
1
SCIENCE
PASSION

TECHNOLOGY

Architecture of DB Systems
07 Compilation and Parallelization
Matthias Boehm

Graz University of Technology, Austria

Institute of Interactive Systems and Data Science
Computer Science and Biomedical Engineering

BMK endowed chair for Data Management

Last update: Nov 12, 2021

2

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Announcements/Org
 #1 Video Recording

 Link in TUbe & TeachCenter (lectures will be public)
 Optional attendance (independent of COVID)
 Hybrid, in-person but video-recorded lectures

 HS i5 + Webex: https://tugraz.webex.com/meet/m.boehm

 #2 Course Evaluation and Exam
 Evaluation period: Jan 01 – Feb 15
 Exam dates: TBD (virtual webex oral exams, 45min each)

https://tugraz.webex.com/meet/m.boehm

3

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Recap: Overview Query Processing
Overview Query Processing

Parsing

Semantic Analysis

Query Rewrites

Plan Optimization

Name Count
James Rodríguez 6
Thomas Müller 5

Robin van Persie 4
Neymar 4

Plan Execution

Plan CachingQEP

Compile Time Runtime

AST/IR

IR

IR

SELECT * FROM TopScorer
WHERE Count>=4

4

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Agenda
 Vectorization and SIMD
 Query Compilation
 Query Parallelization

5

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Vectorization and SIMD
SIMD Instruction-level Parallelism (aka Vectorization)

Vectorized Execution Model Cache-friendly / Auto-SIMD

6

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Terminology
 Flynn’s Classification

 SISD, SIMD
 (MISD), MIMD

 Example: SIMD Processing
 Streaming SIMD Extensions (SSE)
 Process the same operation on

multiple elements at a time
(packed vs scalar SSE instructions)

 Data parallelism
(aka: instruction-level parallelism)

 Example: VFMADD132PD

Vectorization and SIMD

SISD
(uni-core)

SIMD
(vector)

MISD
(pipelining)

MIMD
(multi-core)

Singe Data Multiple Data

Singe
Instruction

Multiple
Instruction

2009 Nehalem: 128b (2xFP64)
2012 Sandy Bridge: 256b (4xFP64)

2017 Skylake: 512b (8xFP64)

a
b
c

c = _mm512_fmadd_pd(a, b);

[Michael J. Flynn, Kevin W.
Rudd: Parallel Architectures.
ACM Comput. Surv. 28(1) 1996]

7

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Background Vector Processors
 GRAY-1

 8 x (64 elements x 8B) vector registers
 INT and FP arithmetic @ 80 MHz
 Vector and scalar instructions

 NEC Vector Engine v2 20A/20B
 8/10 vector cores w/ scalar/vector processing units
 Vector width: 256 x 8B = 16,384 bit
 1.6 GHz, 3.07/6.14 TFLOPs, 1.53 TB/s

 Others: CPUs, GPUs, FPGAs, DSPs

Vectorization and SIMD

[https://en.wikichip.org/wiki/nec/microarchitectures/sx-aurora]

[https://www.computerhistory
.org/tdih/september/28/]

[https://www.zamg.ac.at/cms/en/images/
weather/nec/image_view_fullscreen]

@ZAMG

[Richard M. Russell: The
CRAY-1 Computer System.

CACM 21(1) 1978]

https://en.wikichip.org/wiki/nec/microarchitectures/sx-aurora
https://www.computerhistory.org/tdih/september/28/
https://www.zamg.ac.at/cms/en/images/weather/nec/image_view_fullscreen

8

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

SIMD Data Processing
 Overview

 Process multiple elements at once
 Avoid conditional branch instructions
 Assuming column-wise storage, and vectors of fixed-sized values

 Example Selection
 16x32b

Vectorization and SIMD

[Jingren Zhou, Kenneth A. Ross:
Implementing database operations using

SIMD instructions. SIGMOD 2002]

7 1 2 9 3 8 6 7 3 4 9 2 4 5 6 9x

mask = x>=5 1 0 0 1 0 1 1 1 0 0 1 0 0 1 1 1

V =
SIMD_bitmap(mask) 77391 // [0, 2^(S-1)]

All match
extraction from y

9

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

SIMD Data Processing, cont.
 Example Aggregations

 Convert non-matched elements to zero
 Aggregate into

vector register,
final agg/extraction

 Auto Vectorization
 GCC 7.2
 Clang 5.0
 ICC 18

Vectorization and SIMD

[Jingren Zhou, Kenneth A. Ross:
Implementing database operations using

SIMD instructions. SIGMOD 2002]

[Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo,
Peter A. Boncz:: Everything You Always Wanted to Know About Compiled and
Vectorized Queries But Were Afraid to Ask. PVLDB 11(13) 2018]

10

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Vectorized Execution (vector-at-a-time)

 Motivation
 Iterator Model: many function calls,

no instruction-level parallelism
 Materialized: mem-bandwidth-bound

 Hyper-Pipelining
 Operators work on vectors
 Pipelining of vectors (sub-columns)
 Vector sizes according to cache size
 Pre-compiled function primitives
 Generalization of execution strategies

Vectorization and SIMD

for(int i=0;i<n;i++)
out[i] = in[i]<L

[Peter A. Boncz, Marcin Zukowski, Niels
Nes: MonetDB/X100: Hyper-Pipelining
Query Execution. CIDR 2005]

[Marcin Zukowski, Peter A. Boncz, Niels Nes,
Sándor Héman: MonetDB/X100 - A DBMS In The
CPU Cache. IEEE Data Eng. Bull. 28(2), 2005]

11

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Query Compilation
Holistic Query Evaluation

Data-centric Query Evaluation
Compilation and/or Vectorization

12

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Query Compilation Motivation
 Background

 Traditional DBMS assume data >> main memory (I/O dominates)
 Modern in-memory DBMS CPU/memory efficiency crucial

 Example

Query Compilation

for(int i = 0; i < N; i++)
if(oid[i] >= 100 && oid[i] <= 200)
ret[category] += price[i]*(1+tax[i]);

SELECT sum(price*(1+tax))
FROM Orders
WHERE oid >= 100 AND oid <= 200
GROUPBY category

compile

[Juliusz Sompolski, Marcin Zukowski, Peter A. Boncz:
Vectorization vs. compilation in query execution. DaMoN 2011]

Presenter
Presentation Notes
Note: inspired by given ref, but not identical

13

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Holistic Query Evaluation
 Query Processing Architecture

 HIQUE: Holistic Integrated Query Engine
 Holistic: Query-awareness + HW-awareness
 Codegen as underlying principle of efficient query evaluation

Query Compilation

[Konstantinos Krikellas, Stratis Viglas,
Marcelo Cintra: Generating code for

holistic query evaluation. ICDE 2010]

[Konstantinos Krikellas: The case for
holistic query evaluation, PhD Thesis,

University of Edinburgh, 2010]

Codegen and compilation step

14

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Holistic Query Evaluation, cont.
 Code Generation Approach

 #1 Data Staging: input tables, selection, projection, pre-processing
 #2 Holistic Query Instantiation: join, group-by, order-by

Query Compilation

γSUM(S_Qty); P_Name

⋈P_PID=S_PID

Sales

Products

σ S_Date>=‘2011-01-01‘

Q1

Q2

Q3

Q4
// function prototypes ...

// function implementations
Result executeQuery() {
tmp1 = executeQ1(…);
tmp2 = executeQ2(…);
tmp3 = executeQ3(tmp1,tmp2,…);
return executeQ4(tmp3,…);
}

… executeO1(…){…}
… executeO2(…){…}
… executeO3(…){…}
… executeO4(…){…}

Materialized
Intermediates

15

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Holistic Query Evaluation, cont.
 Code Generation Approach, cont.

 Types: known attribute types no separate function calls (access, eval)
 Size: fixed-length tuples direct access, cache-conscious blocking
 Operations: interleaved operations on cached data

 #1 Data Staging

Query Compilation

R

σ x=7

16

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Holistic Query Evaluation, cont.
 #2 Holistic Query Instantiation

 Join Teams
 Join operators with

predicate on same attribute
 Single generated function

 Alternatives
 Holistic nested loop join
 Holistic merge join

(cooperative staging)
 Holistic partitioned join
 Holistic hybrid hash-

sort-merge join

Query Compilation

M=1 for merge join

for merge join

for merge join

17

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Holistic Query Evaluation, cont.
 Runtime Break-Down

 Compiler Optimizations

Query Compilation

26% instructions
37% data access
1% function calls

18

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Holistic Query Evaluation, cont.
 Comparison TPC-H Queries

 Code Generation Overhead

Query Compilation

Compilation time
dominates execution time

19

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Data-centric Query Evaluation
 Motivation

