
1
SCIENCE
PASSION

TECHNOLOGY

Architecture of DB Systems
03 Data Layouts and Bufferpools
Matthias Boehm

Graz University of Technology, Austria

Institute of Interactive Systems and Data Science
Computer Science and Biomedical Engineering

BMK endowed chair for Data Management

Last update: Oct 20, 2021

2

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

Announcements/Org
 #1 Video Recording

 Link in TUbe & TeachCenter (lectures will be public)
 Optional attendance (independent of COVID)
 Hybrid, in-person but video-recorded lectures

 HS i5 + Webex: https://tugraz.webex.com/meet/m.boehm

 #2 COVID-19 Precautions (HS i5)
 Room capacity: 24/48 (green/yellow), 12/48 (orange/red)
 TC lecture registrations (limited capacity, contact tracing)

 #3 Programming Projects
 Initial test suite, benchmark, and make file on website
 Reference implementations Naïve (Baseline 0)
 https://mboehm7.github.io/teaching/ws2122_adbs/Project_Setup_v1.zip

max
24/90

https://tugraz.webex.com/meet/m.boehm
https://mboehm7.github.io/teaching/ws2122_adbs/Project_Setup_v1.zip

3

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

Announcements/Org, cont.
 Unit Tests

 make unit_test
 ./unit_test

 Speed Tests
 make speed_test
 ./speed_test

 Preliminary Perf
Target: #pcores/2

test case 7.47: PASS
test case 7.48: PASS
SUMMARY
=======
passed 684/684 test cases
all tests passed

#1 SUM: 1 grp (INT32), 1K dist. values, 1 agg (INT32), 30000000
-- Time to complete run 1: 1290 milliseconds.
-- Time to complete run 2: 1327 milliseconds.
-- Time to complete run 3: 1330 milliseconds.
-- Average time to complete (3 runs): 1315 milliseconds.
#2 SUM: 1 grp (INT32), 10K dist. values, 1 agg (INT32), 30000000
-- Average time to complete (3 runs): 1733 milliseconds.
#3 SUM: 1 grp (INT32), 100K dist. values, 1 agg (INT32), 30000000
-- Average time to complete (3 runs): 3677 milliseconds.
#4 SUM: 1 grp (INT32), 1M dist. values, 1 agg (INT32), and 30000000
-- Average time to complete (3 runs): 16904 milliseconds.
#5 SUM: 2 grp (INT32), 1M dist. values (each), 1 agg (INT32), 30000000
-- Average time to complete (3 runs): 18766 milliseconds.
#6 SUM: 1 grp (INT64), 1M dist. values (each), 1 agg (INT32), 30000000
-- Average time to complete (3 runs): 17763 milliseconds.
#7 SUM: 2 grp (INT64), 1M dist. values (each), 1 agg (INT32), 30000000
-- Average time to complete (3 runs): 21437 milliseconds.
#8 SUM: 1 grp (INT16), 1M dist. values (each), 1 agg (INT32), 30000000
-- Average time to complete (3 runs): 4526 milliseconds.
#9 SUM: 2 grp (INT16), 1M dist. values (each), 1 agg (INT32), 30000000
-- Average time to complete (3 runs): 6208 milliseconds.
#10 SUM: 1 grp (INT32, sorted), 1M dist. values, 1 agg (INT32), 30000000
-- Average time to complete (3 runs): 2932 milliseconds.

