

SCIENCE PASSION TECHNOLOGY

Architecture of DB Systems 07 Compilation and Parallelization

Matthias Boehm

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMK endowed chair for Data Management

Announcements/Org

- #1 Video Recording
 - Link in TUbe & TeachCenter (lectures will be public)
 - Optional attendance (independent of COVID)
 - Hybrid, in-person but video-recorded lectures
 - HS i5 + Webex: <u>https://tugraz.webex.com/meet/m.boehm</u>

#2 Course Evaluation and Exam

- Evaluation period: Jan 01 Feb 15
- Exam dates: TBD (virtual webex oral exams, 45min each)

2

ululu cisco Webex

TUbe

Recap: Overview Query Processing

Agenda

- Vectorization and SIMD
- Query Compilation
- Query Parallelization

Vectorization and SIMD

SIMD Instruction-level Parallelism (aka Vectorization) Vectorized Execution Model \rightarrow Cache-friendly / Auto-SIMD

Multiple Data

SIMD

(vector)

MIMD

(multi-core)

Terminology

- Flynn's Classification
 - SISD, SIMD
 - (MISD), MIMD

[Michael J. Flynn, Kevin W. Rudd: Parallel Architectures. ACM Comput. Surv. 28(1) 1996]

Example: SIMD Processing

- Streaming SIMD Extensions (SSE)
- Process the same operation on multiple elements at a time (packed vs scalar SSE instructions)
- Data parallelism (aka: instruction-level parallelism)
- Example: VFMADD132PD

2009 Nehalem: **128b** (2xFP64) 2012 Sandy Bridge: **256b** (4xFP64) 2017 Skylake: **512b** (8xFP64)

Singe Data

SISD

(uni-core)

MISD

(pipelining)

c = _mm512_fmadd_pd(a, b);

Singe

Instruction

Multiple

Instruction

[Richard M. Russell: The

CACM 21(1) 1978]

CRAY-1 Computer System.

Background Vector Processors

GRAY-1

7

- 8 x (64 elements x 8B) vector registers
- INT and FP arithmetic @ 80 MHz
- Vector and scalar instructions
- NEC Vector Engine v2 20A/20B
 - 8/10 vector cores w/ scalar/vector processing units
 - Vector width: 256 x 8B = 16,384 bit
 - 1.6 GHz, 3.07/6.14 TFLOPs, 1.53 TB/s

[https://en.wikichip.org/wiki/nec/microarchitectures/sx-aurora]

[https://www.zamg.ac.at/cms/en/images/ weather/nec/image_view_fullscreen]

@ZAMG

SIMD Data Processing

- Overview
 - Process multiple elements at once
 - Avoid conditional branch instructions
 - Assuming column-wise storage, and vectors of fixed-sized values

 Example Sele 16x32b 	ctio	n	for M S	i = Iask SIMD	= 1 [1 _Pro	to N S] = cess	I sto = SII s(Mas	ep S MD_c sk[1	{ ondi S]	ltio , y	n(x[[i	ii i+S-	i+S- -1])	1]); ;		
x	7	1	2	9	3	8	6	7	3	4	9	2	4	5	6	9
mask = x>=5	1	0	0	1	0	1	1	1	0	0	1	0	0	1	1	1
V = SIMD_bitmap(mask)	773	391	//	[0,	, 2^	(S-1)]									
All match extraction from y			if f	(V ! or j tm re po	= 0) = 1 p = sult s +=	{ to (V > [pos tmp	S { >> (s] = o; }	S-j) y[j })&];	1; /	/* j [.]	th b	it *	</td <td></td> <td></td>		

[Jingren Zhou, Kenneth A. Ross:

SIMD instructions. SIGMOD 2002]

Implementing database operations using

SIMD Data Processing, cont.

