
1
SCIENCE
PASSION

TECHNOLOGY

Architecture of DB Systems
06 Query Processing
Matthias Boehm

Graz University of Technology, Austria

Institute of Interactive Systems and Data Science
Computer Science and Biomedical Engineering

BMK endowed chair for Data Management

Last update: Nov 05, 2021

2

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Announcements/Org
 #1 Video Recording

 Link in TUbe & TeachCenter (lectures will be public)
 Optional attendance (independent of COVID)
 Hybrid, in-person but video-recorded lectures

 HS i5 + Webex: https://tugraz.webex.com/meet/m.boehm

 #2 COVID-19 Precautions (HS i5)
 Room capacity: 24/48 (green/yellow), 12/48 (orange/red)
 TC lecture registrations (limited capacity, contact tracing)

 #3 Course Evaluation and Exam
 Evaluation period: Jan 01 – Feb 15
 Exam dates: TBD (virtual webex oral exams, 45min each)

max
24/90

https://tugraz.webex.com/meet/m.boehm

3

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Agenda
 Overview Query Processing
 Plan Execution Strategies
 Physical Plan Operators

4

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Overview Query Processing

5

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

DBMS Architecture, cont. [Theo Härder, Erhard Rahm:
Datenbanksysteme: Konzepte und

Techniken der Implementierung, 2001]

Operating System
(File Mgmt)

Buffer Management
(Propagation control)

(Record) Storage System
(Access path mgmt)

(Data) Access System
(Navigational access)

Data System
(Nonprocedural access)

Set-Oriented Interface

Internal Record Interface

System buffer Interface

File Interface

Record-Oriented Interface

SELECT *
FROM R

FIND NEXT
record

B-Tree
getNext

ACCESS
page j

READ
block k

Qi

Data
System

Access
System

Storage
System

Device Interface

Overview Query Processing

6

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Overview Query Processing
Overview Query Processing

Parsing

Semantic Analysis

Query Rewrites

Plan Optimization

Name Count
James Rodríguez 6
Thomas Müller 5

Robin van Persie 4
Neymar 4

Plan Execution

Plan CachingQEP

Compile Time Runtime

AST/IR

IR

IR

SELECT * FROM TopScorer
WHERE Count>=4

7

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Database Catalog
 Catalog Overview

 Meta data of all database objects
(tables, constraints, indexes) mostly read-only

 Accessible through SQL, but internal APIs
 Organized by schemas (CREATE SCHEMA tpch;)

 SQL Information_Schema
 Schema with tables

for all tables, views, constraints, etc
 Example: check for existence of accessible table

Overview Query Processing

pgAdmin
graphical

representation

SELECT 1 FROM information_schema.tables
WHERE table_schema = ‘tpch’

AND table_name = ‘customer’

(defined as views over PostgreSQL catalog tables)

[Meikel Poess: TPC-H. Encyclopedia
of Big Data Technologies 2019]

8

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Plan Caching
 Motivation

 Query rewriting, optimization and plan generation is expensive
 Cache and reuse compile plans

(stored procedures, prepared/parameterized statements, ad-hoc queries)

 Structure
 SQL query test
 Compiled query plans
 Statistics

 Usage counts
 Last run timestamp
 Max/avg runtime
 Compile time

 Examples: MS SQL Server, IBM DB2

Overview Query Processing

#2 Check schema valid,
statistics up-to-date

#1 Probe Plan Cache

SQL Plan Stats
SELECT * FROM QEP1: x-y-z #5, 23ms
SELECT a FROM QEP7: a-b #100, 6ms
CREATE PROC … …

hash(SQL)

#3 Reuse or
Recompilation

9

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Query and Plan Types
 Query Types

 Nodes: Tables
 Edges: Join conditions
 Determine hardness

of query optimization (w/o cross products)

 Join Tree Types / Plan Types
 Data flow graph of tables and joins (logical/physical query trees)
 Edges: data dependencies (fixed execution order: bottom-up)

Overview Query Processing

Chains

Stars

Cliques

[Guido Moerkotte, Building Query Compilers
(Under Construction), 2020,

http://pi3.informatik.uni-mannheim.de/
~moer/querycompiler.pdf]

Left-Deep Tree Right-Deep Tree Zig-Zag Tree Bushy Tree

http://pi3.informatik.uni-mannheim.de/%7Emoer/querycompiler.pdf

10

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Result Caching
 Motivation

 Read-mostly data and same queries over unchanged inputs
 Cache and reuse small result sets (e.g., aggregation queries, distinct)