 Algebraic operator model useful
for reasoning, but not necessarily
a good idea for query processing

 Code compilation overhead

 Data-centric Processing (not operator-centric)
 Keep data in CPU registers as long as possible (no op boundaries)
 Data is pushed towards operators (code and data locality)
 Queries are compiled into native machine code using LLVM

Query Compilation

[Thomas Neumann: Efficiently
Compiling Efficient Query Plans for

Modern Hardware. PVLDB 2011]

⋈
SR

⋈
T

⋈
U

Materialized
Intermediates

⋈
SR

⋈
T

⋈
U

20

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Data-centric Query Evaluation, cont.
 Example Plan with

Pipeline Boundaries
 Pipeline breaker:

op takes a tuple out of register
 Full pipeline breaker: blocking op

Query Compilation

SELECT * FROM R1,R3,
(SELECT R2.z, count(*)
FROM R2 WHERE R2.y = 3
GROUP BY R2.z) R2

WHERE R1.x = 7 AND R1.a = R3.b
AND R2.z = R3.c

γCOUNT(*);Z

⋈a=b

R

σx=7 ⋈z=c

R2

σy=3

R3

Compiled Query (not LLVM)

21

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Data-centric Query Evaluation, cont.
 Data-Centric Operator Model

 Conceptual data-centric operator model, used during compilation
 produce(): produce result tuples
 consume(attributes, source): receive input tuples

 Example

Query Compilation

⋈a=b

R

σx=7

22

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Data-centric Query Evaluation, cont.
 Example LLVM Fragment: γCOUNT(*);Z(σy=3(R2))

Query Compilation

23

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Data-centric Query Evaluation, cont.
 Experiments

 TPC-CH (extended
TPC-C+TPC-H)

 Code Quality
 Instruction cache misses (L1i)
 Data cache miss (L1d, L2

Query Compilation

24

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Other Systems w/ Query Compilation
 IEEE Data Engineering Bulletin

Query Compilation

[http://sites.computer.org/
debull/A14mar/issue1.htm]

HyPer
HIQUE

Hekaton
Impala

LegoBase/
ScaLite

http://sites.computer.org/debull/A14mar/issue1.htm

25

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Specialized Code Generation
 Improved Branch Prediction

 No-branch: pos+=pred(data[i])
 Hash table

lookup

 SIMD Loop Tiling and Fission
 Loop tiling (vectorization) for SIMD
 Loop fission into parallel and serial ops

Query Compilation

existing entry (~ true)

end of chain (~ false) [Thomas Neumann: Efficiently
Compiling Efficient Query Plans for
Modern Hardware. PVLDB 2011]

[Andrew Crotty, Alex Galakatos, Kayhan Dursun,
Tim Kraska, Carsten Binnig, Ugur Çetintemel,
Stan Zdonik: An Architecture for Compiling UDF-
centric Workflows. PVLDB 8(12) 2015]

26

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Compilation w/ SIMD, Prefetch, Decompress
 Relaxed Operator Fusion (ROF)

 Introduce buffered stage boundary
for vectorized execution

 SIMD operations after boundary
(w/ repacking after SIMD ops)

 Prefetching before boundary

 Data Blocks
 Hot and cold (compressed) blocks
 SIMD predicated evaluation on blocks,

output unpacking into vectors of 8192 tuples
 Vector tuples fed into JIT-compiled pipelines

Query Compilation

[Harald Lang el al: Data Blocks: Hybrid
OLTP and OLAP on Compressed Storage

using both Vectorization and
Compilation. SIGMOD 2016]

[Prashanth Menon, Andrew Pavlo,
Todd C. Mowry: Relaxed Operator
Fusion for In-Memory Databases:

Making Compilation, Vectorization,
and Prefetching Work Together At

Last. PVLDB 11(1) 2017]

Presenter
Presentation Notes
SARGable: Search ARGument able – use in index looup

27

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Compilation vs Vectorized Execution
 Motivation

 SotA: compilation or vectorization
 Typer: Test data-centric query eval (HyPer)
 Tectorwise: Test vectorized eval (VectorWise)

 Selected Results
 Neither system

clearly dominated
 Both with large

differences to others

Query Compilation

[Timo Kersten et al.: Everything You
Always Wanted to Know About Compiled

and Vectorized Queries But Were Afraid
to Ask. PVLDB 11(13) 2018]