- Example Aggregations
 - Convert non-matched elements to zero
 - Aggregate into vector register, final agg/extraction

Auto Vectorization

- GCC 7.2
- Clang 5.0
- ICC 18

[Jingren Zhou, Kenneth A. Ross:

SIMD instructions. SIGMOD 2002]

Implementing database operations using

[Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo, Peter A. Boncz:: Everything You Always Wanted to Know About Compiled and Vectorized Queries But Were Afraid to Ask. **PVLDB 11(13) 2018**]

ISDS

Vectorized Execution (vector-at-a-time)

- Motivation
 - Iterator Model: many function calls, no instruction-level parallelism
 - Materialized: mem-bandwidth-bound

Hyper-Pipelining

- Operators work on vectors
- Pipelining of vectors (sub-columns)
- Vector sizes according to cache size
- Pre-compiled function primitives
- → Generalization of execution strategies

	Det.
ILSENS!	朝間双
	area salan
10.000	
07276269	

[Peter A. Boncz, Marcin Zukowski, Niels Nes: MonetDB/X100: Hyper-Pipelining Query Execution. **CIDR 2005**]

[Marcin Zukowski, Peter A. Boncz, Niels Nes, Sándor Héman: MonetDB/X100 - A DBMS In The CPU Cache. **IEEE Data Eng. Bull. 28(2), 2005**]

Query Compilation

Holistic Query Evaluation Data-centric Query Evaluation Compilation and/or Vectorization

Query Compilation Motivation

- Background
 - Traditional DBMS assume data >> main memory (I/O dominates)
 - Modern in-memory DBMS → CPU/memory efficiency crucial
- Example SELECT sum(price*(1+tax))
 FROM Orders
 WHERE oid >= 100 AND oid <= 200
 GROUPBY category

for(int i = 0; i < N; i++)
if(oid[i] >= 100 && oid[i] <= 200)
ret[category] += price[i]*(1+tax[i]);</pre>

[Juliusz Sompolski, Marcin Zukowski, Peter A. Boncz: Vectorization vs. compilation in query execution. **DaMoN 2011**]

.

Holistic Query Evaluation

- Query Processing Architecture
 - HIQUE: Holistic Integrated Query Engine
 - Holistic: Query-awareness + HW-awareness
 - Codegen as underlying principle of efficient query evaluation

[Konstantinos Krikellas, Stratis Viglas, Marcelo Cintra: Generating code for holistic query evaluation. **ICDE 2010**]

[Konstantinos Krikellas: The case for holistic query evaluation, **PhD Thesis**, University of Edinburgh, **2010**]

Codegen and compilation step

- Code Generation Approach
 - #1 Data Staging: input tables, selection, projection, pre-processing
 - #2 Holistic Query Instantiation: join, group-by, order-by

- Code Generation Approach, cont.
 - Types: known attribute types → no separate function calls (access, eval)
 - Size: fixed-length tuples → direct access, cache-conscious blocking
 - Operations: interleaved operations on cached data
- #1 Data Staging

Listing 3.2: Type-specific table scan-select

#2 Holistic Query Instantiation

- Join Teams
 - Join operators with predicate on same attribute
 - Single generated function
- Alternatives
 - Holistic nested loop join
 - Holistic merge join (cooperative staging)
 - Holistic partitioned join
 - Holistic hybrid hashsort-merge join

1	/* Code to hash-partition or sort inputs */
2	hash: // examine corresponding partitions together
3	for $(k = 0; k < M; k++)$ { M=1 for merge inin
4	/* update page bounds for all tables, for their k-th partition values */
5	/* sort partitions — only in hybrid hash—sort—merge join */
6	
7	for $(p_1 = \text{start_page_1}; p_1 \le \text{end_page_1}; p_1++)$
8	<pre>page_struct *page_1 = read_page(p_1, partition_1[k]);</pre>
9	for $(p_2 = start_page_2; p_2 \le end_page_2; p_2++)$
0	<pre>page_struct *page_2 = read_page(p_2, partition_2[k]);</pre>
1	
2	for $(p_m = start_page_m; p_m \ll end_page_m; p_m++)$
3	page_struct *page_m = read_page(p_m, partition_m[k]);
.4	
5	for (t_1 = 0; t_1 < page_1->num_tuples; t_1++) {
6	<pre>void *tuple_1 = page_1->data + t_1 * tuple_size_1;</pre>
7	for (t_2 = 0; t_2 < page_2->num_tuples; t_2++) $\{$
8	<pre>void *tuple_2 = page_2->data + t_2 * tuple_size_2;</pre>
9	<pre>int *t1 = tuple_1 + offset_1;</pre>
0	<pre>int *t2 = tuple_2 + offset_2;</pre>
1	if (*t1 != *t2) {
2	merge: // update bounds for all loops
3	continue;
4	}
5	
6	for (t_m = 0; t_m < page_m->num_tuples; t_m++) {
7	<pre>void *tuple_m = page_m->data + t_m * tuple_size_m;</pre>
8	<pre>t1 = tuple_k + offset_k;</pre>
9	<pre>t2 = tuple m + offset_m;</pre>
0	if (*t1 != *t2) {
1	merge: // update bounds for all loops
2	continue;
3	}
4	add_to_result(tuple_1, , tuple_m);
5	}}}}}