 Structure
 Similar to materialized-views

(cached intermediates)
 Store results of queries w/ result_cache hint

in subarea of buffer pool, reuse via hint
 Drop cached results if underlying base data changes
 Also: Function result cache (memoization)

 Examples: Oracle (from 11g)
[https://oracle.readthedocs.io/en/latest/plsql/cache/alternatives/result-cache.html]

Overview Query Processing

SELECT /*+ result_cache*/ *
FROM TopScorer
WHERE Count>=4

Buffer pool
pages

https://oracle.readthedocs.io/en/latest/plsql/cache/alternatives/result-cache.html

11

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Plan Execution Strategies

12

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Overview Execution Strategies
 Different execution strategies (processing models) with different

pros/cons (e.g., memory requirements, DAGs, efficiency, reuse)

 #1 Iterator Model (mostly row stores)

 #2 Materialized Intermediates (mostly column stores)

 #3 Vectorized (Batched) Execution (row/column stores)

 #4 Query Compilation (row/column stores)

 #5 Data-Centric Processing (row stores)

Plan Execution Strategies

Query-
centric

Data-
centric

13

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Iterator Model
 Volcano Iterator Model

 Pipelined & no global knowledge
 Open-Next-Close (ONC) interface
 Query execution from root node (pull-based)

 Example σA=7(R)

 Blocking Operators
 Sorting, grouping/aggregation,

build-phase of (simple) hash joins

Plan Execution Strategies

[Goetz Graefe: Volcano - An Extensible
and Parallel Query Evaluation System.

IEEE Trans. Knowl. Data Eng. 1994]

Scalable (small memory)
High CPI measures

R

σA=7

open()

open()

next()
next()

next()
next()

close()
open()
next()
next()

close()

next()
next()

close()
 EOF

 EOF

 EOF

void open() { R.open(); }

void close() { R.close(); }

Record next() {
while((r = R.next()) != EOF)
if(p(r)) //A==7
return r;

return EOF;
}

PostgreSQL: Init(),
GetNext(), ReScan(), MarkPos(),

RestorePos(), End()

14

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Iterator Model – Predicate Evaluation
 Operator Predicates

 Examples: arbitrary selection predicates and join conditions
 Operators parameterized with in-memory expression trees/DAGs
 Expression evaluation engine (interpretation)

 Example Selection σ
 𝐴𝐴 = 7 ∧ 𝐵𝐵 ≠ 8 ∨ 𝐷𝐷 = 9

Plan Execution Strategies

B 8

!=
D 9

==&

|

A 7

==

A B C D
7 8 Product 1 10

14 8 Product 3 11
7 3 Product 7 7
3 3 Product 2 1

15

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Materialized Intermediates (column-at-a-time)

Plan Execution Strategies

SELECT count(DISTINCT o_orderkey)
FROM orders, lineitem
WHERE l_orderkey = o_orderkey
AND o_orderdate >= date ’1996-07-01’
AND o_orderdate < date ’1996-07-01’
+ interval ’3’ month

AND l_returnflag = ’R’;

Binary
Association

Tables
(BATs:=OID/Val)

Column-oriented storage
Efficient array operations

DAG processing
Reuse of intermediates
Memory requirements

Unnecessary read/write
from and to memory

[Milena Ivanova, Martin L. Kersten, Niels
J. Nes, Romulo Goncalves: An

architecture for recycling intermediates
in a column-store. SIGMOD 2009]

16

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Vectorized Execution (vector-at-a-time)

 Idea: Pipelining of vectors (sub columns) s.t. vectors fit in CPU cache

Plan Execution Strategies

Vector Size (# Tuples)

Workload: TPCH Q1

[Peter A. Boncz, Marcin Zukowski,
Niels Nes: MonetDB/X100: Hyper-

Pipelining Query Execution.
CIDR 2005]

Column-oriented storage
Efficient array operations
Memory/cache efficiency

DAG processing
Reuse of intermediates

17

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Vectorized Execution (vector-at-a-time), cont.
 Motivation

 Iterator Model: many function calls,
no instruction-level parallelism

 Materialized: mem-bandwidth-bound

 Hyper-Pipelining
 Operators work on vectors
 Pipelining of vectors (sub-columns)
 Vector sizes according to cache size
 Pre-compiled function primitives
 Generalization of execution strategies

