
1
SCIENCE
PASSION

TECHNOLOGY

Architecture of DB Systems
05 Compression Techniques
Matthias Boehm, Patrick Damme

Graz University of Technology, Austria

Institute of Interactive Systems and Data Science
Computer Science and Biomedical Engineering

BMK endowed chair for Data Management

Last update: Nov 02, 2021

2

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Announcements/Org
 #1 Video Recording

 Link in TUbe & TeachCenter (lectures will be public)
 Optional attendance (independent of COVID)
 Hybrid, in-person but video-recorded lectures

 HS i5 + Webex: https://tugraz.webex.com/meet/m.boehm

 #2 COVID-19 Precautions (HS i5)
 Room capacity: 24/48 (green/yellow), 12/48 (orange/red)
 TC lecture registrations (limited capacity, contact tracing)

 #3 Exams
 Planned as oral exams (beginning of February)
 # submitted projects  change to written exam if necessary

max
24/90

https://tugraz.webex.com/meet/m.boehm

3

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Agenda
 Motivation and Terminology
 Compression Techniques
 Compressed Query Processing

4

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Motivation and Terminology

5

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Recap: Access Methods and Physical Design
 Performance Tuning via Physical Design

 Select physical data structures for relational schema and query workload
 #1: User-level, manual physical design by DBA (database administrator)
 #2: User/system-level automatic physical design via advisor tools

 Example
Base
Tables

R SSELECT * FROM R, S, T
WHERE R.c = S.d AND S.e = T.f
AND R.b BETWEEN 12 AND 73

1000000
σ12≤R.b≤73

⋈c=d

R

S

⋈e=f

T
10

Mat
Views

Parti-
tioning

Physical
Access Paths

T

MV2MV1

B+-Tree BitMap
Compression

Hash

⋈

Motivation and Terminology

Presenter
Presentation Notes
Mat views and partitioning  logical access paths
Index structures and compression  physical access paths

6

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Motivation Storage Hierarchy
 #1 Capacity

 Limited capacity of fast storage
 Keep larger datasets higher in storage hierarchy
 Avoid unnecessary I/O

 #2 Bandwidth
 Memory Wall: increasing gap

CPU vs Memory latency/bandwidth
 Reduce bandwidth requirements

Motivation and Terminology

Caches
Memory

SSD
HDD

[Stefan Manegold, Peter A. Boncz, Martin L. Kersten:
Optimizing database architecture for the new

bottleneck: memory access. VLDB J. 9(3) 2000]

7

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

 Setup: 2x6 E5-2440 @2.4GHz–2.9GHz, DDR3 RAM @1.3GHz (ECC)
 Max mem bandwidth (local): 2 sock x 3 chan x 8B x 1.3G trans/s  2 x 32GB/s
 Max mem bandwidth (QPI, full duplex)  2 x 12.8GB/s
 Max floating point ops: 12 cores x 2*4dFP-units x 2.4GHz  2 x 115.2GFlops/s

 Roofline
Analysis
 Off-chip

memory
traffic

 Peak
compute

SystemML
Mv

SystemML
Mt(Mv)

SystemML
MM (n=768)

36x

Excursus: Roofline Analysis
Motivation and Terminology

SystemML
BLAS

bandwidth
bound

compute-
bound

[S. Williams, A. Waterman, D. A.
Patterson: Roofline: An Insightful Visual
Performance Model for Multicore
Architectures. Commun. ACM 2009]

(Experiments
from 2017)

compression

8

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Motivation Data Characteristics
 Skew

 Highly skewed value distributions
(frequencies of distinct values)

 Small number of distinct items

 Correlation
 Correlation between tuple attributes
 Co-occurrences of attribute values

 Lack of Tuple Order
 Relations are multi-sets of tuples (no ordering requirements)
 Flexibility for internal reorganization

Motivation and Terminology

[Vijayshankar Raman, Garret Swart: How to Wring a
Table Dry: Entropy Compression of Relations and

Querying of Compressed Relations. VLDB 2006]

China 1.4
India 1.3
USA 0.33

Germany 0.08
Austria 0.009

OrderDate < ReceiptDate
(usually 2-3 days)

9

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Compression Overview
 Compression Codec