Listing 3.6: Generic holistic template for join teams

Runtime Break-Down

Compiler Optimizations

	Join Query #1		Join Q	uery #2	Aggreg	ation Query #1	Aggregation Query #2		
	-00	-02	-00	-02	-00	-02	-00	-02	
Generic iterators	0.802	0.235	1.953	0.995	1.225	0.527	0.136	0.060	
Optimized iterators	0.618	0.231	1.850	0.990	1.199	0.509	0.113	0.055	
Generic hard-coded	0.430	0.118	1.421	0.688	0.586	0.344	0.095	0.051	
Optimized hard-coded	0.267	0.055	1.225	0.622	0.554	0.333	0.080	0.038	
HIQUE	0.178	0.054	1.138	0.613	0.543	0.326	0.070	0.033	

Comparison TPC-H Queries

Code Generation Overhead

Compilation time dominates execution time

TDC II Ouenu	S	QL processing	g (ms)	Compila	ation (ms)	File sizes (bytes)		
Tre-n Query	Parse	Optimize	Generate	with -00	with -02	Source	Shared library	
#1	21	1	1	121	274	17,733	16,858	
#3	11	1	2	160	403	33,795	24,941	
#10	15	1	4	213	619	50,718	33,510	

Data-centric Query Evaluation

Motivation

- Algebraic operator model useful for reasoning, but not necessarily a good idea for query processing
- Code compilation overhead

Materialized Intermediates [Thomas Neumann: Efficiently Compiling Efficient Query Plans for Modern Hardware. **PVLDB 2011**]

- Data-centric Processing (not operator-centric)
 - Keep data in CPU registers as long as possible (no op boundaries)
 - Data is pushed towards operators (code and data locality)
 - Queries are compiled into native machine code using LLVM

Example Plan with Pipeline Boundaries

- Pipeline breaker: op takes a tuple out of register
- Full pipeline breaker: blocking op

SELECT * FROM R1,R3, (SELECT R2.z, count(*) FROM R2 WHERE R2.y = 3 GROUP BY R2.z) R2 WHERE R1.x = 7 AND R1.a = R3.b AND R2.z = R3.c

Compiled Query (not LLVM) initialize memory of $\bowtie_{a=b}$, $\bowtie_{c=z}$, and Γ_z for each tuple t in R_1 if $t \cdot x = 7$ materialize t in hash table of $\bowtie_{a=b}$ for each tuple t in R_2 if t.y = 3aggregate t in hash table of Γ_z for each tuple t in Γ_z materialize t in hash table of $\bowtie_{z=c}$ for each tuple t_3 in R_3 for each match t_2 in $\bowtie_{z=c}[t_3.c]$ for each match t_1 in $\bowtie_{a=b}[t_3,b]$ output $t_1 \circ t_2 \circ t_3$

- Data-Centric Operator Model
 - Conceptual data-centric operator model, used during compilation
 - **produce()**: produce result tuples
 - consume(attributes, source): receive input tuples

