TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

Architecture of DB Systems
04 Index Structures and Partitioning

Matthias Boehm

Graz University of Technology, Austria

Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMK endowed chair for Data Management

PUBLIC
DOMAIN

Last update: Oct 27, 2021 “ISDS

Ty

Announcements/Org

= #1 Video Recording

= Link in TUbe & TeachCenter (lectures will be public) 0 TU be
= QOptional attendance (independent of COVID) £
= Hybrid, in-person but video-recorded lectures cisco VVebex

= HS i5 + Webex: https://tugraz.webex.com/meet/m.boehm

= #2 COVID-19 Precautions (HS i5)
= Room capacity: 24/48 (green/yellow), 12/48 (orange/red)
= TC lecture registrations (limited capacity, contact tracing)

max
24/90

= #3 Programming Projects
= |nijtial test suite, benchmark, and make file on website
= Fix for minor memory alloc/free issues
" https://mboehm7.github.io/teaching/ws2122 adbs/Project Setup v2.zip

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

https://tugraz.webex.com/meet/m.boehm
https://mboehm7.github.io/teaching/ws2122_adbs/Project_Setup_v2.zip

Ty

Agenda

= Overview Access Methods

" Index Structures

= Partitioning and Pruning

= Adaptive and Learned Access Methods

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning
Matthias Boehm, Graz University of Technology, WS 2021/22

“ISDS

Ty

Overview Access Methods

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning
Matthias Boehm, Graz University of Technology, WS 2021/22

“ISDS

Overview Access Methods

Ty

DBMS Architecture, cont.

Set-Oriented Interface

Data System

(Nonprocedural access)

[Theo Harder, Erhard Rahm:
Datenbanksysteme: Konzepte und |
Qi Techniken der Implementierung, 2001]

: Access
I System
|

1

1

1

1

| Storage
: System
:

1

1

Record-Oriented Interface

A 4

(Data) Access System
(Navigational access)

(Record) Storage System

(Access path mgmt)

System buffer Interface

Buffer Management
(Propagation control)

File Interface

A

Operating System
(File Mgmt)

|
|
|
|
|
|
A 4 |
|
|
|
|
|

"""""""" Device Interface v

SELECT *
FROM R

=

FIND NEXT
record

B-Tree

getNext '
N | | | | A

ACCESS [
page j
I 1
1
READ
block k

Overview Access Methods ﬁ-!s-rLa!.

Access Methods and Physical Design

= Performance Tuning via Physical Design
= Select physical data structures for relational schema and query workload
= #1: User-level, manual physical design by DBA (database administrator)
= #2: User/system-level automatic physical design via advisor tools

= Example
Base
SELECT * FROM R, S, T Tables T
WHERE R.c = S.d AND S.e = T.f
AND R.b BETWEEN 12 AND 73 ‘\ ;" i
Mat
| Views ﬁ ki
D] I
e—-F\ ¥ ¥ ¥
Parti- I
X __, T tioning L]
= ~ I
10 S \S
1000000 I125R.bs73 Physical B*-Tree BitMap Hash
R Access Paths Compression

Presenter
Presentation Notes
Mat views and partitioning  logical access paths
Index structures and compression  physical access paths

Overview Access Methods

Ty

Overview Index Structures

= Table Scan vs Index Scan Table Scan Index Scan
= For highly selective predicates, index scan — —
asymptotically much better than table scan e ¢M-
= |ndex scan higher overhead (~5% break even) — ted —
= |XScan = TID-Sort > TID-Fetch \ SOt
= Multi-column predicates: TID-list intersection
= Use Cases for Indexes
Lookups / Unique Index Nested Aggregates
Range Scans Constraints Loop Joins (count, min/max)

contains *
key 107? .
size=
table data A A 7%

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning
Matthias Boehm, Graz University of Technology, WS 2021/22

“ISDS

Overview Access Methods ﬁ-le-rLa!.

