvit	Basilius	\$20	Harper
Longfellow	Wreck of the Hesperus	\$89	Penguin
Shakespeare	Coriolanus	\$70	Penguin
Sophocles	Antigone	\$48	Free Press
Virgil	Aeneid	\$92	Vintage

Evaluation Strategies

- Given a user question (why no tuple satisfies predicate S), dataset D, result set R, and query Q, leverage why lineage
- #1 Bottom-Up: from leafs in topological order to find last op eliminating $d \in S$
- #2 Top-Down: from result top down to find last op, requires stored lineage

Apache Atlas

Apache Atlas Overview

- Metadata management and governance capabilities
- Build catalog (data classification, cross-component lineage)

Example

- Configure Atlas hooks w/ Hadoop components
- Automatic tracking of lineage and side effects

[https://www.cloudera.com/tutorials/cross-component-lineage-with-apache-atlas-across-apache-sqoop-hive-kafka-storm/.html]

Provenance for ML Pipelines (fine-grained)

DEX: Dataset Versioning

- Versioning of datasets, stored with delta encoding
- Checkout, intersection, union queries over deltas
- Query optimization for finding efficient plans

[Amit Chavan, Amol Deshpande: DEX: Query Execution in a Deltabased Storage System. SIGMOD 2017]

MISTIQUE: Intermediates of ML Pipelines

- Capturing, storage, querying of intermediates
- Lossy deduplication and compression
- Adaptive querying/materialization for finding efficient plans

Linear Algebra Provenance

- Provenance propagation by decomposition
- Annotate parts w/ provenance polynomials (identifiers of contributing inputs + impact)

$$A = S_x B T_u + S_x C T_v + S_y D T_u + S_y E T_v$$

[Zhepeng Yan, Val Tannen, Zachary G. Ives: Fine-grained Provenance for Linear Algebra Operators. **TaPP 2016**]

[Manasi Vartak et al: MISTIQUE: A System to Store and Query Model Intermediates for Model Diagnosis. **SIGMOD 2018**]

Provenance for ML Pipelines (coarse-grained)

MLflow

- Programmatic API for tracking parameters, experiments, and results
- autolog() for specific params

```
import mlflow
import mlflow
mlflow.log_param("num_dimensions", 8)
mlflow.log_param("regularization", 0.1)
mlflow.log metric("accuracy", 0.1)
```

mlflow.log artifact("roc.png")

Flor (on Ground)

- DSL embedded in python for managing the workflow development phase of the ML lifecycle
- DAGs of Actions, Artifacts, and Literals
- Data context generated by activities in Ground

[Credit: https://rise.cs.berkeley.edu/ projects/jarvis/]

[Joseph M. Hellerstein et al: Ground: A Data Context Service. **CIDR 2017**]

Dataset Relationship Management

- Reuse, reveal, revise, retarget, reward
- Code-to-data relationships (data provenance)
- Data-to-code relationships (potential transforms)

[Zachary G. Ives, Yi Zhang, Soonbo Han, Nan Zheng,: Dataset Relationship Management. **CIDR 2019**]

Provenance for ML Pipelines (coarse-grained), cont.

HELIX

Goal: focus on iterative development
 w/ small modifications (trial & error)

[Doris Xin, Stephen Macke, Litian Ma, Jialin Liu, Shuchen Song, Aditya G. Parameswaran: Helix: Holistic Optimization for Accelerating Iterative Machine Learning. **PVLDB 2018**]

- Caching, reuse, and recomputation
- Reuse as Max-Flow problem → NP-hard → heuristics
- Materialization to disk for future reuse

Fine-grained Lineage in SystemDS

Problem

- Exploratory data science (data preprocessing, model configurations)
- Reproducibility and explainability of trained models (data, parameters, prep)
- → Lineage/Provenance as Key Enabling Technique:

 Model versioning, reuse of intermediates, incremental maintenance, auto differentiation, and debugging (query processing over lineage)

Efficient Lineage Tracing

- Tracing of inputs, literals, and non-determinism
- Trace lineage of logical operations for all live variables, store along outputs, program/output reconstruction possible:

```
X = eval(deserialize(serialize(lineage(X))))
```

Proactive deduplication of lineage traces for loops

Fine-grained Lineage in SystemDS, cont.

- Full Reuse of Intermediates
 - Before executing instruction, probe output lineage in cache Map<Lineage, MatrixBlock>
 - Cost-based/heuristic caching and eviction decisions (compiler-assisted)
- Partial Reuse of Intermediates
 - Problem: Often partial result overlap
 - Reuse partial results via dedicated rewrites (compensation plans)
 - Example: steplm

X

```
O(k(mn^{2}+n^{3})) \rightarrow \\ for(i in 1:numModels) O(mn^{2}+kn^{3}) \\ R[,i] = lm(X, y, lambda[i,], ...)
```

```
m_lmDS = function(...) {
    l = matrix(reg,ncol(X),1)
    A = t(X) %*% X + diag(1)
    b = t(X) %*% y
    beta = solve(A, b) ...}
```

```
m_steplm = function(...) {
  while( continue ) {
    parfor( i in 1:n ) {
       if( !fixed[1,i] ) {
          Xi = cbind(Xg, X[,i])
          B[,i] = lm(Xi, y, ...)
       } }
  # add best to Xg
  # (AIC)
  } }
```