	\bowtie .produce	\bowtie .left.produce; \bowtie .right.produce;
Example	\bowtie .consume(a,s)	if $(s = \bowtie . left)$
		print "materialize tuple in hash table";
a=b		else
$\sigma_{x=7}$		print "for each match in hashtable["
		+a.joinattr+"]";
		\bowtie .parent.consume(a+new attributes)
К	$\sigma.\mathrm{produce}$	$\sigma.$ input.produce
	$\sigma.\mathrm{consume}(\mathrm{a,s})$	print "if "+ σ .condition;
		σ .parent.consume(attr, σ)
·	scan.produce	print "for each tuple in relation"
$\int \mathbf{f}_{on} \mathbf{r}_{on} $		scan.parent.consume(attributes,scan)
$relation to the t m R_1$		
11 $t.x = 7$		

materialize t in hash table of $\bowtie_{a=b}$


```
• Example LLVM Fragment: \gamma_{COUNT(*);Z}(\sigma_{y=3}(R2))
```

define internal void @scanConsumer(%8* %
executionState, %Fragment_R2* %
data) { body:

%columnPtr = getelementptr inbounds %Fragment_R2* %data, i32 0, i32 0		
%column = load 132** $%$ columnPtr, align 8	>	1. locate tuples in memory
$\%$ columnPtr2 = getelementptr indounds $\%$ Fragment_R2* $\%$ data, i32 0, i32 1		
%column2 = 10ad 132** $%$ columnPtr2, angli 8	{	2 loop over all tuples
(loop over tuples, currently at $\%$ id, contains label $\%$ cont17)	{	2. loop over all tuples
%yPtr = getelementptr 132* $%$ column, 164 $%$ ld	1	
%y = 10ad 132* %y Ptr, align 4	>	3. filter $y = 3$
%cond = 1cmp eq 132 $%$ y, 3		
br 11 %cond, label %then, label %cont17	{	
then:		
%zPtr = getelementptr i32* %column2, i64 %id	>	4. hash z
%z = load i32* %zPtr, align 4		
%hash = urem i32 %z, %hashTableSize	Į	
%hashSlot = getelementptr %"HashGroupify::Entry"** %hashTable, i32 %hash	l)	
%hashIter = load %"HashGroupify::Entry"** %hashSlot, align 8		
%cond2 = icmp eq %"HashGroupify::Entry" * %hashIter, null	>	5. lookup in hash table $(C++ \text{ data structure})$
br i1 %cond, label %loop20, label %else26		
(check if the group already exists, starts with label %loop20)		
else26:	{	
%cond3 = icmp le i32 $%$ spaceRemaining, i32 8		6 not found shock ano as
br i1 %cond, label %then28, label %else47	$\left(\right)$	o. not found, check space
(create a new group, starts with label %then28)	Į	
else47:		
%ptr = call i8* @_ZN12HashGroupify15storeInputTupleEmj		7 full call C++ to allocate means an anill
(%"HashGroupify" $*$ %1, i32 hash, i32 8)	$\langle \rangle$	i. run, can $C++$ to anocate mem or spin
(more loop logic)		
})	

ISDS

Experiments

 TPC-CH (extended TPC-C+TPC-H)

	HyF	Per + C	++	Hy	yPer	+	LLVM
TPC-C [tps]		161,	794			1	.69,491
total compile time [s]]	10	5.53				0.81
	01	Q2	()3	0	4	05
HvPer + C++ [ms]	$\frac{2}{142}$	374	1/	χο 41	20	3	1416
compile time [ms]	1556	2367	19'	76	221	4	2592
HyPer + LLVM	35	125	8	80	11	7	1105
compile time [ms]	16	41	:	30	1	.6	34
VectorWise [ms]	98	-	25	57	43	6	1107
MonetDB [ms]	72	218	11	12	816	8	12028
DB X [ms]	4221	6555	164	10	383	0	15212

Code Quality

- Instruction cache misses (L1i)
- Data cache miss (L1d, L2

	($\overline{21}$	Q2			J 3	(24	Q5		
	LLVM	MonetDB	LLVM	MonetDB	LLVM	MonetDB	LLVM	MonetDB	LLVM	MonetDB	
branches	19,765,048	144,557,672	37,409,113	114,584,910	$14,\!362,\!660$	$127,\!944,\!656$	32,243,391	408,891,838	11,427,746	333,536,532	
mispredicts	188,260	456,078	6,581,223	3,891,827	$696,\!839$	$1,\!884,\!185$	1,182,202	$6,\!577,\!871$	639	6,726,700	
I1 misses	2,793	$187,\!471$	1,778	$146,\!305$	791	$386,\!561$	508	290,894	490	2,061,837	
D1 misses	1,764,937	7,545,432	10,068,857	6,610,366	2,341,531	7,557,629	3,480,437	20,981,731	776,417	8,573,962	
L2d misses	$1,\!689,\!163$	$7,\!341,\!140$	7,539,400	4,012,969	$1,\!420,\!628$	$5,\!947,\!845$	$3,\!424,\!857$	17,072,319	776,229	7,552,794	
I refs	132 mil	1,184 mil	313 mil	760 mil	208 mil	944 mil	282 mil	3,140 mil	159 mil	2,089 mil	