Additional Terminology

= Create Index CREATE INDEX ixStudLname
» Create a secondary (nonclustered) ON Students USING btree
index on a set of attributes (Lname ASC NULLS FIRST);

Clustered: tuples sorted by index

Non-clustered: sorted attribute with tuple references

Can specify uniqueness, order, and indexing method
PostgreSQL methods: btree, hash, gist, and gin table data

= Binary Search

" pos = binarySearch(data, key=23) 10 13 14 17 18 19 23 25 27 29
= Given sorted data, find key position e

(insert position if non-existing) f?
= k-ary search for SIMD data-parallelism
= Interpolation search: probe expected pos in key range

(e.g., search([1:10000], 9700))

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning "
Matthias Boehm, Graz University of Technology, WS 2021/22 ISDS

Ty

Index Structures

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

Index Structures ﬂErLa!.

Classification of Index Structures

[Theo Harder, Erhard Rahm:
= 1D Access Methods Datenbanksysteme: Konzepte und |

Techniken der Implementierung, 2001]

1D Access Methods

Key Transformation

l

Key Comparison

Sequential Sort-Based Hash-Based
Sequential Lists Binary Search Trees Static
Linked Lists Multiway Trees (B-Tree) Dynamic

Prefix Trees (Tries)

= ND Access Methods
= Linearization of ND key space + 1D indexing (Z order, Gray code, Hilbert curve)
= Multi-dimensional trees and hashing (e.g., UB tree, k-d tree, gridfile)
= Spatial index structures (e.g., R tree)

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22 !

Presenter
Presentation Notes
TODO: discuss ND techniques in more detail

Index Structures ﬁIrLa!.

B_Tree Ove rview [Rudolf Bayer, Edward M. McCreight:

Organization and Maintenance of Large
Ordered Indices. Acta Inf. (1) 1972]

= History B-Tree
= Bayer and McCreight 1972, Block-based, Balanced, Boeing Labs
= Multiway tree (node size = page size); designed for DBMS
= Extensions: B+-Tree/B*-Tree (data only in leafs, double-linked leaf nodes)

= Definition B-Tree (k, h)

[log,..(n+1) [<h< {Iogm(n—”ﬂ +1
= All paths from root to leafs have equal length h 2

= All nodes (except root) have [k, 2k] key entries All nodes adhere
= All nodes (except root, leafs) have [k+1, 2k+1] successors to max constraints
= Datais a record or a reference to the record (RID) k=2

m Key K, 'Data D; il Key K, '‘Data D, lify Key K; '‘Data D; i Key K, [Data D,

Subtree w/ Subtree w/
keys < K; K, < keys < K;
706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22 L

Index Structures ﬁ!g.
B-Tree Search i

= Example B-Tree k=2
= Get 38 2 D38
= Get 20 = D20

= Lookup Q within a node
= Scan / binary search keys for Q,, if K=Q,, return D,
= |f node does not contain key
= |f leaf node, abort search w/ NULL (not found), otherwise
= Decent into subtree Pi with K. < Q, < K,

= Range Scan Q .,
= Lookup Q, and call next K while K<Q, (keep current position and node stack)

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

Index Structures ﬁ-le-rLa!.
B-Tree Insert

= Basic Insertion Approach
= Always insert into leaf nodes!
= Find position similar to lookup, insert and maintain sorted order
» |f node overflows (exceeds 2k entries) =» node splitting

= Node Splitting Approach
= Split the 2k+1 entries into two leaf nodes

2k+1
= Left node: first k entries I41I42I45I46I
= Right node: last k entries ‘ overflow
= (k+1)th entry inserted into parent node
=» can cause recursive splitting
. . R4 R4
= Special case: root split (h++)
1
. . /| A
= B-Tree is self-balancing _
first k last k
706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

Index Structures ﬁ-IG-rE!-

B-Tree Insert, cont. (Example w/ k=1)

" Insert 1 111 " Insert 4 : : g :

Insert 5 111510

Insert 2
(split)

= |nsert 3
Insert 6 : H ! (2x split)
Insert 7
(split)

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

= |nsert 8

Index Structures ﬂIrLa!.
B-Tree Delete

= Basic Deletion Approach
= Lookup deletion key, abort if non-existing
= Case inner node: move entry from fullest successor node into position
= Case leaf node: if underflows (<k entries) =» merge w/ sibling

= Example

= Case
inner

= Case
leaf

0

underflow

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

Presenter
Presentation Notes
Note: in case inner, direct merge of 2 and 4 not possible, as 6 separates the two leaf nodes 5 and (7,8)

Index Structures ﬁIrLa!.