Score:
∑𝑊𝑊𝑖𝑖 ⋅ 𝑇𝑇𝑖𝑖(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)
∑𝑊𝑊𝑖𝑖 ⋅ 𝑇𝑇𝑖𝑖(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

4

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

Caching – An Old and Fundamental CS Concept
Motivation

[Arthur W. Burks, Herman H. Goldstine, John von Neumann: Preliminary
Discussion of the Logical Design of an Electronic Computing Instrument,

Part I, Vol. I, Report prepared for U.S. Army Ord. Dept., 28 June 1946]

[Credit: Nimrod Megiddo and Dharmendra S. Modha (ARC paper)]

5

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

DBMS Architecture, cont. [Theo Härder, Erhard Rahm:
Datenbanksysteme: Konzepte und

Techniken der Implementierung, 2001]

Operating System
(File Mgmt)

Buffer Management
(Propagation control)

(Record) Storage System
(Access path mgmt)

(Data) Access System
(Navigational access)

Data System
(Nonprocedural access)

Set-Oriented Interface

Internal Record Interface

System buffer Interface

File Interface

Record-Oriented Interface

SELECT *
FROM R

FIND NEXT
record

B-Tree
getNext

ACCESS
page j

READ
block k

Qi

Data
System

Access
System

Storage
System

Device Interface

Motivation

6

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

Agenda
 Page Layouts and Record Management
 Buffer Pool Management
 Page Replacement Strategies
 In-Memory DBMS Eviction

7

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

Page Layout and
Record Management

8

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

Segments, Pages, and Blocks
 Segment

 Storage unit of DB objects like
relations (heap), and indexes

 Allocate/iterate pages, drop all
 Often separate file

 Page
 Smallest unit in DB buffer pool
 Page: fixed-sized memory region
 Frame: meta data on data page

 Block (and/or disk sector)
 Smallest addressable unit on disk

(e.g., POSIX block devices)

Page Layout and Record Management

Segment / Tablespace

Page 1 Page 2 Page 3

Blk
1

Blk
2

Blk
3

Blk
4

Blk
5

Blk
6

9

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

Recap: Page Layout of Row Stores
 Background: Storage System

 Buffer and storage management
(incl. I/O) at granularity of pages

 PostgreSQL default: 8KB
 Different table/page layouts

 Row Storage
 NSM (nary storage model)
 Store tuple attributes in

contiguous form
 Fast get/insert/delete
 Slow column aggregates

 Other: DSM, PAX

Page Layout and Record Management

115 136
81 136 Header 115 175 Header

tuple tuple

tuple offsets

Header

1234 Jane Smith
1237 John Smith

1242 John

Doe

10

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

Motivation Fixed-size Pages
 #1 Alignment with Disk Blocks

 Typically 512B to 4KB (AF) blocks as minimum storage unit
 A single DB page should map to 1..N physical disk blocks/sectors

 #2 Sequential Reads/Writes
 Recap: HDD seek times vs sequential read/write
 Similar: SSD sequential read/write w/ higher bandwidth

 #3 Simplified Buffer Manager
 Fixed-size pages removes need for reasoning about sizes for eviction
 Fixed-size pages avoid main memory fragmentation

 Recent Perspective: Variable-Size Pages
 Large objects (strings, dictionaries) across

pages complicates/slows down DBMS components

Page Layout and Record Management

[Thomas Neumann, Michael J. Freitag:
Umbra: A Disk-Based System with In-

Memory Performance. CIDR 2020]

11

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

Classification of Record Addressing Schemes
Page Layout and Record Management

Logical Offset
in Segment

Addressing
Schemes

Direct
Addressing

Indirect
Addressing

Tuple
Identifier

[Dirk Habich: Advanced Query Processing in Database Systems –
Record Management, TU Dresden, WS 2019]

Mapping
Table

12

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

TID (Tuple Identifier) Concept
 Problem: Internal TID should be stable, even if records reorganized

 TID Concept (p, s)
 TID := (page number, slot index)
 Page slot directory holds tuple

offsets (byte position) within page
 Variable number of slots
 Single page access for internal row

 Reorganization
 Compact free space between records

via page-local record movements
 Updates of page-local directory sufficient

 Inserts: use free slot or add new slot

Page Layout and Record Management

1234 Jane Smith
1237 John

Smith

1242 John Doe

1234 Jane Smith
1237 John Smith

1301 Md Li

1242 John Doe

(7, 3)

