

Architecture of DB Systems 06 Query Processing

Matthias Boehm

Graz University of Technology, Austria
Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMK endowed chair for Data Management

Last update: Nov 05, 2021

Announcements/Org

#1 Video Recording

- Link in TUbe & TeachCenter (lectures will be public)
- Optional attendance (independent of COVID)
- Hybrid, in-person but video-recorded lectures
 - HS i5 + Webex: https://tugraz.webex.com/meet/m.boehm

#2 COVID-19 Precautions (HS i5)

- Room capacity: 24/48 (green/yellow), 12/48 (orange/red)
- TC lecture registrations (limited capacity, contact tracing)

max 24/90

#3 Course Evaluation and Exam

- Evaluation period: Jan 01 Feb 15
- Exam dates: TBD (virtual webex oral exams, 45min each)

Agenda

- Overview Query Processing
- Plan Execution Strategies
- Physical Plan Operators

Overview Query Processing

Device Interface

Overview Query Processing

Database Catalog

[Meikel Poess: TPC-H. Encyclopedia of Big Data Technologies 2019]

Catalog Overview

- Meta data of all database objects (tables, constraints, indexes) → mostly read-only
- Accessible through SQL, but internal APIs
- Organized by schemas (CREATE SCHEMA tpch;)

SQL Information_Schema

- Schema with tables for all tables, views, constraints, etc
- Example: check for existence of accessible table

```
SELECT 1 FROM information_schema.tables
WHERE table_schema = 'tpch'
AND table_name = 'customer'
```

(defined as views over PostgreSQL catalog tables)

Plan Caching

Motivation

- Query rewriting, optimization and plan generation is expensive
- Cache and reuse compile plans
 (stored procedures, prepared/parameterized statements, ad-hoc queries)

Structure

- SQL query test
- Compiled query plans
- Statistics
 - Usage counts
 - Last run timestamp
 - Max/avg runtime
 - Compile time

#1 Probe Plan Cache

hash(SQL)

SQL	Plan	Stats
SELECT * FROM	QEP1: x-y-z	#5, 23ms
SELECT a FROM	QEP7: a-b	#100, 6ms
CREATE PROC		

#2 Check schema valid, statistics up-to-date

#3 Reuse or Recompilation

Examples: MS SQL Server, IBM DB2

Query and Plan Types

[Guido Moerkotte, Building Query Compilers (Under Construction), **2020**,

http://pi3.informatik.uni-mannheim.de/ ~moer/querycompiler.pdf]

Query Types

Nodes: Tables

Edges: Join conditions

 Determine hardness of query optimization (w/o cross products)

Join Tree Types / Plan Types

Data flow graph of tables and joins (logical/physical query trees)

Chains

Edges: data dependencies (fixed execution order: bottom-up)

Left-Deep Tree

Right-Deep Tree

Zig-Zag Tree

Bushy Tree

Result Caching

Motivation

- Read-mostly data and same queries over unchanged inputs
- Cache and reuse small result sets (e.g., aggregation queries, distinct)

Structure

 Similar to materialized-views (cached intermediates) SELECT /*+ result_cache*/ *
FROM TopScorer
WHERE Count>=4

- Store results of queries w/ result_cache hint in subarea of buffer pool, reuse via hint
- Drop cached results if underlying base data changes
- Also: Function result cache (memoization)

Examples: Oracle (from 11g)

[https://oracle.readthedocs.io/en/latest/plsql/cache/alternatives/result-cache.html]

Plan Execution Strategies

Overview Execution Strategies

- Different execution strategies (processing models) with different pros/cons (e.g., memory requirements, DAGs, efficiency, reuse)
- #1 Iterator Model (mostly row stores)
- #2 Materialized Intermediates (mostly column stores)
- #3 Vectorized (Batched) Execution (row/column stores)
- #4 Query Compilation (row/column stores)
- #5 Data-Centric Processing (row stores)

Datacentric

Iterator Model

Scalable (small memory)

High CPI measures

Volcano Iterator Model

- Pipelined & no global knowledge
- Open-Next-Close (ONC) interface
- Query execution from root node (pull-based)

• Example $\sigma_{A=7}(R)$

```
void open() { R.open(); }
void close() { R.close(); }
Record next() {
  while( (r = R.next()) != EOF )
    if( p(r) ) //A==7
      return r;
  return EOF;
}
```


[Goetz Graefe: Volcano - An Extensible and Parallel Query Evaluation System.