B-Tree Insert and Delete w/ k=2

= |nsert/Delete Examples 10 20
= QOriginal 3 5 11 18 25 28 30 31
= |nsert 16 10 20
3 5 1116 18 25 28 30 31
" |nsert 26 10 2028
3 57 11 16 18 25 26 30 31
= Delete 20 1018 28 Il
3 5 7 11 16 25 26 30 31
= Delete 16 10 28
3 5 7 11 18 25 26 @ 30 31
706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22 L

Index Structures ﬁl—g_

B-tree — Adva nced Aspects [Goetz Graefe: Modern B-Tree

Techniques. Found. Trends
Databases 3(4): 203-402, 2011]

= Variable-Length Fields
* |n-page slot-array to variable length fields = direct lookup
= With fixed page size, no guarantees on min/max entries
= Various approaches: overflow pages, pick separators during bulk loading

= Concurrent Access
= DB locks: only leaf nodes for B+ tree in practice at
= Concurrent threads require page latching (parent-child)

= Duplicate Keys
= #1 use for compression = store common prefix once)
= #2 for unique lockups w/ O(log N)
= Duplicate records as replicates or once w/ counter

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

Presenter
Presentation Notes
SQLLite: overflow pages for variable length fields (larger page size/4)

Index Structures ﬁ!g.

Other In-Memory Trees

= Balanced Binary Trees [G. M. Adel'son-Vel'skii and E. M. Landis: An
algorithm for the organization of information,
" ’ Soviet Mathematics Doklady, 3, 1962]
(left/right height diff 1) [Tobin J. Lehman, Michael J. Carey: A
. (combines pros m Study of Index Structures for Main
Memory Database Management
of AVL and B trees) left | right Systems. VLDB 1986]

[+
CSB*-Tree m [Jun Rao, Kenneth A. Ross:

= Align node size to cache line (64B) -—- < ---—_- Making B+-Trees Cache

: : Conscious in Main Memory.

= Reduce pointers via node groups ==d Ll ; SIGMOD 2000]
= More keys, higher fan-out, at cost of slower insert

- S ki p Li Sts Search path i nse rt 1 7 / update(il—=forward|i)

A N

= Linked list with multiple levels

6

25| =

e
P . A
L {/’ = il

L— oL

J7T 3% 14

= Fraction p w/ level i pointers

[William Pugh: Skip Lists: A Probabilistic
Alternative to Balanced Trees. CACM 1990]

NIL

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS

Matthias Boehm, Graz University of Technology, WS 2021/22

Index Structures ﬁ!g.
Hashing Overview

= Static vs Dynamic Hashing
= Hash table of buckets B, compute h=hash(key), find bucket B[h mod |B|]

= Static: pre-allocation of buckets, over- and under-provisioning
(open addressing: linear probe, robin hood, cuckoo)

= Dynamic: extend as needed (chained bucket, extendible, linear hashing)

= Handle hash collisions via

= Chained Bucket Hashin
° hashing % E

of linked buckets E
= Reorganization if fill factor reached |:|:

Key
comparlsons

= On disk: buckets are pages

= Common Hash Functions
= MurmurHash 2, MurmurHash 3, Jenkins, CRC
[Andy Palvo: Database

" Google CityHash, Google FarmHash, Facebook Systems — Hash Tables, 8§ Hmm
XXHash3 (http://cyan4973.github.io/xxHash/) CMU Lecture, 2019] e

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning
Matthias Boehm, Graz University of Technology, WS 2021/22

http://cyan4973.github.io/xxHash/

Index Structures ﬁ-le-rLa!.
Exte n d | b I e H a S h i ng [Ronald Fagin, Jurg Nievergelt, Nicholas Pippenger, H.