 $O(n^2(mn^2+n^3)) \rightarrow O(n^2(mn+n^3))$

Blockchain Fundamentals

Recap: Database (Transaction) Log

Database Architecture

- Page-oriented storage on disk and in memory (DB buffer)
- Dedicated eviction algorithms
- Modified in-memory pages marked as dirty, flushed by cleaner thread
- Log: append-only TX changes
- Data/log often placed on different devices and periodically archived (backup + truncate)

Write-Ahead Logging (WAL)

- The log records representing changes to some (dirty)
 data page must be on stable storage before the data page (UNDO atomicity)
- Force-log on commit or full buffer (REDO durability)
- Recovery: forward (REDO) and backward (UNDO) processing
- Log sequence number (LSN)

[C. Mohan, Donald J. Haderle, Bruce G. Lindsay, Hamid Pirahesh, Peter M. Schwarz: ARIES: A Transaction Recovery Method Supporting Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead Logging. **TODS 1992**]

Bitcoin and Blockchain

[Satoshi Nakamoto: Bitcoin: A Peer-to-Peer Electronic Cash System, White paper 2008]

Motivation

- Peer-to-peer (decentralized, anonymous) electronic cash/payments
- Non-reversible transactions w/o need for trusted third party

Transaction Overview

- Electronic coin defined as chain of digital signatures
- Transfer by signing hash of previous
 TX and public key of next owner
- Double-spending problem (without global verification)

Blockchain Data Structure

[Satoshi Nakamoto: Bitcoin: A Peer-to-Peer Electronic Cash System, White paper 2008]

Timestamp Server

■ Decentralized timestamp server: chain of hashes → public ledger

Proof-of-Work

- Scanning for value (nonce) which SHA-256 hash begins with a number of zero bits
 - → exponential in number of zeros
- # zero bits determined by MA of avg blocks/hour
- Hard to recompute for chain, easy to check
- Majority decision: CPU time, longest chain

Merkel tree (hash tree)

Blockchain Data Structure, cont.

Bitcoin Mining

- HW: from CPU to GPUs/FPGAs/ASICs (10-70 TH/s @ 2-3KW)
- Usually mining pools → "mining cartels"

Hash Rate of Bitcoin Network

~10 min per block (144 blocks per day)

Blockchain Communication

[Satoshi Nakamoto: Bitcoin: A Peer-to-Peer Electronic Cash System, White paper 2008]

2008: 50BTC

2012: 25BTC

2016: **12.5BTC** 2020: **6.25BTC**

Networking Protocol

- New TXs are broadcast to all nodes
- Each node collects new TXs into a block
- Each node works on finding proof-of-work for its block
 - → Incentive: 1st TX in block new coin (halves every 210k blocks) for the block creator + TX fees
- When a node finds a proof-of-work, broadcast the block to all nodes
- Nodes accept the block if all TXs are valid (double spending)
- Nodes express acceptance by working on next block in the chain, using the hash of the accepted block as the previous hash

Fault Tolerance

- TX broadcasts: no need to reach all but many → next block contains it
- Block broadcast: no need to reach all → next block references it

Smart Contracts (Ethereum)

Motivation

- Problem: Bitcoin TXs for transferring X \$BTC from A to B (exchange as assets)
- Goals: voting, auctions, games, bets, legal agreements (notary)

Ethereum

- Decentralized platform that allows creation, management, and execution of smart contracts
- Ether cryptocurrency, block mining rate: seconds (5 ETH/block)

1 • <contract> 2 3 4 5 6 7 ... 19 20 • </contract>

[Credit: Shana Hutchison]

Smart Contract

- Store smart contract (turing-complete programs) on the blockchain
- On transfer/trigger: run smart contract (in) in Ethereum Virtual Machine
- Language: Serpent/Solidity (deterministic, w/ control flow and function calls)
 - → Problem: while(true) → EVM gas and fees (start gas, gas price)
- Immutability guarantees persistence

Permissioned/Private Blockchains

Private Setup

- Business Networks connect businesses
- Participants with Identity
- Assets flow over business networks
- Transactions describe exchange or change of states of assets
- Smart contracts underpin transactions
- Blockchain as shared, replicated, permissioned ledger (TX log):

consensus, provenance, immutability

[C. Mohan: State of Permissionless and Permissioned Blockchains: Myths and Reality, 2019]

Hyperledger Fabric (https://github.com/hyperledger/)

- IBM, Oracle, Baidu, Amazon, Alibaba, Microsoft, JD, SAP, Huawei, Tencent
- Blockchain-as-a-Service (BaaS) offerings: distributed ledger, libs, tools

Discussion Blockchain

→ Recommendation: Investigate business requirements/context, decide on technical properties and acceptable trade-offs

Summary and Q&A

Summary

- Backlog: Missing Value Imputation
- Motivation and Terminology
- Data Provenance
- Blockchain Fundamentals

Next Lectures (Part B)

- 08 Cloud Computing Foundations [Nov 27]
- 09 Cloud Resource Management and Scheduling [Dec 04]
- 10 Distributed Data Storage [Dec 11]