IEEE Trans. Knowl. Data Eng. 1994]

Blocking Operators

Sorting, grouping/aggregation,
 build-phase of (simple) hash joins

```
PostgreSQL: Init(),
GetNext(), ReScan(), MarkPos(),
    RestorePos(), End()
```


Iterator Model – Predicate Evaluation

Operator Predicates

- Examples: arbitrary selection predicates and join conditions
- Operators parameterized with in-memory expression trees/DAGs
- Expression evaluation engine (interpretation)

Example Selection σ

•
$$(A = 7 \land B \neq 8) \lor D = 9$$

Α	В	С	D
7	8	Product 1	10
14	8	Product 3	11
7	3	Product 7	7
3	3	Product 2	1

Materialized Intermediates (column-at-a-time)

```
SELECT count(DISTINCT o_orderkey)
FROM orders, lineitem
WHERE l_orderkey = o_orderkey
AND o_orderdate >= date '1996-07-01'
AND o_orderdate < date '1996-07-01'
+ interval '3' month
AND l_returnflag = 'R';</pre>
```

Efficient array operations

DAG processing

Reuse of intermediates

Memory requirements

Unnecessary read/write
from and to memory


```
function user.s1_2(A0:date,A1:date,A2:int,A3:str):void;
 X5 := sql.bind("sys","lineitem","l_returnflag",0);
 X11 := algebra.uselect(X5,A3);
 X14 := algebra.markT(X11,0@0);
 X15 := bat.reverse(X14);
 X16 := sql.bindldxbat("sys","lineitem","l_orderkey_fkey");
 X18 := algebra.join(X15,X16);
 X19 := sql.bind("sys","orders","o_orderdate",0);
 X25 := mtime.addmonths(A1,A2);
 X26 := algebra.select(X19,A0,X25,true,false);
 X30 := algebra.markT(X26,0@0);
 X31 := bat.reverse(X30);
 X32 := sql.bind("sys","orders","o\_orderkey",0);
 X34 := bat.mirror(X32);
 X35 := algebra.join(X31,X34);
                                         Binary
 X36 := bat.reverse(X35);
 X37 := algebra.join(X18,X36);
                                      Association
 X38 := bat.reverse(X37);
                                         Tables
 X40 := algebra.markT(X38,0@0);
 X41 := bat.reverse(X40);
                                   (BATs:=OID/Val)
 X45 := algebra.join(X31,X32);
 X46 := algebra.join(X41,X45);
 X49 := algebra.selectNotNil(X46);
 X50 := bat.reverse(X49);
 X51 := algebra.kunique(X50);
 X52 := bat.reverse(X51);
 X53 := aggr.count(X52);
 sql.exportValue(1,"sys.orders","L1","wrd",32,0,6,X53);
end s1_2:
```

[Milena Ivanova, Martin L. Kersten, Niels J. Nes, Romulo Goncalves: An architecture for recycling intermediates in a column-store. **SIGMOD 2009**]

Vectorized Execution (vector-at-a-time)

Idea: Pipelining of vectors (sub columns) s.t. vectors fit in CPU cache

Vectorized Execution (vector-at-a-time), cont.

Motivation

- Iterator Model: many function calls, no instruction-level parallelism
- Materialized: mem-bandwidth-bound

Hyper-Pipelining

- Operators work on vectors
- Pipelining of vectors (sub-columns)
- Vector sizes according to cache size
- Pre-compiled function primitives
- **→** Generalization of execution strategies

[Peter A. Boncz, Marcin Zukowski, Niels Nes: MonetDB/X100: Hyper-Pipelining Query Execution. **CIDR 2005**]

[Marcin Zukowski, Peter A. Boncz, Niels Nes, Sándor Héman: MonetDB/X100 - A DBMS In The CPU Cache. **IEEE Data Eng. Bull. 28(2), 2005**]

Query Compilation

07 Query Compilation and Parallelization

Idea: Data-centric, not op-centric processing + LLVM code generation

Operator Trees

(w/o and w/ pipeline boundaries)

[Thomas Neumann: Efficiently Compiling Efficient Query Plans for Modern Hardware. **PVLDB 2011**]

Compiled Query

(conceptual, not LLVM)

initialize memory of $\bowtie_{a=b}$, $\bowtie_{c=z}$, and Γ_z for each tuple t in R_1 if t.x = 7materialize t in hash table of $\bowtie_{a=b}$ for each tuple t in R_2 if t.y = 3aggregate t in hash table of Γ_z for each tuple t in Γ_z materialize t in hash table of $\bowtie_{z=c}$ for each tuple t_3 in R_3 for each match t_2 in $\bowtie_{z=c}[t_3.c]$ for each match t_1 in $\bowtie_{a=b}[t_3.b]$ output $t_1 \circ t_2 \circ t_3$