Raymond Strong: Extendible Hashing - A Fast Access
Method for Dynamic Files. TODS 4(3), 1979]

= Overview
= Dynamic resizing on demand, w/o rehashing/reassigning tuples to pages

» h=hash(key), use d bits and directory of 2¢ entries
(with max table size, then bucket chaining)

= Directory entries point to buckets, multiple refs to one bucket possible

= Exampled=1 0
P 01— N I

=l
I

= Exampled =2 00 +\>
o ity
. [Thomas Neumann: 10
Datenbanksysteme und 11 +\‘ n

moderne CPU-Architekturen —

Access Paths, TU Munich, 2019] n

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

Index Structures

Ty

= Overview

Before

After
Split

Linear Hashing

Techniken der Implementierung, 2001]

[Theo Harder, Erhard Rahm:

Datenbanksysteme: Konzepte und | =

= |mproved Extensible Hashing scheme, w/o exponential directory growth

= First start chaining, then incrementally split individual buckets (in order)

©
|

|
o
-—e
=5
o

hO

0

hO

WIN|=
98]|(o] (@)
o|U1

o)
U

413

pLE

=] O

oo
=\
o

O
=0
o!

Index Structures ﬁ!g.

Overview Prefix Trees (Tries)

= Overview
* From information retrieval, mostly for string indexing

= Trie: “A tree for storing strings in which there is one node for every
common prefix. The strings are stored in extra leaf nodes.” (NIST DADS)

= PATRICIA Trie STGKDD
= Extended binary (character-level) SIGMETRICS
trie, with compressed substrings SIGMOD
SIGPLAN |:|
[Donald R. Morrison: PATRICIA - Practical PLAN
Algorithm To Retrieve Information Coded in
Alphanumeric. J. ACM 15(4) 1968]]

B
0D
]

= Variants

= Radix Tree, key alteration radix tree (Kart),
digital search trees

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

Index Structures ﬁl—g_

G enerd | |Zed P re'ﬁx Tree [Matthias Boehm et al: Efficient In-

Memory Indexing with Generalized
. BTW 2011]

= Generalized Prefix Tree (IXByte) INSERT key=107. payload="value3"

key =107 |0000{0000{}0110|1011

= Arbitrary data types (byte sequences)

= Variable prefix length k’ 00 6|11
= Node size: s = 2¥ references
. . . v ; '—A)-
= Fixed maximum height h = k/k’ v Node size (k'=4): 1 | gpem
, gl 128B - 64B
= Secondary index structure .
/ \
Level=3 Level=3
= Characteristics o[1]2) - s ofsf2| -+ b5
= Partitioned data structure rad 4
Level=2 - Level=2 Level=2
= Deterministic paths 0/1]2]:[8]-}15 012 --- o[1/2] /8|15
" Order-preserVIng Level=1 Level=1 Level=1 Level=1
= Update-friendly ol12] -+ 1y 012" 012115 012+ 15
K/ K K'/ K¥ K }} .
. W— eyl . | Key ey ey ey 4 } Liltems
- Trl e key partition i % E 1{5‘ 9;6 1%7 61%51 65409
. payloads | [P “value4" | E [P “values" | | P “value3" | [P “value2" | P “value9" P value7
Expan5|0n (of duplicates) | | [P ‘value2'] | [P “value2"] } L2ltems
& Bypass
706.543 Architecture of Database Systems — 04 Index Structures and Partitioning "
Matthias Boehm, Graz University of Technology, WS 2021/22 ISDS

Presenter
Presentation Notes
Byte order: big-endian (asc order left to right)

Index Structures ﬁ-le-rLa!.

