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Announcements/Org
 #1 Video Recording 

 Link in TUbe & TeachCenter (lectures will be public)
 Optional attendance (independent of COVID)
 Hybrid, in-person but video-recorded lectures

 HS i5 + Webex: https://tugraz.webex.com/meet/m.boehm

 #2 COVID-19 Precautions (HS i5)
 Room capacity: 24/48 (green/yellow), 12/48 (orange/red)
 TC lecture registrations (limited capacity, contact tracing)

 #3 Course Evaluation and Exam
 Evaluation period: Jan 01 – Feb 15
 Exam dates: TBD (virtual webex oral exams, 45min each)

max 
24/90

https://tugraz.webex.com/meet/m.boehm
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Agenda
 Overview Query Processing
 Plan Execution Strategies
 Physical Plan Operators



4

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22 

Overview Query Processing
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DBMS Architecture, cont. [Theo Härder, Erhard Rahm: 
Datenbanksysteme: Konzepte und 

Techniken der Implementierung, 2001]

Operating System
(File Mgmt)

Buffer Management
(Propagation control)

(Record) Storage System
(Access path mgmt)

(Data) Access System
(Navigational access)

Data System 
(Nonprocedural access)

Set-Oriented Interface

Internal Record Interface

System buffer Interface

File Interface

Record-Oriented Interface

SELECT * 
FROM R

FIND NEXT 
record

B-Tree 
getNext

ACCESS
page j

READ
block k

Qi

Data 
System

Access 
System

Storage 
System

Device Interface

Overview Query Processing
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Overview Query Processing
Overview Query Processing

Parsing

Semantic Analysis

Query Rewrites

Plan Optimization

Name Count
James Rodríguez 6
Thomas Müller 5

Robin van Persie 4
Neymar 4

Plan Execution

Plan CachingQEP

Compile Time Runtime

AST/IR

IR

IR

SELECT * FROM TopScorer
WHERE Count>=4
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Database Catalog
 Catalog Overview

 Meta data of all database objects
(tables, constraints, indexes) mostly read-only

 Accessible through SQL, but internal APIs
 Organized by schemas (CREATE SCHEMA tpch;)

 SQL Information_Schema
 Schema with tables 

for all tables, views, constraints, etc
 Example: check for existence of accessible table

Overview Query Processing

pgAdmin
graphical 

representation

SELECT 1 FROM information_schema.tables
WHERE table_schema = ‘tpch’ 

AND table_name = ‘customer’

(defined as views over PostgreSQL catalog tables)

[Meikel Poess: TPC-H. Encyclopedia 
of Big Data Technologies 2019]
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Plan Caching
 Motivation

 Query rewriting, optimization and plan generation is expensive
 Cache and reuse compile plans

(stored procedures, prepared/parameterized statements, ad-hoc queries)

 Structure
 SQL query test
 Compiled query plans
 Statistics

 Usage counts
 Last run timestamp
 Max/avg runtime
 Compile time

 Examples: MS SQL Server, IBM DB2

Overview Query Processing

#2 Check schema valid, 
statistics up-to-date

#1 Probe Plan Cache

SQL Plan Stats
SELECT * FROM QEP1: x-y-z #5, 23ms
SELECT a FROM QEP7: a-b #100, 6ms
CREATE PROC … …

hash(SQL)

#3 Reuse or 
Recompilation
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Query and Plan Types
 Query Types

 Nodes: Tables
 Edges: Join conditions
 Determine hardness 

of query optimization (w/o cross products)

 Join Tree Types / Plan Types
 Data flow graph of tables and joins (logical/physical query trees)
 Edges: data dependencies (fixed execution order: bottom-up) 

Overview Query Processing

Chains

Stars

Cliques

[Guido Moerkotte, Building Query Compilers 
(Under Construction), 2020, 

http://pi3.informatik.uni-mannheim.de/
~moer/querycompiler.pdf]

Left-Deep Tree Right-Deep Tree Zig-Zag Tree Bushy Tree

http://pi3.informatik.uni-mannheim.de/%7Emoer/querycompiler.pdf
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Result Caching
 Motivation