Plan Execution Strategies

for(int i=0;i<n;i++)
out[i] = in[i]<L

[Peter A. Boncz, Marcin Zukowski, Niels
Nes: MonetDB/X100: Hyper-Pipelining
Query Execution. CIDR 2005]

[Marcin Zukowski, Peter A. Boncz, Niels Nes,
Sándor Héman: MonetDB/X100 - A DBMS In The
CPU Cache. IEEE Data Eng. Bull. 28(2), 2005]

18

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Query Compilation
 Idea: Data-centric, not op-centric processing + LLVM code generation

Plan Execution Strategies

Operator Trees
(w/o and w/ pipeline boundaries)

Compiled Query
(conceptual, not LLVM)

[Thomas Neumann: Efficiently Compiling Efficient
Query Plans for Modern Hardware. PVLDB 2011]

07 Query Compilation
and Parallelization

19

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Data-Centric / Continuous Scan Processing
 Crescando (ETH Zurich)

 Amadeus use case: latency <2s,
freshness <2s, query diversity/update load,
linear scale-out/scale-up

 ClockScan: cooperative scan
 Index Union Update Join: update-data join

(write, and read cursor)

 DataPath System (Rice University)
 Push-based, data-centric processing model
 Multi-query optimization  DAG of operations

(tuple bit-string to relate tuples to queries)
 I/O system pushed chunks to operators
 Load shedding on overload and explicit scheduling

Plan Execution Strategies

Q
Indexed Queries /
Unindexed queries

Continuous Scan

[Philipp Unterbrunner et al.: Predictable
Performance for Unpredictable

Workloads. PVLDB 2(1) 2009]

[Subi Arumugam, Alin Dobra, Christopher M. Jermaine, Niketan
Pansare, Luis Leopoldo Perez: The DataPath system: a data-centric
analytic processing engine for large data warehouses. SIGMOD 2010]

20

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Physical Plan Operators

21

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Overview Plan Operators
 Multiple Physical Operators

 Different physical operators for different data and query characteristics
 Physical operators can have vastly different costs

 Examples (supported in most DBMS)

 Logical Plan
Operators

 Physical Plan
Operators

Physical Plan Operators

Selection
𝜎𝜎𝑝𝑝(𝑅𝑅)

Projection
𝜋𝜋𝐴𝐴(𝑅𝑅)

Grouping
𝛾𝛾𝐺𝐺:𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴)(𝑅𝑅)

Join
𝑅𝑅 ⋈𝑅𝑅.𝑎𝑎=𝑆𝑆.𝑏𝑏 𝑆𝑆

TableScan
IndexScan

ALL

ALL SortGB
HashGB

NestedLoopJN
SortMergeJN

HashJN

22

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Table and Index Scan
 Table Scan vs Index Scan

 For highly selective predicates, index scan
asymptotically much better than table scan

 Index scan higher per tuple overhead
(break even ~5% output ratio)

 Index Scan
Example σ7≤A≤106(R)
 IX ASC on A

 RID List Handling
 IX often returns TIDs
 Fetch, Sort + Fetch
 AND: RIDs(x) ∩ RIDs(y)
 OR: RIDs(x) ∪ RIDs(y)

Physical Plan Operators

ix

Table Scan Index Scan

sorted

void open() { IX.open(); }

void close() { IX.close(); }

Record next() {
if(r == null)
return r=IX.get(Low); // A=7

if((r=IX.next()).K ≤ Upper) // A≤106
return r;

return EOF;
}

23

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Nested Loop Join
 Overview

 Most general join operator (no order, no indexes, arbitrary predicates θ)
 Poor asymptotic behavior (very slow)

 Algorithm (pseudo code)

 Complexity
 Complexity: Time: O(N * M), Space: O(1)
 Pick smaller table as inner if it fits entirely in memory (buffer pool)

Physical Plan Operators

for each s in S
for each r in R
if(r.RID θ s.SID)
emit concat(r, s)

How to implement next()?