Ad ad pt|ve Ra d iX Trees [Viktor Leis, Alfons Kemper, Thomas Neumann:

The adaptive radix tree: ARTful Indexing for
Main-Memory Databases. ICDE 2013]

= Motivation and Overview

s=1
= Small trie height/high fan-out, but _ 7
with low space overhead 524" L
= Prefix k’=8 = 256 children 8" ';—%PT -
= Adaptive nodes 4, 16, 48, 256 entries "7 . oY si2e14 516
® o
1= AFIIT 8s-32

= Lazy expansion and path compression 32MB 128MB 512MB 2GB 8GB 32GB
space consumption (log scale)

* Node Types Linear/binary 256 element arrays of
search for keys indexes / child pointers
Noded key child pointer Noded8 . hildindex child pointer
2 0 | > 5 1 2 3255." L e L
Lofalspsed [[¢y [| CLLIT Ll Ty T 1]
A A A A e rrrassasss ...A A A A
Nodel6 key child pointer Node256 child pointer
0 1 2 157 o 1 2 5 |(0 | 1 | 2 | 3 | L | 5 | 6 | | 255 \l
ol2]3]|~ P55
|||||||||I|||1I | Py |

AMAA A A AA A

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

Index Structures ﬁ-ley.
Hybrid Prefix Trees

I Ty Y T T T

Prefix Hash Tree '70

Prefix B-Tree '77 X X
Ternary Search Tree '97 X X
Partial Keys ‘01 X
Burst-Trie '02 X X X X
HAT-Trie '07 ¢
J+-Tree '09 X X X
CS-Prefix Tree '09 X X
SURF ’18 X ¢

e s R ISDS

Ty

Partitioning and Pruning

Coarse-grained Table Partitioning
Fine-grained Physical Partitioning and Sketching

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning
Matthias Boehm, Graz University of Technology, WS 2021/22

“ISDS

Partitioning and Pruning ﬁ-le-rg.

Overview Partitioning Strategies

= Horizontal Partitioning
= Relation partitioning into disjoint subsets

Vertical Partitioning

= Partitioning of attributes with
similar access pattern

Hybrid Partitioning

= Combination of horizontal and vertical
fragmentation (hierarchical partitioning)

Derived Horizontal
Partitioning

X

Physical Partitioning Schemes
= Hash Partitioning, Round-Robin, Radix Partitioning, etc

Partitioning and Pruning

Ty

Correctness Properties

= #1 Completeness

= R 2R, R, .., R, (Relation R is partitioned into n fragments)
= Each item from R must be included in at least one fragment

= #2 Reconstruction

= R 2R, R, .., R, (Relation R is partitioned into n fragments)
= Exact reconstruction of fragments must be possible

= #3 Disjointness
= R 2R, R, .., R, (Relation R is partitioned into n fragments)
" RiNR =0 (A<i,j<mi+))

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning
Matthias Boehm, Graz University of Technology, WS 2021/22

“ISDS

Partitioning and Pruning

Ty

Horizontal Partitioning

= Row Partitioning into n Fragments R,
= Complete, disjoint, reconstructable

= Schema of fragments is equivalent
to schema of base relation

= Partitioning
= Split table by n selection predicates P,
(partitioning predicate) on attributes of R

= Beware of attribute domain and skew

I
= Reconstruction U

= Union of all fragments /\

= Bag semantics, but no

duplicates across partitions T~

R1 R2

U R3

R;
(1

R = U Ri
1<isn

op,(R)
i <n)

IA

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22 L

b

Partitioning and Pruning

Grazm

Vertical Fragmentation

Column Partitioning into n Fragments Ri

= Complete, reconstructable, but not disjoint
(primary key for reconstruction via join)

= Completeness: each attribute must
be included in at least one fragment

= Partitioning

R; = mpka,(R)

= Partitioning via projection)
(1<i<n)

= Redundancy of primary key

= Reconstruction R =R{XR;xXR,
= Natural join over primary key (1 < < n)

= Hybrid horizontal/vertical partitioning X = R1>Ri>Ry W/ R; =U R;;