Data-Centric / Continuous Scan Processing

- Crescando (ETH Zurich)
 - Amadeus use case: latency <2s, freshness <2s, query diversity/update load, linear scale-out/scale-up
 - ClockScan: cooperative scan
 - Index Union Update Join: update-data join (write, and read cursor)
- DataPath System (Rice University)
 - Push-based, data-centric processing model
 - Multi-query optimization → DAG of operations (tuple bit-string to relate tuples to queries)
 - I/O system pushed chunks to operators
 - Load shedding on overload and explicit scheduling

Section Control of Con

[Subi Arumugam, Alin Dobra, Christopher M. Jermaine, Niketan Pansare, Luis Leopoldo Perez: The DataPath system: a data-centric analytic processing engine for large data warehouses. **SIGMOD 2010**]

[Philipp Unterbrunner et al.: Predictable Performance for Unpredictable Workloads. **PVLDB 2(1) 2009**]

Physical Plan Operators

Overview Plan Operators

- **Multiple Physical Operators**
 - Different physical operators for different data and query characteristics
 - Physical operators can have vastly different costs
- **Examples** (supported in most DBMS)

Grouping Join
$$\gamma_{G:agg(A)}(R)$$
 $R \bowtie_{R.a=S.b} S$

Physical Plan Operators

TableScan IndexScan **ALL**

ALL

SortGB HashGB

NestedLoopJN SortMergeJN HashJN

Table and Index Scan

- Table Scan vs Index Scan
 - For highly selective predicates, index scan asymptotically much better than table scan
 - Index scan higher per tuple overhead (break even ~5% output ratio)

- Index Scan
 Example σ_{7≤A≤106}(R)
 - IX ASC on A
- RID List Handling
 - IX often returns TIDs
 - Fetch, Sort + Fetch
 - **AND:** RIDs(x) \cap RIDs(y)
 - **OR:** RIDs(x) \cup RIDs(y)

```
void open() { IX.open(); }

void close() { IX.close(); }

Record next() {
  if(r == null)
    return r=IX.get(Low);  // A=7
  if((r=IX.next()).K \leq Upper) // A\leq 106
    return r;
  return EOF;
}
```


Nested Loop Join

Overview

- Most general join operator (no order, no indexes, arbitrary predicates θ)
- Poor asymptotic behavior (very slow)
- Algorithm (pseudo code)

```
for each s in S
  for each r in R
  if( r.RID θ s.SID )
    emit concat(r, s)
```

How to implement **next()**?

	Comp	lexity
--	------	--------

- Complexity: Time: O(N * M), Space: O(1)
- Pick smaller table as inner if it fits entirely in memory (buffer pool)

Block Nested Loop / Index Nested Loop Joins

Block Nested Loop Join

- Avoid I/O by blocked data access
- Read blocks of b_R and b_S R and S pages
- Complexity unchanged but potentially much fewer scans

Index Nested Loop Join

- Use index to locate qualifying tuples (==, >=, >, <=, <)
- Complexity (for equivalence predicates):
 Time: O(N * log M), Space: O(1)

```
for each block b<sub>R</sub> in R
  for each block b<sub>S</sub> in S
   for each r in b<sub>R</sub>
    for each s in b<sub>S</sub>
      if( r.RID θ s.SID )
      emit concat(r, s)
```

```
for each r in R
  for each s in S.IX(θ,r.RID)
  emit concat(r,s)
```


Sort-Merge Join

Overview

- Sort Phase: sort the input tables R and S (w/ external sort algorithm)
- Merge Phase: step-wise merge with lineage scan
- Algorithm (Merge, PK-FK)

```
Record next() {
  while( curR!=EOF && curS!=EOF ) {
    if( curR.RID < curS.SID )
        curR = R.next();
  else if( curR.RID > curS.SID )
        curS = S.next();
  else if( curR.RID == curS.SID ) {
        t = concat(curR, curS);
        curS = S.next(); //FK side
        return t;
    } }
  return EOF;
}
```


Complexity

- Time (unsorted vs sorted): O(N log N + M log M) vs O(N + M)
- Space (unsorted vs sorted): O(N + M) vs O(1)