Other Systems w/ Query Compilation

IEEE Data Engineering Bulletin

March 2014 Vol. 37 No. 1

IEEE Computer Society

Letters

Letter from the Editor-in-Chief	David Lomet	1
Letter from the Special Issue Editor	S. Sudarshan	2

Special Issue on When Compilers Meet Database Systems

Hypor		—
пугег	Compiling Database Queries into Machine Code Thomas Neumann and Viktor Leis	3
HIQUE	Processing Declarative Queries Through Generating Imperative Code in Managed Runtimes	
	Stratis D. Viglas, Gavin Bierman and Fabian Nagel 1	2
Hekaton	Compilation in the Microsoft SQL Server Hekaton Engine	
	Craig Freedman, Erik Ismert, and Per-Ake Larson 2	22
Impala	Runtime Code Generation in Cloudera Impala Skye Wanderman-Milne and Nong Li 3	31
	Database Application Developer Tools Using Static Analysis and Dynamic Profiling	
	Surajit Chaudhuri, Vivek Narasayya and Manoj Syamala 3	8
	Using Program Analysis to Improve Database Applications	
	Alvin Cheung, Samuel Madden, Armando Solar-Lezama, Owen Arden and Andrew C. Myers 4	8
	Database-Aware Program Optimization via Static Analysis	
ogoBaco/	Karthik Ramachandra and Ravindra Guravannavar 6	50
-egobase/	Abstraction Without Regret in Database Systems Building: a Manifesto Christoph Koch 7	/0
ScaLite		_

Specialized Code Generation

Improved Branch Prediction

- No-branch: pos+=pred(data[i])
- Hash table Entry* iter=hashTable[hash]; lookup while (iter)

... // inspect the entry iter=iter->next: }

[Thomas Neumann: Efficiently **Compiling Efficient Query Plans for** Modern Hardware. PVLDB 2011]

existing entry (~ true) Entry* iter=hashTable[hash]; if (iter) do { ... // inspect the entry iter=iter->next; while (iter); }

end of chain (~ false)

SIMD Loop Tiling and Fission

- Loop tiling (vectorization) for SIMD
- Loop fission into parallel and serial ops

- OF 18-10-29-28-30-	e
-	
	021011
	151.2
	13.75
	1000
	1921
Section 29230	1321
	K02:
	0.000
	2912 -
have been stated and the second	77121
MODERTYCE CONTEN	142-1

[Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Carsten Binnig, Ugur Çetintemel, Stan Zdonik: An Architecture for Compiling UDFcentric Workflows. PVLDB 8(12) 2015]

```
data[N]; hash[TILE]; sum[M] = \{0\};
for (i = 0; i < N / TILE; i++)</pre>
  offset = i * TILE;
  for (j = 0; j < TILE; j++) {
    key = k(data[offset + j]);
    hash[j] = h(key);
  for (j = 0; j < TILE; j++)
    sum[hash[j]] += data[offset + j];
```


Compilation w/ SIMD, Prefetch, Decompress

 Ω

Г

 σ_2

P3

P2

Lineltem

Relaxed Operator Fusion (ROF)

- Introduce buffered stage boundary for vectorized execution
- SIMD operations after boundary (w/ repacking after SIMD ops)
- Prefetching before boundary

Data Blocks

- Hot and cold (compressed) blocks
- SIMD predicated evaluation on blocks, output unpacking into vectors of 8192 tuples
- Vector tuples fed into JIT-compiled pipelines

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization Matthias Boehm, Graz University of Technology, WS 2021/22