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22 L

Partitioning and Pruning ﬂ.lc‘:r%!-

Derived Horizontal Fragmentation

= Row Partitioning R into n fragements BN N S R

R, with partitioning predicate on S Y| E—— —
= Potentially complete (not guaranteed), Austria 1
restructable, disjoint

= Foreign key / primary key relationship determines correctness

= Partitioning R R S b <
= Selection on independent relation S i = RO = KO-Pi()

= Semi-join with dependent relation R = Tp, (R[XIO'p_ (S))
to select partition R, i

= Reconstruction
= Equivalent to horizontal partitioning R = l \ Ri
1<i<n

= Union of all fragments

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22 !

Partitioning and Pruning

Ty

Exploiting Table Partitioning

= Partitioning and query rewriting
= #1 Manual partitioning and rewriting
= #2 Automatic rewriting (spec. partitioning)
= #3 Automatic partitioning and rewriting

= Example PostgreSQL (#2)

CREATE TABLE Squad(
JNum INT PRIMARY KEY,
Pos CHAR(2) NOT NULL,
Name VARCHAR(256)

) PARTITION BY RANGE (INum);

CREATE TABLE Squadl® PARTITION OF Squad
FOR VALUES FROM (1) TO (10);

CREATE TABLE Squad2@ PARTITION OF Squad
FOR VALUES FROM (10) TO (20);

CREATE TABLE Squad24 PARTITION OF Squad
FOR VALUES FROM (20) TO (24);

1 GK Manuel Neuer
12 GK Ron-Robert Zieler
22 GK Roman Weidenfeller
2 DF Kevin Grol3kreutz
4 DF Benedikt Howedes
5 DF Mats Hummels
15 DF Erik Durm
16 DF Philipp Lahm
17 DF Per Mertesacker
20 DF Jérébme Boateng
3 MF Matthias Ginter
6 MF Sami Khedira
7 MF Bastian Schweinsteiger
8 MF Mesut Ozil
9 MF André Schiirrle
13 MF Thomas Miller
14 MF Julian Draxler
18 MF Toni Kroos
19 MF Mario Gotze
21 MF Marco Reus
23 MF Christoph Kramer
10 FW Lukas Podolski
11 FW Miroslav Klose

Presenter
Presentation Notes
Note: error on non-existing partition range, default partition possible.

Partitioning and Pruning

Ty

Exploiting Table Partitioning, cont.

= Example, cont.

O3num>11 A INum<20

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning
Matthias Boehm, Graz University of Technology, WS 2021/22

SELECT * FROM Squad

WHERE JNum > 11 AND JNum < 20

U
U Ojnums11
/\ A INum<20
Ojnum>11 Ognums11 |
A INum<20 A JINum<20 S24
I | JNum in
s10 520 (504
JNum in
[1,10)

O 3num>11

$S20

“ISDS

Partitioning and Pruning

Ty

Zone Maps

= Small Materialized Aggregates (SMA)

[Guido Moerkotte: Small Materialized
Aggregates: A Light Weight Index Structure
for Data Warehousing. VLDB 1998]

= Data stored in zones (pages, blocks, or partitions)

= Maintain SMA (e.g., min, max, count, sum) as summary per zone

= Global vs local storage, eager vs lazy maintenance on updates

Zone Map /
SMA

81

136

Header

Min 3
Max 7
Count 203

Min 6
Max 71
Count 144

115

175

Header

= Query Processing
= Partition pruning for selection predicates

= Precomputed partial aggregates (see materialized views)

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning

Table Scan for o5_,4(R)

Matthias Boehm, Graz University of Technology, WS 2021/22

“ISDS

Partitioning and Pruning

Ty

Column Imprints

= Column Imprints
= Zone = cache line (64 Byte) column

—_—

= Column imprint = union of one-hot vectors

* cacheline

= Sampled histogram = bins (max 64 bins)

' cacheline

Zone Map

imprint vectors

= Compression

Column Imprints 1 510016001101010 ‘\I 4

~ . [i =

CL Dicti Compression , 000000110000011 :

u ; 111100001110000 |
|Ct|0nary 000111000000110 1 .