 Read-mostly data and same queries over unchanged inputs
 Cache and reuse small result sets (e.g., aggregation queries, distinct)

 Structure
 Similar to materialized-views

(cached intermediates)
 Store results of queries w/ result_cache hint 

in subarea of buffer pool, reuse via hint
 Drop cached results if underlying base data changes 
 Also: Function result cache (memoization)

 Examples: Oracle (from 11g)
[https://oracle.readthedocs.io/en/latest/plsql/cache/alternatives/result-cache.html]

Overview Query Processing

SELECT /*+ result_cache*/ * 
FROM TopScorer
WHERE Count>=4

Buffer pool 
pages

https://oracle.readthedocs.io/en/latest/plsql/cache/alternatives/result-cache.html
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Plan Execution Strategies
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Overview Execution Strategies
 Different execution strategies (processing models) with different 

pros/cons (e.g., memory requirements, DAGs, efficiency, reuse)

 #1 Iterator Model (mostly row stores)

 #2 Materialized Intermediates (mostly column stores)

 #3 Vectorized (Batched) Execution (row/column stores)

 #4 Query Compilation (row/column stores)

 #5 Data-Centric Processing (row stores)

Plan Execution Strategies

Query-
centric

Data-
centric
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Iterator Model
 Volcano Iterator Model

 Pipelined & no global knowledge 
 Open-Next-Close (ONC) interface
 Query execution from root node (pull-based)

 Example σA=7(R)

 Blocking Operators
 Sorting, grouping/aggregation, 

build-phase of (simple) hash joins

Plan Execution Strategies

[Goetz Graefe: Volcano - An Extensible 
and Parallel Query Evaluation System. 

IEEE Trans. Knowl. Data Eng. 1994]

Scalable (small memory)
High CPI measures

R

σA=7

open()

open()

next()
next()

next()
next()

close()
open()
next()
next()

close()

next()
next()

close()
 EOF

 EOF

 EOF

void open() { R.open(); }

void close() { R.close(); }

Record next() {
while( (r = R.next()) != EOF )
if( p(r) ) //A==7
return r;

return EOF;
} 

PostgreSQL: Init(), 
GetNext(), ReScan(), MarkPos(), 

RestorePos(), End()
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Iterator Model – Predicate Evaluation
 Operator Predicates

 Examples: arbitrary selection predicates and join conditions
 Operators parameterized with in-memory expression trees/DAGs
 Expression evaluation engine (interpretation)

 Example Selection σ
 𝐴𝐴 = 7 ∧ 𝐵𝐵 ≠ 8 ∨ 𝐷𝐷 = 9

Plan Execution Strategies

B 8

!=
D 9

==&

|

A 7

==

A B C D
7 8 Product 1 10

14 8 Product 3 11
7 3 Product 7 7
3 3 Product 2 1



15

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22 

Materialized Intermediates (column-at-a-time)

Plan Execution Strategies

SELECT count(DISTINCT o_orderkey) 
FROM orders, lineitem
WHERE l_orderkey = o_orderkey
AND o_orderdate >= date ’1996-07-01’
AND o_orderdate < date ’1996-07-01’
+ interval ’3’ month

AND l_returnflag = ’R’;

Binary 
Association 

Tables 
(BATs:=OID/Val)

Column-oriented storage
Efficient array operations

DAG processing
Reuse of intermediates
Memory requirements

Unnecessary read/write 
from and to memory

[Milena Ivanova, Martin L. Kersten, Niels 
J. Nes, Romulo Goncalves: An 

architecture for recycling intermediates 
in a column-store. SIGMOD 2009]



16

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22 

Vectorized Execution (vector-at-a-time)

 Idea: Pipelining of vectors (sub columns) s.t. vectors fit in CPU cache

Plan Execution Strategies

Vector Size (# Tuples)

Workload: TPCH Q1

[Peter A. Boncz, Marcin Zukowski, 
Niels Nes: MonetDB/X100: Hyper-

Pipelining Query Execution. 
CIDR 2005]

Column-oriented storage
Efficient array operations
Memory/cache efficiency

DAG processing
Reuse of intermediates
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Vectorized Execution (vector-at-a-time), cont.
 Motivation