 Encoder
 Decoder

 Lossless vs Lossy
 Lossless: guaranteed recovery of uncompressed data
 Lossy: moderate degradation / approximation
 Images, video, audio; ML training/scoring

 Compression Ratio
 CR = Size-Uncompressed / Size-compressed
 Ineffective compression: CR < 1

 Metrics
 Compression ratio vs encode/decode time vs encode/decode space
 Block-wise vs random access, operation performance, etc

Motivation and Terminology

Uncompressed
Data

Comp.
Data

Encoding

Decoding

10

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Classification of Compression Techniques
 Lossless Compression Schemes

Motivation and Terminology

General-Purpose
Techniques

DB-Centric
Techniques

GZIP SnappyLZ4zstd

Heavy-
Weight

Light-
Weight

Huffman + Lempel-Ziv

11

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Excursus: General-purpose Compression
 Compression/

Decompression
 CR zstd: 5.24
 CR snappy: 3.65
 CR LZ4: 3.89

 Example Apache Spark RDD Compression
 org.apache.spark.io.LZ4CompressionCodec (default in 2.x, 3.x)
 org.apache.spark.io.SnappyCompressionCodec (default in 1.x)
 org.apache.spark.io.LZFCompressionCodec (default in 0.x)
 org.apache.spark.io.ZStdCompressionCodec

Motivation and Terminology

LZ4snappy

zstd

[https://web.archive.org/web/20200229
161007/https://www.percona.com/blog/
2016/04/13/evaluating-database-
compression-methods-update/]

https://web.archive.org/web/20200229161007/https:/www.percona.com/blog/2016/04/13/evaluating-database-compression-methods-update/

12

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Classification of Compression Techniques, cont.
 Lossless Compression Schemes

Motivation and Terminology

General-Purpose
Techniques

DB-Centric
Techniques

RLE DICT

PDICT

FOR

PFOR

DELTA

PFOR-
DELTA

NSGZIP SnappyLZ4zstd

Heavy-
Weight

Light-
Weight

Huffman 52 + Lempel-Ziv 77

(all heavy-weight from a
DB perspective)

Presenter
Presentation Notes
Huffman code: ‘52 count frequency of symbols, recursively merge least frequent nodes to build binary tree

13

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Compression Techniques

14

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Null Suppression (NS)
 Overview

 Compress integers by omitting
leading zeros via variable-length codes

 Universal compression scheme w/o need for upper bound

 Byte-Aligned (Example)
 Store mask of two bits to indicate leading zero bytes
 2 bits + [1,4] bytes max CR (INT32) = 3.2

 Bit-Aligned (Example: Elias Gamma Encoding)
 Store N = ⌊log2 𝑥𝑥⌋ zero bits followed by effective bits
 2 * [1,32] -1 bits max CR (INT32) = 32

 Word-Aligned (Example: Simple-8b)
 Pack a variable number of integers (max 260-1) into 64bit
 60 data bits, 4 selector bits (16 classes: 60x1b, 30x2b, …, 1x60b)

Compression Techniques

00000000 00000000 00000000 00101010

42

1010100000042
111007

11 0010101042

7 11 00000111

[Benjamin Schlegel, Rainer Gemulla,
Wolfgang Lehner: Fast integer compression

using SIMD instructions. DaMoN 2010]

42

7

10x6b

20x3b

15

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Null Suppression (NS), cont.
 Varint (Variable-Length Integers)

[also Byte-Aligned]
 Base 128 Varint

(continuation bits)

 Prefix Varint
(2 bit #bytes)

 Group Varint

 Examples:
 Google Protobuf messages, SQLite custom varint

 Zig-Zag Encoding
 Map signed integers to unsigned integers to have small varint byte length

Compression Techniques

0 0000001 1 1111111 0 0000011 1 1111111 1 1111111 0 0000111

1 511 131071
00 000001 01 111111 00000111 10 111111 0000011111111111

1 511 131071
00 01 10 00 11111111 00000001

11111111 11111111 00000001

00000001

131071
00000011

[Jeff Dean: Challenges in Building
Large-Scale Information Retrieval

Systems, Keynote WSDM 2009]

16

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Run-Length Encoding (RLE)
 Overview