[Harald Lang el al: Data Blocks: Hybrid OLTP and OLAP on Compressed Storage using both Vectorization and Compilation. **SIGMOD 2016**]

[Prashanth Menon, Andrew Pavlo,

Todd C. Mowry: Relaxed Operator

Fusion for In-Memory Databases:

Last. PVLDB 11(1) 2017]

Making Compilation, Vectorization, and Prefetching Work Together At

Compilation vs Vectorized Execution

- Motivation
 - SotA: compilation or vectorization
 - Typer: Test data-centric query eval (HyPer)
 - Tectorwise: Test vectorized eval (VectorWise)

[Timo Kersten et al.: Everything You Always Wanted to Know About Compiled and Vectorized Queries But Were Afraid to Ask. **PVLDB 11(13) 2018**]

Excursus: SystemDS Codegen

[Tarek Elgamal, Shangyu Luo, Matthias Boehm, Alexandre V. Evfimievski, Shirish Tatikonda, Berthold Reinwald, Prithviraj Sen: SPOOF: Sum-Product Optimization and Operator Fusion for Large-Scale Machine Learning. **CIDR 2017**]

[Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen, Alexandre V. Evfimievski, Niketan Pansare: On Optimizing Operator Fusion Plans for Large-Scale Machine Learning in SystemML. **PVLDB 11(12) 2018**]

Excursus: SystemDS Codegen – Ex. L2SVM

L2SVM Inner Loop

```
while(continueOuter & iter<maxi) {
    #...
    while(continueInner) {
        out = 1-Y* (Xw+step_sz*Xd);
        sv = (out > 0);
        out = out * sv;
        g = wd + step_sz*dd
            - sum(out * Y * Xd);
        h = dd + sum(Xd * sv * Xd);
        step_sz = step_sz - g/h;
    } } ...
```

of Vector Intermediates

Base (w/o fused ops): **10** Fused (w/ fused ops): **4**

Excursus: SystemDS Codegen – Ex. L2SVM

Template Skeleton

- T: Cell, MAgg, Row, Outer
- Data access, blocking
- Multi-threading
- Final aggregation


```
public final class TMP25 extends SpoofMAgg {
  public TMP25() {
    super(false, AggOp.SUM, AggOp.SUM);
  protected void genexec(double a, SideInput[] b,
   double[] scalars, double[] c, ...) {
    double TMP11 = getValue(b[0], rowIndex);
    double TMP12 = getValue(b[1], rowIndex);
    double TMP13 = a * scalars[0];
    double TMP14 = TMP12 + TMP13;
    double TMP15 = TMP11 * TMP14;
    double TMP16 = 1 - TMP15;
    double TMP17 = (TMP16 > 0) ? 1 : 0;
    double TMP18 = a * TMP17;
    double TMP19 = TMP18 * a;
    double TMP20 = TMP16 * TMP17;
    double TMP21 = TMP20 * TMP11;
    double TMP22 = TMP21 * a;
    c[0] += TMP19;
    c[1] += TMP22;
                      # of Vector Intermediates
                           Gen (codegen ops): 0
}
```


Query Compilation

Н

11 ba(+*)

Excursus: SystemDS Codegen – Ex. MLogReg

MLogreg Inner Loop

(main expression on feature matrix X)

```
Q = P[, 1:k] * (X %*% v)
H = t(X) %*% (Q - P[, 1:k] * rowSums(Q))
```

```
9 b(-)
      public final class TMP25 extends SpoofRow {
        public TMP25() {
           super(RowType.COL AGG B1 T, true, 5);
                                                                                         8 b(*)
        protected void genexecDense(double[] a, int ai,
          SideInput[] b, double[] c,..., int len) {
                                                                      10 r(t)
                                                                                    7 \operatorname{ua}(R+)
           double[] TMP11 = getVector(b[1].vals(rix),...);
           double[] TMP12 = vectMatMult(a, b[0].vals(rix),...);
"vectorized double[] TMP13 = vectMult(TMP11, TMP12, 0, 0,...);
                                                                                 6 b(*)
           double TMP14 = vectSum(TMP13, 0, TMP13.length);
row ops"
           double[] TMP15 = vectMult(TMP11, TMP14, 0,...);
           double[] TMP16 = vectMinus(TMP13, TMP15, 0, 0,...);
                                                                           4 ba(+*)
                                                                                      5 rix
           vectOuterMultAdd(a, TMP16, c, ai, 0, 0,...); }
         protected void genexecSparse(double[] avals, int[] aix,
          int ai, SideInput[] b, ..., int len) {...}
                                                                          х
                                                                                       Р
                                                                                 v
      }
```