NP I R 1 010000110000011 ! »

(next X CLS’ Cacheline Dictionary : 000111010101010 : £
counter | repeat \ 000000000000011 £

repeat flag) - pm——————— <3

" 0 e, 000111000000000 | .

13 1 T

| 010000011100110
0 %= 000001101100000

cacheline
— o ||l || |w|a|ls]|l—|=|o |& oo

cacheline

1 010000001000000

= Query Processing

= Cacheline pruning for selection predicates (point, range)

=]

o - o o o = o o o o o <o o o

BitMap

ol

- o o o = O

0:0:

o o o o o o O

..o....o....O...c.'..:_...é..(.:...é..é..a...o...o...5..5..o.

=

o O o = o o 2o o o O o - o ©

(=1

o - o o o

(=1

c o o o o o O @~

o o = o o o o o o o o o O =

[Lefteris Sidirourgos, Martin L. Kersten:
Column imprints: a secondary index
structure. SIGMOD 2013]

Column Imprint

10010001

11000001

» imprint & predicate (predicate w/ potentially many bits for ranges)

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning
Matthias Boehm, Graz University of Technology, WS 2021/22

“ISDS

Partitioning and Pruning

Ty

Probabilistic Set Containment

= Motivation
= Many use cases for applying cheap pre-filters

= Requirement: no false negatives, small number of false positives (FP)

= #1 Bloom Filter
= Array X of m bits, initialized w/ zeros
= k different hash functions applied on each key
= Insert: k x h,(key), set all hashed positions to 1
= Query: k x hi(key), return (sum(X[h,(key)])==Kk)

= #2 Cuckoo Filter
= Cuckoo hash table with key signatures
= 2 hash functions w/ displacements
= Allows deletes, duplicates, smaller FP rate

—== | [Harald Lang, Thomas Neumann, Alfons Kemper,
“ | Peter A. Boncz: Performance-Optimal Filtering: Bloom

key=7

WANS

1061011

\Best performing filter type: " Bloom MCuckool

high throughput low throughput

CPU tuple over NUM 55D magnetic read
cache network € saTA disk 100MB 53

miss (amortized) read eag read Parquet file

108

Problem size
[number of keys n]
=
o

=
o
r

overtakes Cuckoo at High-Throughput. PVLDB 12(5), 2019] """ Work time t, per positive lookup s s

Ty

Adaptive and Learned
Access Methods

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning
Matthias Boehm, Graz University of Technology, WS 2021/22

“ISDS

Adaptive and Learned Access Methods ﬂELa!.

Data ba se Cra Cki ng [Pedro Holanda et al: Progressive

Indexes: Indexing for Interactive
Data Analysis. PVLDB 2019]

= Core Idea: Queries trigger physical (Stratos Idreos, Martin L

reorganization (partitioning and indexing) Kersten, Stefan Manegold:
Database Cracking. CIDR 2007]

the more we crack
A - I

- the more we learn .

17 3 2 - <2
3 4 - <5 4]
3 Q1O pssaaco 2 O WL 3 - > 2
c . - . -
- o

2 copy 6 - >0 in-place 6 - >0
19 - -

12 12
13 s - >10

15
4 - >10 2
s #1 Automatic | #2Avi/Btree 1 L 545

Partitioning 13] over Partitions 15 |

Adaptive and Learned Access Methods ﬁ!g.

Learned Index Structures

[Tim Kraska, Alex Beutel, Ed H.
= A Case For Learned Index Structures Chi, Jeffrey Dean, Neoklis

= Sorted data array, predict position of key .nzzlxyﬁtr'jzc;ﬁfasﬁf\;roLDeaanfgo]' -

= Hierarchy of simple models (stages models)
= Tries to approximate the CDF similar to interpolation search (uniform data)

Key Key

v Y

Model Systems for ML,
Blree » (e.g., NN) ML for Systems

pos Pos \,

pos -0 pos + pagezise pos - min_err pos + max_er
u Follow-up Work | [Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Ani
Kristo, Guillaume Leclerc, Samuel Madden, Hongzi Mao, Vikram
on SageDBMS Nathan: SageDB: A Learned Database System. CIDR 2019]

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

Adaptive and Learned Access Methods ﬁl—g_

Learned Index Structures, cont.