13

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

TID (Tuple Identifier) Concept, cont.
 Example PostgreSQL

 Recap: Papers(PKey, Title, Pages, CKey, JKey)
 Hidden CTID system column (not shown on *, but usable)

 Other Hidden
System Columns
 oid, tableoid
 xmin, cmin (insert), xmax, cmax (delete)

Page Layout and Record Management

SELECT CTID, PKey,
Title, Pages

FROM Papers

14

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

TID (Tuple Identifier) Concept, cont.
 Overflow Handling

 On updates, tuple might need additional
space (more than available on page)

 Example: Rename “Smith” to “Smith-EvenLonger”
 Reference new page, to preserve original TID

(chains longer than 1 can be internally avoided)

Page Layout and Record Management

1234 Jane Smith
1237 John Smith

1301 Md Li

1242 John Doe

Page 7

Page 7

(5,4)

(7,2)

Page 5

(5,4)

1237 John
Smith-EvenLonger

15

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

Example Page Layouts
 PostgreSQL 13.5

 Uses TID concept

 IBM DB2 11.5
 Uses TID (aka RID) concept

Page Layout and Record Management

[https://www.postgresql
.org/docs/13/
storage-page-layout.html]

[https://www.ibm.com/support/
knowledgecenter/SSEPGG_11.5.0/
com.ibm.db2.luw.admin.perf.doc/
doc/c0005424.html]

(LSN, checksum, flags, region offsets, sizes)

(access-method data)

Presenter
Presentation Notes
Postgres special area: e.g., index pages w/ left and right siblings

https://www.postgresql.org/docs/13/storage-page-layout.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0005424.html

16

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

Common Record Layouts
 #1 Fixed-Size Fields

 Concatenated fields, directly accessible

 #2 Offsets
 Prefix with relative offsets of all fields

 #3 Embedded Length Fields
 Length fields only for variable-size fields
 Cannot access a specific field w/o record scan

 #4 Partitioned
 Partition 1: Fixed-sized fields
 Partition 2: Offsets and variable-sized fields

 Other: Sometimes bitmap field (#cols/8 bytes) for NULL indicator, etc

Page Layout and Record Management

F1 F2 F3 F4

F1 V2 F3 V4

F1 V2 F3 V4

F1 F3 V2 V4

17

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

Buffer Pool Management

18

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

Buffer Pool Overview
 Buffer Pool

 Holds fraction of DB pages in memory
 Find pages via addressing scheme
 Allocate memory (local, global)
 Page replacement (exact, approximate)

 Example Configuration (PostgreSQL)
 block_size: size of disk block, i.e., page (default 8KB)
 shared_buffers: size of cross-session buffer pool (default 128MB)
 Recommended tuning: 25% of available memory

 temp_buffers: size of session-local memory for tmp tables (default 8MB)
 work_mem: size of operation-local memory for sort/hash tables (default 4MB)

Buffer Pool Management

[https://www.postgresql.org/docs/13/runtime-config.html]

DBMS
DB Buffer Log

Buffer

P1

P7 P3’

Data Log

P7 P3

https://www.postgresql.org/docs/13/runtime-config.html

19

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

DB Buffer Pool vs Operating System
 #1 Why not Memory-Mapped Files (mmap)

 ACID Atomicity and Durability (flush TX log before dirty pages)
 ACID Isolation (locking of pages)
 Context knowledge of query processing / access paths; portability

 #2 Why no Swapping
 No durability of changes after restart
 With DB buffer pool danger of double page faults

(requested page not in DB buffer - load, victim page swapped – load, replace)

 #3 Why no OS File Cache
 #1 Bypass via direct I/O (O_DIRECT) to avoid redundant caching
 #2 Leverage via small buffer pool and otherwise OS file cache (see Postgres)

Buffer Pool Management

20

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

Buffer Pool Interface
 Pin/Fix

 fix(pageID, exclusive)
 Pins page for read/write access, guards against replacement
 If page not in buffer, read and replace victim page in buffer pool