 Iterator Model: many function calls, 
no instruction-level parallelism

 Materialized: mem-bandwidth-bound

 Hyper-Pipelining
 Operators work on vectors
 Pipelining of vectors (sub-columns)
 Vector sizes according to cache size
 Pre-compiled function primitives
 Generalization of execution strategies

Plan Execution Strategies

for(int i=0;i<n;i++)
out[i] = in[i]<L

[Peter A. Boncz, Marcin Zukowski, Niels 
Nes: MonetDB/X100: Hyper-Pipelining 
Query Execution. CIDR 2005]

[Marcin Zukowski, Peter A. Boncz, Niels Nes, 
Sándor Héman: MonetDB/X100 - A DBMS In The 
CPU Cache. IEEE Data Eng. Bull. 28(2), 2005]
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Query Compilation
 Idea: Data-centric, not op-centric processing + LLVM code generation

Plan Execution Strategies

Operator Trees 
(w/o and w/ pipeline boundaries)

Compiled Query
(conceptual, not LLVM)

[Thomas Neumann: Efficiently Compiling Efficient 
Query Plans for Modern Hardware. PVLDB 2011]

07 Query Compilation 
and Parallelization
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Data-Centric / Continuous Scan Processing
 Crescando (ETH Zurich)

 Amadeus use case: latency <2s, 
freshness <2s, query diversity/update load, 
linear scale-out/scale-up

 ClockScan: cooperative scan
 Index Union Update Join: update-data join

(write, and read cursor)

 DataPath System (Rice University)
 Push-based, data-centric processing model
 Multi-query optimization  DAG of operations

(tuple bit-string to relate tuples to queries)
 I/O system pushed chunks to operators
 Load shedding on overload and explicit scheduling

Plan Execution Strategies

Q
Indexed Queries / 
Unindexed queries

Continuous Scan

[Philipp Unterbrunner et al.: Predictable 
Performance for Unpredictable 

Workloads. PVLDB 2(1) 2009]

[Subi Arumugam, Alin Dobra, Christopher M. Jermaine, Niketan
Pansare, Luis Leopoldo Perez: The DataPath system: a data-centric 
analytic processing engine for large data warehouses. SIGMOD 2010]
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Physical Plan Operators
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Overview Plan Operators
 Multiple Physical Operators

 Different physical operators for different data and query characteristics
 Physical operators can have vastly different costs  

 Examples (supported in most DBMS)

 Logical Plan 
Operators

 Physical Plan
Operators

Physical Plan Operators

Selection
𝜎𝜎𝑝𝑝(𝑅𝑅)

Projection
𝜋𝜋𝐴𝐴(𝑅𝑅)

Grouping
𝛾𝛾𝐺𝐺:𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴)(𝑅𝑅)

Join
𝑅𝑅 ⋈𝑅𝑅.𝑎𝑎=𝑆𝑆.𝑏𝑏 𝑆𝑆

TableScan
IndexScan

ALL

ALL SortGB
HashGB

NestedLoopJN
SortMergeJN

HashJN
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Table and Index Scan
 Table Scan vs Index Scan

 For highly selective predicates, index scan 
asymptotically much better than table scan

 Index scan higher per tuple overhead
(break even ~5% output ratio)

 Index Scan 
Example σ7≤A≤106(R)
 IX ASC on A

 RID List Handling
 IX often returns TIDs
 Fetch, Sort + Fetch
 AND: RIDs(x) ∩ RIDs(y)
 OR: RIDs(x) ∪ RIDs(y)

Physical Plan Operators

ix

Table Scan Index Scan

sorted

void open() { IX.open(); }

void close() { IX.close(); }

Record next() {
if(r == null)
return r=IX.get(Low);     // A=7

if((r=IX.next()).K ≤ Upper) // A≤106
return r;

return EOF;
} 
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Nested Loop Join
 Overview

 Most general join operator (no order, no indexes, arbitrary predicates θ)
 Poor asymptotic behavior (very slow)

 Algorithm (pseudo code)

 Complexity
 Complexity: Time: O(N * M), Space: O(1)
 Pick smaller table as inner if it fits entirely in memory (buffer pool)

Physical Plan Operators

for each s in S
for each r in R
if( r.RID θ s.SID )
emit concat(r, s)

How to implement next()?