= FITing-Tree [Alex Galakatos, Michael Markovitch, Carsten

- Adapt to underlying Binnig, Rodrigo Fonseca, Tim Kraska: FITing-Tree:

A Data-aware Index Structure. SIGMOD 2019]
data and patterns

. . . . 9168 _
= Piecewise linear functions o Day,
| — Actual —_—
= Maximum pos error guarantees 6 | — Approx
o
5 5
= Segment pages w/ free space 24 \N
a3 . eekend
i_ &z Night
00 5000 10000 15000 20000
Timestamp

. -.
PGM-index [Paolo Ferragina, Giorgio Vinciguerra: The
= Piecewise geometric model index PGM-index: a fully-dynamic compressed
learned index with provable worst-case

= Recursive, compressed segment tree bounds. PVLDB 13(8) 2020]

L] RadixSpline [Andreas Kipf, Ryan Marcus, Alexander van Renen,

.] Mihail Stoian, Alfons Kemper, Tim Kraska, Thomas e
" Lookup table to spline points, Neumann: RadixSpline: a single-pass learned

selected w/ max error guarantee index. aiDM@SIGMOD 2020]

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

Ty

Adaptive and Learned Access Methods

Learned Partitioning Schemes

= Query-Data Routing Tree (qd-Tree) [Zongheng Yang el al: Qd-tree:
. . . . Learning Data Layouts for Big Data
= Binary decision tree, with data Analytics. SIGMOD 2020]

blocks at leaf nodes (min size constraint)

= Given dataset, and workload,
find tree that minimized number of accessed tuples

= Deep reinforcement learning

= Query Processing Queries x------- > Query Router .

= Get list of blocks that candidats learned “ Block IDs
tree R
need to be evaluated .ocuts P
offline Qd-tree Constructor
Greedy / Deep RL DBMS
online
sample
Data Blocks
Data \ Data Router
706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS

Matthias Boehm, Graz University of Technology, WS 2021/22

Ty

Summary and Q&A

Overview Access Methods

Index Structures

Partitioning and Pruning

Adaptive and Learned Access Methods

= Programming Projects

= |nitial test suite, benchmark, make file, and reference implementation
= Start your own implementation in next weeks

Next Lectures (Part A)
= 05 [Nov 03]

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .lSDS
Matthias Boehm, Graz University of Technology, WS 2021/22

	Architecture of DB Systems�04 Index Structures and Partitioning
	Announcements/Org
	Agenda
	Overview Access Methods
	DBMS Architecture, cont.
	Access Methods and Physical Design
	Overview Index Structures
	Additional Terminology
	Index Structures
	Classification of Index Structures
	B-Tree Overview
	B-Tree Search
	B-Tree Insert
	B-Tree Insert, cont. (Example w/ k=1)
	B-Tree Delete
	B-Tree Insert and Delete w/ k=2
	B-tree – Advanced Aspects
	Other In-Memory Trees
	Hashing Overview
	Extendible Hashing
	Linear Hashing
	Overview Prefix Trees (Tries)
	Generalized Prefix Tree
	Adaptive Radix Trees
	Hybrid Prefix Trees
	Partitioning and Pruning
	Overview Partitioning Strategies
	Correctness Properties
	Horizontal Partitioning
	Vertical Fragmentation
	Derived Horizontal Fragmentation
	Exploiting Table Partitioning
	Exploiting Table Partitioning, cont.
	Zone Maps
	Column Imprints
	Probabilistic Set Containment
	Adaptive and Learned �Access Methods
	Database Cracking
	Learned Index Structures
	Learned Index Structures, cont.
	Learned Partitioning Schemes
	Summary and Q&A