 Compress sequences of equal values via runs of (value[,start],run-length)
 Redundant ‘start’ allows parallelization / unordered storage
 Applicable to arbitrary data types (defined equals())

 Example
 Uncompressed

 Compressed

 Different physical encodings for values and lengths:
 E.g., split runs w/ length ≥ 216 to fit into fixed 2 byte

Compression Techniques

C C C C C A A A A F F F F F B B B

C 5 A 4 F 5 B 3

17

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Dictionary Encoding (DICT)
 Overview

 Build dictionary of distinct items and encode values as dictionary positions
 Applicable to arbitrary data types  integer codes

 Example
 Uncompressed

 Compressed

 Explicit or implicit (position) codes
 Fixed bit width: log2 |Dict|
 Different ordering of dictionary (alphanumeric, frequency)

Compression Techniques

A C B B A C D A A D C B A B B C D

0 1 2 2 0 1 3 0 0 3 1 2 0 2 2 1 3Dict
0 A
1 C
2 B
3 D

18

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Dictionary Encoding (DICT), cont.
 Order-preserving Dictionaries

 Create sorted dictionary where
order(codes) = order(values)

 Support for updates via sparse code assignment (e.g., 10, 20, 30)
 CS-Array-Trie / CS-Prefix-Tree as encode/decode index w/ shared leafs

 Mostly Order-preserving Dictionaries
 Ordered and disordered dictionary sections

Compression Techniques

Disordered
Section

Ordered
Section

[Chunwei Liu et al:
Mostly Order Preserving
Dictionaries. ICDE 2019]

[Carsten Binnig, Stefan Hildenbrand, Franz
Färber: Dictionary-based order-preserving

string compression for main memory
column stores. SIGMOD 2009]

19

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Frame of Reference Encoding (FOR)
 Overview

 Compress values by storing delta (difference) to reference value
 Mostly integer types  smaller integer domain

 Example
 Uncompressed

 Compressed

Compression Techniques

701 698 702 700 699 698 700 701 701 700 703 702

1 -2 2 0 -1 -2 0 1 1 0 3 2

700

Cannot handle trends very well

20

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Delta Encoding (DELTA)
 Overview

 Compress values by storing delta (difference) to previous value
 Mostly integer types (good when sorted)  smaller integer domain
 Dedicated techniques for differences of file contents (diff/git)

 Example
 Uncompressed

 Compressed

 Delta
 Double Delta (differences of differences)

Compression Techniques

5 5 6 6 7 7 7 9 9 12 13 14 15 16 17 17 18

5 0 1 0 1 0 0 2 0 3 1 1 1 1 1 0 1

Can create RLE
opportunities

for linear trend

21

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Patched Compression Methods (PFOR)
 Patched Frame of Reference (PFOR)

 Store positive offsets to reference value
 Exceptions in uncompressed form

(accessible via entry points and offsets to next exception)
 Branchless two-pass decoding

 Example
 Uncompressed

 Compressed

Compression Techniques

22 982 21 20 23 20 24 850 21 22 867 21

2 5 1 0 3 0 4 2 1 2 1

20

Outliers would destroy fixed-width codes

982 850 867 Exceptions

Base

[Marcin Zukowski, Sándor Héman, Niels
Nes, Peter A. Boncz: Super-Scalar RAM-

CPU Cache Compression. ICDE 2006]

22

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Patched Compression Methods (Others)
 PFOR-DELTA

 Apply cascade of DELTA – PFOR
(PFOR on differences)

 Handling of exceptions to handle large differences of subsequent values

 Patched Dictionary Compression (PDICT)
 Dictionary encoding, where only frequent values are encoded
 Exceptions for infrequent values, previous/new dictionary per block
 Reduces

dictionary size

Compression Techniques

[Marcin Zukowski, Sándor Héman, Niels
Nes, Peter A. Boncz: Super-Scalar RAM-

CPU Cache Compression. ICDE 2006]

Removes long tail of infrequent
distinct items from dictionary

23

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

 How to reduce overhead of (de)compression?
 Vectorization of (de)compression by SIMD instructions
 (De)compress several data elements at once
 Main driver of research on database-centric lightweight compression for years

 SIMD-BP128
 Targets compression of 32-bit ints

using Intel’s SSE with 128-bit vectors (16 byte)
 Sub-divide integer sequence into blocks of 128 integers
 Determine maximum bit width in a block by bitwise OR
 Pack all integers in a block using that number of bits
 Dedicated vectorized (un)packing routine for each bit width
 Store bit width in [0, 32] as one byte, combine 16 of those in memory

Excursus: SIMD Implementation
Compression Techniques

[Daniel Lemire, Leonid Boytsov: Decoding billions
of integers per second through vectorization.