 Unpin/Unfix
 unfix(pageID, dirty)
 Unpins page to release guard against replacement
 Dirty flag indicates if page has been modified async write to disk

 Others Aspects
 Additional operations: Get via fix(pageNo,false), Mark dirty, Flush
 Lookup via hash map (pageID, buffer frame), load/replace via put/remove

Buffer Pool Management

[Thomas Neumann: Datenbanksysteme
und moderne CPU-Architekturen -

Storage, TU Munich, 2019]

21

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

Buffer Frame Allocation
 Global and Local Memory Allocation

 Global: shared buffer pool used by all transactions, sessions, and users
 Local: transaction/session-local buffers for temporary tables and operations

 PostgreSQL Buffer Frame (Buffer Descriptor)
 Access to data page via buf_id (hash table lookup)

Buffer Pool Management

// Extracted as of Oct 18, 2020
typedef struct BufferDesc {

BufferTag tag; /* ID of page contained in buffer */
int buf_id; /* buffer's index number (from 0) */
pg_atomic_uint32 state; /* tag state, flags, ref/usage counts */

int wait_backend_pid; /* backend PID of pin-count waiter */
int freeNext; /* link in freelist chain */

LWLock content_lock; /* to lock access to buffer contents */
} BufferDesc;

[https://github.com/postgres/
postgres/blob/master/src/

include/storage/buf_internals.h]

https://github.com/postgres/postgres/blob/master/src/include/storage/buf_internals.h

22

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

Pre-Fetching, Cleaning, and Scan Sharing
 Pre-Fetching (Async)

 Overlay computation w/ speculative sequential
read of multiple pages

 Based on physical data structures, and query plan

 Cleaning (Async)
 Asynchronous sequential write of changed (dirty)

pages moved out of critical path of TX processing

 Scan Sharing
 Multiple queries can piggyback on

existing table scan, w/ compensations
 Red Brick: coordinated table scan
 Crescando: continuous scan

Buffer Pool Management

[Phillip M. Fernandez: Red Brick
Warehouse: A Read-Mostly RDBMS for

Open SMP Platforms. SIGMOD 1994]

[Philipp Unterbrunner, Georgios Giannikis,
Gustavo Alonso, Dietmar Fauser, Donald
Kossmann: Predictable Performance for

Unpredictable Workloads. PVLDB 2(1) 2009]

23

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

Excursus: Automatic Buffer Pool Tuning
 IBM DB

 Self-tuning memory manager
 Caches, ops, buffer pool

 Oracle
 Automatic tuning of SGA/PGA

(System/Process Global Memory)

 Microsoft
 Multi-tenant page

replacement (MR-LRU)

 OtterTune
 ML-based tuning of

DB configurations

Buffer Pool Management

[Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, Bohan
Zhang: Automatic Database Management System Tuning

Through Large-scale Machine Learning. SIGMOD 2017]

[Vivek R. Narasayya, Ishai Menache, Mohit Singh, Feng
Li, Manoj Syamala, Surajit Chaudhuri: Sharing Buffer

Pool Memory in Multi-Tenant Relational Database-as-a-
Service. PVLDB 8(7), 2015]

[Adam J. Storm, Christian Garcia-Arellano, Sam
Lightstone, Yixin Diao, Maheswaran Surendra:

Adaptive Self-tuning Memory in DB2. VLDB 2006]

[Benoît Dageville, Mohamed Zaït: SQL Memory
Management in Oracle9i. VLDB 2002]

24

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

Page Replacement Strategies

25

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

Classification of Replacement Strategies
Page Replacement Strategies

FIFO ARC LFU LRU

Replacement
Strategy

Exact
Methods

Approximate
Methods

Age Usage

CLOCK CAR/
CART

refs latest refs

[Dirk Habich: Advanced Query Processing in Database Systems –
Storage Management and System Buffer, TU Dresden, WS 2019]

others:
FBR, LRFU

Presenter
Presentation Notes
FBR (frequency based replacement)LRFU (Least recently used, least frequently used)CAR (Adaptive replacement)CART (Adaptive replacement with temporal filtering)