Hash Join

Overview

- **Build Phase:** read table S and build a hash table H_s over join key
- Probe Phase: read table R and probe H_S with the join key
- Algorithm (Build+Probe, PK-FK)

```
Record next() {
 // build phase (first call)
 while( (r = R.next()) != EOF )
   Hr.put(r.RID, r);
 // probe phase
 while( (s = S.next()) != EOF )
    if( Hr.containsKey(s.SID) )
      return concat(Hr.get(s.SID), s);
 return EOF;
```


Complexity

- Time: O(N + M), Space: O(N)
- Classic hashing: p in-memory partitions of Hr w/p scans of R and S

Double-Pipelined Hash Join

[Zachary G. Ives, Daniela Florescu, Marc Friedman, Alon Y. Levy, Daniel S. Weld: An Adaptive Query Execution System for Data Integration. SIGMOD 1999]

Overview and Algorithm

- Join of bounded streams (or unbounded w/ time-based invalidation)
- Equi join predicate, symmetric and non-blocking
- For every incoming tuple (e.g. left): probe (right)+emit, and build (left)

Partitioned Hash Join

Range-Partitioned

- Co-partitioning tuples from R and S into partitions defined by key ranges
- Local hash join over partitions
- Fit local hash table in caches
- Partitioning shuffles rows/RIDs

[Credit: Changkyu Kim et al, VLDB'09]

Radix Hash Join

- Multi-pass radix partitioning (first 2,3,etc bits of hash)
- Better locality during partitioning (TLB, L1/L2)

[Stefan Manegold, Peter A. Boncz, Martin L. Kersten: Optimizing Main-Memory Join on Modern Hardware. IEEE Trans. Knowl. **Data Eng. 14(4) 2002**]

Hash vs Sort-Merge Joins, Revisited ... Revisited

PVLDB'09

[Changkyu Kim et al: Sort vs. Hash Revisited: Fast Join Implementation on Modern Multi-Core CPUs. PVLDB 2(2) 2009]

PVDLB'12

[Martina-Cezara Albutiu et al: Massively Parallel Sort-Merge Joins in Main Memory Multi-Core Database Systems. PVLDB 5(10) 2012]

PVLDB'13 / TKDE'15

[Cagri Balkesen, Gustavo Alonso, Jens Teubner, M. Tamer Özsu: Multi-Core, Main-Memory Joins: Sort vs. Hash Revisited. PVLDB 7(1) 2013

SIGMOD'16

[Stefan Schuh, Xiao Chen, Jens Dittrich: An Experimental Comparison of Thirteen Relational Equi-Joins in Main Memory. **SIGMOD 2016**]

Interesting Perspective

- Large-small table joins
- Comparison by query runtime

[Thomas Neumann: Comparing Join Implementations, http://databasearchitects.blogspot.com/2016/04/com paring-join-implementations.html, 04/2016]

key=7

h1

Bloom Filters

[Maximilian Bandle, Jana Giceva, Thomas Neumann: To partition, or not to partition, that is the join question in a real system, SIGMOD 2021]

h3

Bloom Radix-Partitioned Join (BRJ)

Motivation: partitioning probe side can be very expensive

Second partitioning pass of build side materializes

the bloom filter

Filter probe side before partitioning

Bloom Radix Join

Comparison w/ **Bloom Filter over RJ**

Micro: negative

TPC-H: positive

Experiments

- Micro Benchmarks RJ, BRJ, BHJ
 - https://github.com/opcm/pcm

Sort-GroupBy and Hash-GroupBy

- Recap: Classification of Aggregates (DM, DIA)
 - Additive, semi-additive, additively-computable, others

$$\gamma_{A,count(*)}(R)$$

- Sort Group-By
 - Similar to sort-merge join (Sort, GroupAggregate)
 - Sorted group output

sort $O(N \log N)$ aggregate O(N)

build & agg

O(N)

- Hash Group-By
 - Similar to hash join (HashAggregate)
 - Higher temporary memory consumption
 - Unsorted group output
 - #1 w/ tuple grouping
 - #2 w/ direct aggregation (e.g., count)
 - **Beware:** cache-unfriendly if many groups (size(H) > L2/L3 cache)

Summary and Q&A

- Overview Query Processing
- Plan Execution Strategies
- Physical Plan Operators
- Next Lectures (Part B)
 - 07 Query Compilation and Parallelization [Nov 17]
 - **08** Query Optimization I (rewrites, costs, join ordering) [Nov 24]
 - 09 Adaptive Query Processing [Dec 01]