Softw. Pract. Exp. 45(1) (2015)]

1 16 byte0 3 16 byte 16 byte 16 byte… …

bit widths: 16x 1 byte block 0 (1 bit/int) block 15 (3 bit/int)block 1 (0 bit/int)

24

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

v1
v5

v9
v13

Excursus: SIMD Implementation, cont.
Compression Techniques

 Vectorized (un)packing
[Daniel Lemire, Leonid Boytsov: Decoding

billions of integers per second through
vectorization. Softw. Pract. Exp. 45(1) (2015)]

v0v2
v4

v8
v11v12

v15

v6
v0v4v8
v1v5v9
v2v6v10
v3v7v11

Compressed (9 bit/int) Compressed (9 bit/int)

v0
v1
v2
v3
v4
v5
v6
v7
v8
v9
v10
v11
v12
v13
v14
v15

Uncompressed (32 bit/int)

32 bit word

…v12
…v13
…v14
…v15

v12…
v13…
v14…
v15…

…v3
…v7

…v10
…v14

v3…
v7…
v10…
v14…

1. Load
2. Bit l-shift
3. Bit OR

1. Bit r-shift
2. Bit AND
3. Store

1. Load
2. Bit l-shift
3. Bit OR

1. Bit r-shift
2. Bit AND
3. Store

scalar codec,
value-by-value

SIMD codec,
vector-by-vector

Horizontal layout
- Codes of consecutive values

in consecutive bytes
- Natural for scalar codecs

k-way vertical layout
- Codes of consecutive values

in consecutive words
- Natural for SIMD codecs
- Common #bits for k values
- Adopted by many vectorized

compression algorithms

25

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Comparative Evaluation
 Experimental Survey

 Different data characteristics
 Compression methods:

DELTA, RLE, FOR, RLE, DICT,
SIMD-BP128, SIMD-FastPFOR,
4-Wise NS, 4-Gamma, Masked VByte,
Simple-8b, SIMD-GroupSimple

 Cascades of compression methods

 Towards a Cost-based Selection
 Logical and physical level
 Cost estimation functions

Compression Techniques

[Patrick Damme, Dirk Habich, Juliana
Hildebrandt, Wolfgang Lehner: Lightweight Data

Compression Algorithms: An Experimental Survey
(Experiments and Analyses). EDBT 2017]

[Patrick Damme, Annett Ungethüm, Juliana
Hildebrandt, Dirk Habich, Wolfgang Lehner:

From a Comprehensive Experimental Survey to
a Cost-based Selection Strategy for Lightweight

Integer Compression Algorithms.
ACM Trans. Database Syst. 44(3) 2019]

“[…] there is no single-best lightweight integer
compression algorithm. The compression rates and
performances of all algorithms differ significantly,

depending on the data characteristics and the
employed SIMD extension.”

26

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Selecting Compression Methods

 Inspired by
C-Store Compression Paper

Compression Techniques

[Peter Boncz: Column-
Oriented Database

Systems, adapted from
VLDB’09 tutorial]

[Daniel J. Abadi, Samuel Madden, Miguel Ferreira:
Integrating compression and execution in column-

oriented database systems. SIGMOD 2006]

Presenter
Presentation Notes
TODO further slide extensions:
White box compression: Bogdan Ghita, Diego G. Tomé, Peter A. Boncz: White-box Compression: Learning and Exploiting Compact Table Representations. CIDR 2020
FSST: Peter A. Boncz, Thomas Neumann, Viktor Leis: FSST: Fast Random Access String Compression. Proc. VLDB Endow. 13(11): 2649-2661 (2020)

27

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Compressed Query Processing

28

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Selection Predicates
 Equivalence Predicates σattr=‘D’(R)