R RID

9

1

7

SID S

7

3

1

9

7

⋈RID=SID

N = |R|
M = |S| 
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Block Nested Loop / Index Nested Loop Joins
 Block Nested Loop Join

 Avoid I/O by blocked data access
 Read blocks of bR and bS R and S pages
 Complexity unchanged but 

potentially much fewer scans

 Index Nested Loop Join
 Use index to locate qualifying tuples 

(==, >=, >, <=, <)
 Complexity (for equivalence predicates): 

Time: O(N * log M), Space: O(1)

Physical Plan Operators

for each block bR in R
for each block bS in S
for each r in bR
for each s in bS
if( r.RID θ s.SID )
emit concat(r, s)

for each r in R
for each s in S.IX(θ,r.RID)  
emit concat(r,s)

ix

S
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Sort-Merge Join
 Overview

 Sort Phase: sort the input tables R and S (w/ external sort algorithm)
 Merge Phase: step-wise merge with lineage scan 

 Algorithm (Merge, PK-FK)

 Complexity
 Time (unsorted vs sorted):  O(N log N + M log M) vs O(N + M)
 Space (unsorted vs sorted): O(N + M) vs O(1)

Physical Plan Operators

Record next() {
while( curR!=EOF && curS!=EOF ) {

if( curR.RID < curS.SID )
curR = R.next();

else if( curR.RID > curS.SID )
curS = S.next();

else if( curR.RID == curS.SID ) {
t = concat(curR, curS);
curS = S.next(); //FK side
return t; 

} }
return EOF; 

} 

… R_ID
9
1
7

S_ID …
7
3
1
9
7

⋈RID=SID

SID S

1

3

7

7

9

R RID

1

7

9

produced sorted 
output

N = |R|
M = |S| 
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Hash Join
 Overview

 Build Phase: read table S and build a hash table HS over join key
 Probe Phase: read table R and probe HS with the join key 

 Algorithm (Build+Probe, PK-FK)

 Complexity
 Time: O(N + M), Space: O(N)
 Classic hashing: p in-memory partitions of Hr w/ p scans of R and S

Physical Plan Operators

Record next() {
// build phase (first call)
while( (r = R.next()) != EOF )
Hr.put(r.RID, r);

// probe phase
while( (s = S.next()) != EOF )
if( Hr.containsKey(s.SID) )
return concat(Hr.get(s.SID), s);

return EOF; 
} 

… R_ID
9
1
7

SID S

7

3

1

9

7

⋈RID=SID

HR,RID

9

1

7

h(x)

N = |R|
M = |S| 

Presenter
Presentation Notes
Note: example hash functions: crc (cyclic redundancy check), MurmurHash, CityHash, FarmHash, XXHash 
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Double-Pipelined Hash Join
 Overview and Algorithm

 Join of bounded streams (or unbounded w/ time-based invalidation)
 Equi join predicate, symmetric and non-blocking
 For every incoming tuple (e.g. left): probe (right)+emit, and build (left)

Physical Plan Operators

⋈RID=SID
HR,RID HS,SID

1 ab

2 cd

1 ef

7 gh

7 zy

1 xw

7 vu

HR,RID

1, 2

HR,RID

1, 2, 7
HS,SID

7

HS,SID

1, 7

Stream 
R

Stream 
S

emit 1(abxw) 

emit 1(efxw) 

emit 7(ghzy) 

[Zachary G. Ives, Daniela Florescu, Marc 
Friedman, Alon Y. Levy, Daniel S.  Weld: 

An Adaptive Query Execution System 
for Data Integration. SIGMOD 1999]

emit 7(ghvu) 

HS,SID

1, 7, 7
HR,RID

1, 1, 2

HR,RID

1, 1, 2, 7
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Partitioned Hash Join
 Range-Partitioned

 Co-partitioning tuples from R and S 
into partitions defined by key ranges

 Local hash join over partitions
 Fit local hash table in caches
 Partitioning shuffles rows/RIDs