26

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

FIFO (First-in, first-out)
 Strategy

 Evict oldest page (time in buffer) from pool
 Implementation as basic ring buffer of size c (capacity)
 Ignores frequent and recent page references

Page Replacement Strategies

evict
old pages

add
new pages

Empty

1

2

Add

7

86

9

4

5

Evict & Add

10evict 4, add 10,
move clockwise

27

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

CLOCK (Second Chance)
 Strategy

 Each page has a reference bit R, indicating if it was referenced in the last cycle
 Evict oldest page (time in buffer) with R=0 from pool
 FIFO extension with coarse-grained accounting of page references
 Variant: GCLOCK (Generalized CLOCK) w/ ref counter (PostgreSQL clock sweep)

Page Replacement Strategies

9

48

5

6

7

Before Eviction

10

1

1

1

0

0

0 9

48

5

10

7

After Eviction

0

0

1

0

0

0

reference
bits reset

10 added to
first valid slot

28

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

LRU (Least Recently Used)
 Strategy

 Evict least recently used page (last page reference)
 Implementation as basic list/queue (head: new pages, tail: LRU page)
 Equivalent to FIFO for sequential scans (might evict hot data pages)

Page Replacement Strategies

317542 7add page 8 8

35428 7reference page 17 17

542817 3add page 33
 evict page 7

33

317542

tail

7

head capacity
c

29

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

LRU-K (Least Recently Used K)
 Strategy

 Evict page with max backward K-distance (kth-last reference, ∞ if <k refs)
 LRU-1 equivalent to LRU, in practice: often LRU-2
 Variants: timestamp as of page reference, or of page UNFIX operation

Page Replacement Strategies

tailhead

317542 78

capacity
c

(23,
17)

K last
references

(24,
15)

(14,
12)

(15,
9)

(10,
7)

(5)

K=2 Distance
at T=25

8 10 13 16 18 ∞

30

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

LFU (Least Frequently Used)
 Strategy

 Evict page with min reference count since brought in buffer pool
 Draws resolved with secondary strategy (e.g., FIFO)
 Implement as list with swaps of neighbors on access

Page Replacement Strategies

7 3 246 2 tailhead

317542 78

capacity
c

add page 33
 evict page 7

317542 338

1
Difficult to remove

pages that have been
frequently accessed

in the past

31

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

ARC (Adaptive Replacement Cache)
 Strategy

 Maintain two LRU lists of pages: L1 and L2
 Keep cache directory of length c (cache size) for both lists
 Keep c pages in cache, p in L1 and (c-p) L2
 Replacement: evict LRU L1 if |L1|>p, evict LRU L2 if |L1|<p
 Adaptively tune p based on hits and size of L1/L2 lists w/o pages

 Note: Linux page cache w/ ‘active’ and ‘inactive’ LRU page lists + migration

Page Replacement Strategies

p

c-p

ARC

LRU L1
(1 ref)

LRU L2
(≥2 refs)

Recency

Frequency

[Nimrod Megiddo, Dharmendra S. Modha:
ARC: A Self-Tuning, Low Overhead

Replacement Cache. FAST 2003]

Presenter
Presentation Notes
BIG SQL

32

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

In-Memory DBMS Eviction

33

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

Motivation In-Memory DBMS
 Common Misconception: So an in-memory database system is just a

regular database system with unlimited buffer pool capacity?

 Disk-based DBMS Overhead
 OLTP workloads bottlenecked on

buffer pool, latching, locking, logging
 Evaluated on Shore-MT research prototype

 In-Memory DBMS
 Eliminates one of the main bottlenecks (disk I/O, and buffer pool)
 Requires improvements for modern hardware, locking/latching, etc
 However, storage cost-perf trade-off (DRAM vs SSD/HDD)
 How to enable graceful evictions, without reintroducing overhead?