 DICT:
code lookup

 RLE:
return RLE runs

 Range Predicates σ3<a<7 (R)
 #1 sort the dictionary by value (insert tradeoff)
 #2 expand small integer domains + dictionary lookup (e.g., σa=4 ∨ a=5 ∨ a=6 (R))
 #3 decompress otherwise

Compressed Query Processing

0 1 2 2 0 1 3 0 0 3 1 2 0 2 2 1 3

Dict
0 A
1 C
2 B
3 D

D 3

6 9 16position vector

C 5 A 4 D 5 F 3

29

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Selection Predicates, cont.
 Order Preserving Dictionaries

 Direct support for range predicates on encoded data
 Support for LIKE predicates (suffix)

Compressed Query Processing

[Carsten Binnig, Stefan Hildenbrand, Franz
Färber: Dictionary-based order-preserving

string compression for main memory
column stores. SIGMOD 2009]

30

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Selection on Bit-packed Data
 SIMD-Scan (2009)

 Horizontal bit-packing
 Point and range predicates
 SIMD processing (SSE)
 32-bit comparisons
 No full decompression,

predicate’s constant is shifted
accordingly in the beginning

 Sub-optimal
bit-level parallelism

 BitWeaving (2013)
 Bit-parallel methods
 Early pruning

 ByteSlice (2015)
 More SIMD-friendly

Compressed Query Processing

v13 v12 v11 v10 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

Byte permutation

Mask (AND)

Compare

All 0s (miss) All 1s (hit) All 0s (miss)All 1s (hit)

Load from memory
vector register: 128 bit = 16 byte = 4 32-bit integers

v2 v1 v1 v0v2v3

v2 v1 v0v3

c c cc

[Thomas Willhalm, Nicolae Popovici,
Yazan Boshmaf, Hasso Plattner,
Alexander Zeier, Jan Schaffner:

SIMD-Scan: Ultra Fast in-Memory Table
Scan using on-Chip Vector Processing

Units. PVLDB 2(1) (2009)]

31

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Grouping and Aggregations
 Basic Hash Aggregates

 Grouping directly with
compressed codes

 DICT, FOR, RLE, etc

 Encoding-Specific Aggregation
 RLE sum  agg += run-length*run-value
 RLE min  agg = min(agg, run-value)
 FOR sum  for all codes: agg += code; agg += |codes| * base-value

Compressed Query Processing

Hash Table
0 Agg A
3 Agg D
1 Agg C
2 Agg B0 1 2 2 0 1 3 0 0 3 1 2 0 2 2 1 3

Dict
0 A
1 C
2 B
3 D

32

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Joins
 Overview Compressed Joins

 (Equi-)Joins directly over compressed data
 Beware: binary operation
 encodings need to match (global code)

 Recoding of one of the inputs if necessary
(e.g., DB2 BLU recode inner)

 Encoding-Specific Aggregation
 One input RLE: decompress other

and output RLE encoded data
 One input bitvector: decompress other

and output RLE encoded data (obtained from bitvector)

Compressed Query Processing

R RID

9

1

7

SID S

7

3

1

9

7

⋈RID=SID

outer

inner

recode inner
(smaller)

33

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Abstractions for Simpler Code
 Motivation

 Code complexity for combinations of encoding schemes
 Affects all operators maintenance operators/compression schemes

 Compressed Block Properties
 isOneValue(): block contains just

one value and many positions for that value
 isValueSorted(): all values of the block are sorted
 isPosContig(): block contains consecutive subset of column

 Iterator Access:
getNext(), asArray()

 Block Information:
getSize(), getStartValue(),
getEndPosition()

Compressed Query Processing

[Daniel J. Abadi, Samuel Madden, Miguel Ferreira:
Integrating compression and execution in column-

oriented database systems. SIGMOD 2006]

34

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Abstractions for Simpler Code, cont.
 Motivation

 Improve query performance by
(re)compressing intermediates

 Change from one compressed format to another

Compressed Query Processing

[Patrick Damme, Annett Ungethüm, Johannes
Pietrzyk, Alexander Krause, Dirk Habich, Wolfgang

Lehner: MorphStore: Analytical Query Engine with
a Holistic Compression-Enabled Processing Model.