 Radix Hash Join
 Multi-pass radix partitioning 

(first 2,3,etc bits of hash)
 Better locality during 

partitioning (TLB, L1/L2)

Physical Plan Operators

[Stefan Manegold, Peter A. Boncz, 
Martin L. Kersten: Optimizing Main-
Memory Join on Modern Hardware. 
IEEE Trans. Knowl. Data Eng. 14(4) 2002]

[Credit: Changkyu Kim et al,  VLDB’09]
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Hash vs Sort-Merge Joins, Revisited … Revisited
 PVLDB’09

 PVDLB’12

 PVLDB’13 / TKDE’15

 SIGMOD’16

 Interesting Perspective
 Large-small table joins
 Comparison by query runtime

Physical Plan Operators

[Thomas Neumann: Comparing Join Implementations, 
http://databasearchitects.blogspot.com/2016/04/com
paring-join-implementations.html, 04/2016] 

[Changkyu Kim et al: Sort vs. Hash Revisited: 
Fast Join Implementation on Modern Multi-
Core CPUs. PVLDB 2(2) 2009]

[Martina-Cezara Albutiu et al: Massively 
Parallel Sort-Merge Joins in Main Memory Multi-
Core Database Systems. PVLDB 5(10) 2012]

[Cagri Balkesen, Gustavo Alonso, Jens Teubner, 
M. Tamer Özsu: Multi-Core, Main-Memory Joins: 
Sort vs. Hash Revisited. PVLDB 7(1) 2013]

[Stefan Schuh, Xiao Chen, Jens Dittrich: An 
Experimental Comparison of Thirteen Relational 
Equi-Joins in Main Memory. SIGMOD 2016]

Presenter
Presentation Notes
Note: comparison by query runtime (if TID joins, partitioning -> destroys sorting of TIDs which makes fetch much more expensive)

http://databasearchitects.blogspot.com/2016/04/comparing-join-implementations.html
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Bloom Filters
 Bloom Radix-Partitioned Join (BRJ)

 Motivation: partitioning probe side can be very expensive
 Second partitioning pass of build side materializes 

the bloom filter
 Filter probe side 

before partitioning

 Comparison w/ 
Bloom Filter over RJ
 Micro: negative
 TPC-H: positive 

Physical Plan Operators

1 0 1 0 1 1

key=7
h1 h3

[Maximilian Bandle, Jana Giceva, Thomas Neumann: 
To partition, or not to partition, that is the join 

question in a real system, SIGMOD 2021]

Presenter
Presentation Notes
Note: Cuckoo filters
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Experiments
 Micro Benchmarks RJ, BRJ, BHJ

 https://github.com/opcm/pcm

 TPC-H Benchmark

Physical Plan Operators

Presenter
Presentation Notes
LM: late materialization

https://github.com/opcm/pcm
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Sort-GroupBy and Hash-GroupBy
 Recap: Classification of Aggregates (DM, DIA)

 Additive, semi-additive, additively-computable, others

 Sort Group-By
 Similar to sort-merge join 

(Sort, GroupAggregate)
 Sorted group output 

 Hash Group-By
 Similar to hash join (HashAggregate)
 Higher temporary memory consumption 
 Unsorted group output
 #1 w/ tuple grouping
 #2 w/ direct aggregation (e.g., count)
 Beware: cache-unfriendly if many groups (size(H) > L2/L3 cache)

Physical Plan Operators

γA,count(*)(R)

X X X X X X Y Y Y Y Y Y Y Z Z Z Z Z
sort

O(N log N)
aggregate

O(N) X,6 Y,7 Z,5

HA,Agg

Y

X

Z

γA,count(*)

R

build & agg
O(N)

Presenter
Presentation Notes
Note: quantile/median requires sort per partition -> sort group-by
Postgres: GroupAggregate, HashAggregate
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Summary and Q&A
 Overview Query Processing
 Plan Execution Strategies
 Physical Plan Operators

 Next Lectures (Part B)
 07 Query Compilation and Parallelization [Nov 17]

 08 Query Optimization I (rewrites, costs, join ordering) [Nov 24]

 09 Adaptive Query Processing [Dec 01]
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