Query Parallelization

Intra- and Inter-Operator Parallelism Fine-grained Pipeline Parallelism Workload Management / Inter-Query Parallelism

Overview Query Parallelism

Multi-threaded / Distributed

Beware: Danger of Interference

- #1 Locks and latches on hot data items → increasing TX aborts
- #2 Temporary memory/IO requirements (see 03 buffer pool)
- #3 CPU and cache interference (e.g., context switches)
- #4 Throughput vs latency vs freshness vs fairness vs priorities
- → Dedicated DB workload management & DB schedulers

Scalable (small memory)

High CPI measures

Recap: Iterator Model

- Volcano Iterator Model
 - Pipelined & no global knowledge
 - Open-Next-Close (ONC) interface
 - Query execution from root node (pull-based)

```
Example σ<sub>A=7</sub>(R)
   void open() { R.open(); }
   void close() { R.close(); }
   Record next() {
     while( (r = R.next()) != EOF )
        if( p(r) ) //A==7
          return r;
      return EOF;
   }
```


[Goetz Graefe: Volcano - An Extensible and Parallel Query Evaluation System.

IEEE Trans. Knowl. Data Eng. 1994]

Blocking Operators

 Sorting, grouping/aggregation, build-phase of (simple) hash joins

PostgreSQL: Init(), GetNext(), ReScan(), MarkPos(), RestorePos(), End()

34

Intra- and Inter-Operator Parallelism

- Overview
 - Seamless parallelization in iterator model via dedicated exchange operator
 - Avoid unnecessary overhead for local subplans
- Inter-Operator Parallelism
 - Vertical parallelism in terms of pipelining
 - Open: create new process
 - Next: transfer packets of records (1.. 32,000)
 - Close: shutdown child processes

[Goetz Graefe: Encapsulation of Parallelism in the Volcano Query Processing System. **SIGMOD 1990**]

Intra- and Inter-Operator Parallelism, cont.

- Intra-Operator Parallelism
 - Horizontal parallelism on data partitions
 - Partitioning of inputs and intermediates ("support functions" and multiple queues)
 - Process creation via propagation tree (fork tree)
 - Partitioning: round-robin/range/hash
- Example Hash Partitioning:
 - For all $k \in R / k \in S$
 - pid = hash(k) % n

[Goetz Graefe: Encapsulation of Parallelism in the Volcano Query Processing System. **SIGMOD 1990**]

Excursus: MapReduce – Execution Model

Sort, [Combine], [Compress]

w/ #reducers = 3

Fine-grained Parallelism

[Viktor Leis, Peter A. Boncz, Alfons Kemper, Thomas Neumann: Morsel-driven parallelism: a NUMA-aware query evaluation framework for the many-core age. **SIGMOD 2014**]

- Motivation
 - Non-uniform memory architecture (NUMA)
 - Load imbalance / serial fraction due to plan-driven parallelism

Scheduler (dispatcher)

- Fixed number of workers to avoid over-provisioning
- Morsel: segment of tuples (e.g., 100K)
- Task: operator pipeline on morsel
- Task distribution at runtime w/ static partitioning + work stealing
- NUMA data locality
- Hybrid Interpreted/compiled
 - Exchange plans at morsel granularity

[André Kohn, Viktor Leis, Thomas Neumann: Adaptive Execution of Compiled Queries. **ICDE 2018**]

ISDS

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization Matthias Boehm, Graz University of Technology, WS 2021/22

Fine-grained Parallelism, cont.