PVLDB 13(11) 2020]

35

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Data Layout – Compression Granularity

 Column Coding
 Select encoding for individual attributes (column values) – tradeoffs

 Tuple Coding
 Combine column codes into tuple codes (fixed, variable)

 Block Coding
 Compress a sequence of tuples into a compressed block (concat, diff)

Compressed Query Processing

[Allison L. Holloway, Vijayshankar
Raman, Garret Swart, David J. DeWitt:

How to barter bits for chronons:
compression and bandwidth trade offs

for database scans. SIGMOD 2007]

03 Buffer Pool
Management

“All the results have shown that the Huffman coded and
delta coded formats compress better but normally take
more CPU time. […] When I/O and memory subsystem
times are also included in the decision, the format to
choose becomes less clear-cut. If a physical format
optimizer or system administrator had this information
and a fast scan generator, they could make a more
informed choice as to the best way to store the data.”

36

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Data Layout – Example Block Layouts
 DB2 BLU

 Data Blocks

Compressed Query Processing

03 Buffer Pool
Management

04 Index Structures and
Partitioning

07 Query Compilation
and Parallelization

[Vijayshankar Raman et al:
DB2 with BLU Acceleration:

So Much More than Just a
Column Store.

PVLDB 6(11) 2013]

[Harald Lang: Data Blocks: Hybrid
OLTP and OLAP on Compressed

Storage using both Vectorization
and Compilation. SIGMOD 2016]

37

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

DB-Compression Beyond Relational Databases
 Information Retrieval

 (web) search engines
 Inverted index, postings lists (sorted lists of document ids)

 Time Series
 Internet of Things, sensor networks, server/application metrics, etc.
 Sequences of data points (measurement + time)

 Machine Learning
 Various application fields
 Matrices/tensors of various characteristics

 Graph Databases
 Social networks, road networks, proteins, etc.
 Graphs represented as adjacency lists, matrices

Compressed Query Processing

Also benefit from the
compression techniques

discussed today

38

706.543 Architecture of Database Systems – 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2021/22

Summary and Q&A
 Motivation and Terminology
 Compression Techniques
 Compressed Query Processing

 Next Lectures (Part B)
 06 Query Processing (operators, execution models) [Nov 10]

 07 Query Compilation and Parallelization [Nov 17]

 08 Query Optimization (rewrites, costs, join ordering) [Nov 24]

 10 Adaptive Query Processing [Dec 01]

Presenter
Presentation Notes
Note: some recent work on learned compression (but error threshold, aims for compression ratio but very slow)
Amir Ilkhechi, Andrew Crotty, Alex Galakatos, Yicong Mao, Grace Fan, Xiran Shi, Ugur Çetintemel:
DeepSqueeze: Deep Semantic Compression for Tabular Data. SIGMOD Conference 2020: 1733-1746

	Architecture of DB Systems�05 Compression Techniques
	Announcements/Org
	Agenda
	Motivation and Terminology
	Recap: Access Methods and Physical Design
	Motivation Storage Hierarchy
	Excursus: Roofline Analysis
	Motivation Data Characteristics
	Compression Overview
	Classification of Compression Techniques
	Excursus: General-purpose Compression
	Classification of Compression Techniques, cont.
	Compression Techniques
	Null Suppression (NS)
	Null Suppression (NS), cont.
	Run-Length Encoding (RLE)
	Dictionary Encoding (DICT)
	Dictionary Encoding (DICT), cont.
	Frame of Reference Encoding (FOR)
	Delta Encoding (DELTA)
	Patched Compression Methods (PFOR)
	Patched Compression Methods (Others)
	Excursus: SIMD Implementation
	Excursus: SIMD Implementation, cont.
	Comparative Evaluation
	Selecting Compression Methods
	Compressed Query Processing
	Selection Predicates
	Selection Predicates, cont.
	Selection on Bit-packed Data
	Grouping and Aggregations
	Joins
	Abstractions for Simpler Code
	Abstractions for Simpler Code, cont.
	Data Layout – Compression Granularity
	Data Layout – Example Block Layouts
	DB-Compression Beyond Relational Databases
	Summary and Q&A