R RID

9

1

7

SID S

7

3

1

9

7

⋈RID=SID

N = |R|
M = |S|

24

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Block Nested Loop / Index Nested Loop Joins
 Block Nested Loop Join

 Avoid I/O by blocked data access
 Read blocks of bR and bS R and S pages
 Complexity unchanged but

potentially much fewer scans

 Index Nested Loop Join
 Use index to locate qualifying tuples

(==, >=, >, <=, <)
 Complexity (for equivalence predicates):

Time: O(N * log M), Space: O(1)

Physical Plan Operators

for each block bR in R
for each block bS in S
for each r in bR
for each s in bS
if(r.RID θ s.SID)
emit concat(r, s)

for each r in R
for each s in S.IX(θ,r.RID)
emit concat(r,s)

ix

S

25

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Sort-Merge Join
 Overview

 Sort Phase: sort the input tables R and S (w/ external sort algorithm)
 Merge Phase: step-wise merge with lineage scan

 Algorithm (Merge, PK-FK)

 Complexity
 Time (unsorted vs sorted): O(N log N + M log M) vs O(N + M)
 Space (unsorted vs sorted): O(N + M) vs O(1)

Physical Plan Operators

Record next() {
while(curR!=EOF && curS!=EOF) {

if(curR.RID < curS.SID)
curR = R.next();

else if(curR.RID > curS.SID)
curS = S.next();

else if(curR.RID == curS.SID) {
t = concat(curR, curS);
curS = S.next(); //FK side
return t;

} }
return EOF;

}

… R_ID
9
1
7

S_ID …
7
3
1
9
7

⋈RID=SID

SID S

1

3

7

7

9

R RID

1

7

9

produced sorted
output

N = |R|
M = |S|

26

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Hash Join
 Overview

 Build Phase: read table S and build a hash table HS over join key
 Probe Phase: read table R and probe HS with the join key

 Algorithm (Build+Probe, PK-FK)

 Complexity
 Time: O(N + M), Space: O(N)
 Classic hashing: p in-memory partitions of Hr w/ p scans of R and S

Physical Plan Operators

Record next() {
// build phase (first call)
while((r = R.next()) != EOF)
Hr.put(r.RID, r);

// probe phase
while((s = S.next()) != EOF)
if(Hr.containsKey(s.SID))
return concat(Hr.get(s.SID), s);

return EOF;
}

… R_ID
9
1
7

SID S

7

3

1

9

7

⋈RID=SID

HR,RID

9

1

7

h(x)

N = |R|
M = |S|

Presenter
Presentation Notes
Note: example hash functions: crc (cyclic redundancy check), MurmurHash, CityHash, FarmHash, XXHash

27

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Double-Pipelined Hash Join
 Overview and Algorithm

 Join of bounded streams (or unbounded w/ time-based invalidation)
 Equi join predicate, symmetric and non-blocking
 For every incoming tuple (e.g. left): probe (right)+emit, and build (left)

Physical Plan Operators

⋈RID=SID
HR,RID HS,SID

1 ab

2 cd

1 ef

7 gh

7 zy

1 xw

7 vu

HR,RID

1, 2

HR,RID

1, 2, 7
HS,SID

7

HS,SID

1, 7

Stream
R

Stream
S

emit 1(abxw)

emit 1(efxw)

emit 7(ghzy)

[Zachary G. Ives, Daniela Florescu, Marc
Friedman, Alon Y. Levy, Daniel S. Weld:

An Adaptive Query Execution System
for Data Integration. SIGMOD 1999]

emit 7(ghvu)

HS,SID

1, 7, 7
HR,RID

1, 1, 2

HR,RID

1, 1, 2, 7

28

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Partitioned Hash Join
 Range-Partitioned

 Co-partitioning tuples from R and S
into partitions defined by key ranges

 Local hash join over partitions
 Fit local hash table in caches
 Partitioning shuffles rows/RIDs

 Radix Hash Join
 Multi-pass radix partitioning

(first 2,3,etc bits of hash)
 Better locality during

partitioning (TLB, L1/L2)

Physical Plan Operators

[Stefan Manegold, Peter A. Boncz,
Martin L. Kersten: Optimizing Main-
Memory Join on Modern Hardware.
IEEE Trans. Knowl. Data Eng. 14(4) 2002]

[Credit: Changkyu Kim et al, VLDB’09]

29

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Hash vs Sort-Merge Joins, Revisited … Revisited
 PVLDB’09

 PVDLB’12

 PVLDB’13 / TKDE’15

 SIGMOD’16

 Interesting Perspective
 Large-small table joins
 Comparison by query runtime

Physical Plan Operators

[Thomas Neumann: Comparing Join Implementations,
http://databasearchitects.blogspot.com/2016/04/com
paring-join-implementations.html, 04/2016]