In-Memory DBMS Eviction

34.6%

6.8%

[Stavros Harizopoulos, Daniel J. Abadi,
Samuel Madden, Michael Stonebraker:
OLTP through the looking glass, and what
we found there. SIGMOD 2008]

34

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

Anti Caching (Andy Pavlo et al.)
 Fine-grained Eviction

 Online identification of cold tuples
 Threshold of ~80% triggers anti-caching
 Abort TX on “page fault”, retrieve,

and restart TX (no blocking of other TXs)
 Pre-pass to identify all page faults of TX

 Anti-Cache
 Construct fixed-size blocks via LRU chain
 Evicted Table: in-mem map of evicted tuples

(granularity of individual data accesses)
 Block Table: on-disk map of evicted blocks

 Excursus: SystemDS Buffer Pool
 Similarly, eviction of live variables under memory pressure
 DIA projects: #44 Lineage-Exploitation in Buffer Pool

In-Memory DBMS Eviction

[Justin DeBrabant, Andrew Pavlo,
Stephen Tu, Michael Stonebraker,

Stanley B. Zdonik: Anti-Caching: A New
Approach to Database Management

System Architecture. PVLDB 6(14) 2013]

35

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

LeanStore (Viktor Leis et al.)
 Coarse-Grained Eviction

 Motivation: avoid buffer pool overhead
 Pointer swizzling (direct page references)
 Avoid LRU overhead per page access by

tracking infrequently accessed pages
 Speculative unswizzling w/o eviction

(randomly page from pool)
 CLOCK eviction unswizzled pages

 Experimental Results
 TPC-C 10 WH (initially 10GB)

In-Memory DBMS Eviction

High Impact w/
multi-threading

[Viktor Leis, Michael Haubenschild, Alfons
Kemper, Thomas Neumann: LeanStore:
In-Memory Data Management beyond

Main Memory. ICDE 2018]

10% of
pages

36

706.543 Architecture of Database Systems – 03 Data Layouts and Bufferpools
Matthias Boehm, Graz University of Technology, WS 2021/22

Summary and Q&A
 Page Layouts and Record Management
 Buffer Pool Management
 Page Replacement Strategies
 In-Memory DBMS Eviction

 Programming Projects
 Initial test suite, benchmark, make file, and reference implementation
 Try compiling/running it, and start your own implementation in next weeks

 Next Lectures (Part A)
 04 Index Structures and Partitioning [Oct 27]

 05 Compression Techniques [Nov 03]

	Architecture of DB Systems�03 Data Layouts and Bufferpools
	Announcements/Org
	Announcements/Org, cont.
	Caching – An Old and Fundamental CS Concept
	DBMS Architecture, cont.
	Agenda
	Page Layout and �Record Management
	Segments, Pages, and Blocks
	Recap: Page Layout of Row Stores
	Motivation Fixed-size Pages
	Classification of Record Addressing Schemes
	TID (Tuple Identifier) Concept
	TID (Tuple Identifier) Concept, cont.
	TID (Tuple Identifier) Concept, cont.
	Example Page Layouts
	Common Record Layouts
	Buffer Pool Management
	Buffer Pool Overview
	DB Buffer Pool vs Operating System
	Buffer Pool Interface
	Buffer Frame Allocation
	Pre-Fetching, Cleaning, and Scan Sharing
	Excursus: Automatic Buffer Pool Tuning
	Page Replacement Strategies
	Classification of Replacement Strategies
	FIFO (First-in, first-out)
	CLOCK (Second Chance)
	LRU (Least Recently Used)
	LRU-K (Least Recently Used K)
	LFU (Least Frequently Used)
	ARC (Adaptive Replacement Cache)
	In-Memory DBMS Eviction
	Motivation In-Memory DBMS
	Anti Caching (Andy Pavlo et al.)
	LeanStore (Viktor Leis et al.)
	Summary and Q&A