- Motivation, cont.
 - Dark silicon due to power and thermal constraints
 - Sparc M7 platform w/ on-die ASIC, Data Analytics Accelerator (DAX)

[Kayhan Dursun, Carsten Binnig, Ugur Çetintemel, Garret Swart, Weiwei Gong: A Morsel-Driven Query Execution Engine for Heterogeneous Multi-Cores. PVLDB 12(12) 2019]

Extensions

- Pipeline decomposition for function-specific cores
- Cost-based work submission to accelerator
- DAX: scan&filter, select, semi-join

Similar Abstractions for CPU/GPU balancing

Excursus: DAPHNE Vectorized/Tiled Execution

- Example
 - Data placement on CPUs, GPUs, FPGAs
 - Fused pipeline for scale() and lmDS()

Workload Management

Example: DB2 Workload Management

- Concurrency thresholds for incoming requests
- Stop/continue/remap on violated thresholds
- Map DB2 service classes to Linux classes
- Linux cgroups (control groups) for resource isolation

[https://www.ibm.com/support/knowledge center/SSEPGG_11.5.0/com.ibm.db2.luw.ad min.wlm.doc/doc/c0053451.html]

[https://www.ibm.com/support/knowledge center/SSEPGG_11.5.0/com.ibm.db2.luw.ad min.wlm.doc/doc/c0053465.html]

Workload Management, cont.

■ Example H-Store → VoltDB

- Cluster of single-threaded storage and execution engines
- No disk-based logging or locking

[Robert Kallman et al.: H-store: a highperformance, distributed main memory transaction processing system. **PVLDB 1(2) 2008**]

[Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos, Nabil Hachem, Pat Helland: The End of an Architectural Era (It's Time for a Complete Rewrite). **VLDB 2007**]

ISDS

Result: No Multi-threading!!! **OLTP** Application Database Cluster Schema Information Heaviest TPC-C Xact reads/writes 200 records **H-Store API** Stored Sample Less than 1 msec!! Procedures Workload Run all commands to completion; single **Transaction Initiator** threaded Dramatically simplifies DBMS **Deployment Framework Messaging Fabric** No B-tree latch crabbing Nod No pool of file handles, buffers, threads, ... **Database Designer** Other Cluster Multiple cores can be handled by multiple logical **Transaction Manager Query Planner/Optimizer** sites per physical site Execution Nodes **Stored Procedure Executor** DBg Database Group **Query Execution Engine Compiled Stored** Proceedures System Catalogs **Duery Plans Physical Layout** Main Memory Storage Manager **Runtime Time Deployment Time**

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization Matthias Boehm, Graz University of Technology, WS 2021/22

Workload Management – Prioritization

- SAP HANA
 - Main column store and delta CSB tree

- [Iraklis Psaroudakis, Florian Wolf, Norman May, Thomas Neumann, Alexander Böhm, Anastasia Ailamaki, Kai-Uwe Sattler: Scaling Up Mixed Workloads: A Battle of Data Freshness, Flexibility, and Scheduling. TPCTC 2014]
 - Particular and the second seco

- Thread pool for network clients
- Scheduler for heavy-weight requests (single- or multi-task intra-query parallelism)
- "[...] the default configuration of SAP HANA favors analytical throughput over transactional throughput"

- UDFs via OpenMP
 - OpenMP (since 1997, Open Multi-Processing)
 - DOALL parallel loops (independent iterations)
 - SAP HANA: custom OpenMP backend for intercepting tasks
 → DB job scheduler (w/ priorities)

```
#pragma omp parallel for reduction(+: nnz)
for (int i = 0; i < N; i++) {
    int threadID = omp_get_thread_num();
    R[i] = foo(A[i], threadID);
    nnz += (R[i]!=0) ? 1 : 0;</pre>
```

[Florian Wolf, Iraklis Psaroudakis, Norman May, Anastasia Ailamaki, Kai-Uwe Sattler: Extending database task schedulers for multi-threaded application code. **SSDBM 2015**]

}

Summary and Q&A

- Vectorization and SIMD
- Query Compilation
- Query Parallelization
- Next Lectures (Part B)
 - 08 Query Optimization (rewrites, costs, join ordering) [Nov 24]
 - 09 Adaptive Query Processing [Dec 01]
- Next Lectures (Part C)
 - 10 Cloud Database Systems [Jan 12]
 - I1 Modern Concurrency Control [Jan 19]
 - 12 Modern Storage and HW Accelerators [Jan 26]