[Changkyu Kim et al: Sort vs. Hash Revisited:
Fast Join Implementation on Modern Multi-
Core CPUs. PVLDB 2(2) 2009]

[Martina-Cezara Albutiu et al: Massively
Parallel Sort-Merge Joins in Main Memory Multi-
Core Database Systems. PVLDB 5(10) 2012]

[Cagri Balkesen, Gustavo Alonso, Jens Teubner,
M. Tamer Özsu: Multi-Core, Main-Memory Joins:
Sort vs. Hash Revisited. PVLDB 7(1) 2013]

[Stefan Schuh, Xiao Chen, Jens Dittrich: An
Experimental Comparison of Thirteen Relational
Equi-Joins in Main Memory. SIGMOD 2016]

Presenter
Presentation Notes
Note: comparison by query runtime (if TID joins, partitioning -> destroys sorting of TIDs which makes fetch much more expensive)

http://databasearchitects.blogspot.com/2016/04/comparing-join-implementations.html

30

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Bloom Filters
 Bloom Radix-Partitioned Join (BRJ)

 Motivation: partitioning probe side can be very expensive
 Second partitioning pass of build side materializes

the bloom filter
 Filter probe side

before partitioning

 Comparison w/
Bloom Filter over RJ
 Micro: negative
 TPC-H: positive

Physical Plan Operators

1 0 1 0 1 1

key=7
h1 h3

[Maximilian Bandle, Jana Giceva, Thomas Neumann:
To partition, or not to partition, that is the join

question in a real system, SIGMOD 2021]

Presenter
Presentation Notes
Note: Cuckoo filters

31

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Experiments
 Micro Benchmarks RJ, BRJ, BHJ

 https://github.com/opcm/pcm

 TPC-H Benchmark

Physical Plan Operators

Presenter
Presentation Notes
LM: late materialization

https://github.com/opcm/pcm

32

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Sort-GroupBy and Hash-GroupBy
 Recap: Classification of Aggregates (DM, DIA)

 Additive, semi-additive, additively-computable, others

 Sort Group-By
 Similar to sort-merge join

(Sort, GroupAggregate)
 Sorted group output

 Hash Group-By
 Similar to hash join (HashAggregate)
 Higher temporary memory consumption
 Unsorted group output
 #1 w/ tuple grouping
 #2 w/ direct aggregation (e.g., count)
 Beware: cache-unfriendly if many groups (size(H) > L2/L3 cache)

Physical Plan Operators

γA,count(*)(R)

X X X X X X Y Y Y Y Y Y Y Z Z Z Z Z
sort

O(N log N)
aggregate

O(N) X,6 Y,7 Z,5

HA,Agg

Y

X

Z

γA,count(*)

R

build & agg
O(N)

Presenter
Presentation Notes
Note: quantile/median requires sort per partition -> sort group-by
Postgres: GroupAggregate, HashAggregate

33

706.543 Architecture of Database Systems – 06 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Summary and Q&A
 Overview Query Processing
 Plan Execution Strategies
 Physical Plan Operators

 Next Lectures (Part B)
 07 Query Compilation and Parallelization [Nov 17]

 08 Query Optimization I (rewrites, costs, join ordering) [Nov 24]

 09 Adaptive Query Processing [Dec 01]

	Architecture of DB Systems�06 Query Processing
	Announcements/Org
	Agenda
	Overview Query Processing
	DBMS Architecture, cont.
	Overview Query Processing
	Database Catalog
	Plan Caching
	Query and Plan Types
	Result Caching
	Plan Execution Strategies
	Overview Execution Strategies
	Iterator Model
	Iterator Model – Predicate Evaluation
	Materialized Intermediates (column-at-a-time)
	Vectorized Execution (vector-at-a-time)
	Vectorized Execution (vector-at-a-time), cont.
	Query Compilation
	Data-Centric / Continuous Scan Processing
	Physical Plan Operators
	Overview Plan Operators
	Table and Index Scan
	Nested Loop Join
	Block Nested Loop / Index Nested Loop Joins
	Sort-Merge Join
	Hash Join
	Double-Pipelined Hash Join
	Partitioned Hash Join
	Hash vs Sort-Merge Joins, Revisited … Revisited
	Bloom Filters
	Experiments
	Sort-GroupBy and Hash-GroupBy
	Summary and Q&A