Presenter
Presentation Notes
Typer: fewer instructions due to tuples in registers (no load and store)Tectorwise: better at hiding cache miss latency (hash probes in tight loop -> out of order execution)

28

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Excursus: SystemDS Codegen
Query Compilation

[CIDR’17] (w/ fuse-all heuristic)
- Lacked maintainability

- Poor plans for complex DAGs
and local/distributed operations

Practical, exact, cost-based optimizer

[Tarek Elgamal, Shangyu Luo, Matthias Boehm,
Alexandre V. Evfimievski, Shirish Tatikonda,
Berthold Reinwald, Prithviraj Sen: SPOOF: Sum-
Product Optimization and Operator Fusion for
Large-Scale Machine Learning. CIDR 2017]

[Matthias Boehm, Berthold Reinwald, Dylan
Hutchison, Prithviraj Sen, Alexandre V.
Evfimievski, Niketan Pansare: On Optimizing
Operator Fusion Plans for Large-Scale Machine
Learning in SystemML. PVLDB 11(12) 2018]

29

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Excursus: SystemDS Codegen – Ex. L2SVM
 L2SVM Inner Loop

Query Compilation

while(continueOuter & iter<maxi) {
#...
while(continueInner) {
out = 1-Y* (Xw+step_sz*Xd);
sv = (out > 0);
out = out * sv;
g = wd + step_sz*dd

- sum(out * Y * Xd);
h = dd + sum(Xd * sv * Xd);
step_sz = step_sz - g/h;

} } ...

b(*)

Xd Xwstep_sz

b(+)

b(*)

b(-)

1

b(>)

0

b(*)

Y

b(*)

b(*)

ua(RC,+)

b(-)

write g...

b(+)

b(+)

dd

wd

b(*)

b(*)

ua(RC,+)

b(+)

write h

of Vector Intermediates
Base (w/o fused ops): 10
Fused (w/ fused ops): 4

30

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Excursus: SystemDS Codegen – Ex. L2SVM
 Template Skeleton

 T: Cell, MAgg, Row, Outer
 Data access, blocking
 Multi-threading
 Final aggregation

Query Compilation

public final class TMP25 extends SpoofMAgg {
public TMP25() {

super(false, AggOp.SUM, AggOp.SUM);
}
protected void genexec(double a, SideInput[] b,
double[] scalars, double[] c, ...) {
double TMP11 = getValue(b[0], rowIndex);
double TMP12 = getValue(b[1], rowIndex);
double TMP13 = a * scalars[0];
double TMP14 = TMP12 + TMP13;
double TMP15 = TMP11 * TMP14;
double TMP16 = 1 - TMP15;
double TMP17 = (TMP16 > 0) ? 1 : 0;
double TMP18 = a * TMP17;
double TMP19 = TMP18 * a;
double TMP20 = TMP16 * TMP17;
double TMP21 = TMP20 * TMP11;
double TMP22 = TMP21 * a;
c[0] += TMP19;
c[1] += TMP22;

}
}

of Vector Intermediates
Gen (codegen ops): 0

31

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Excursus: SystemDS Codegen – Ex. MLogReg
 MLogreg Inner Loop

(main expression on feature matrix X)

Query Compilation

Q = P[, 1:k] * (X %*% v)
H = t(X) %*% (Q - P[, 1:k] * rowSums(Q))

public final class TMP25 extends SpoofRow {
public TMP25() {

super(RowType.COL_AGG_B1_T, true, 5);
}
protected void genexecDense(double[] a, int ai,
SideInput[] b, double[] c,..., int len) {
double[] TMP11 = getVector(b[1].vals(rix),...);
double[] TMP12 = vectMatMult(a, b[0].vals(rix),...);
double[] TMP13 = vectMult(TMP11, TMP12, 0, 0,...);
double TMP14 = vectSum(TMP13, 0, TMP13.length);
double[] TMP15 = vectMult(TMP11, TMP14, 0,...);
double[] TMP16 = vectMinus(TMP13, TMP15, 0, 0,...);
vectOuterMultAdd(a, TMP16, c, ai, 0, 0,...); }

protected void genexecSparse(double[] avals, int[] aix,
int ai, SideInput[] b, ..., int len) {...}

}

“vectorized
row ops”

32

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Query Parallelization
Intra- and Inter-Operator Parallelism

Fine-grained Pipeline Parallelism
Workload Management / Inter-Query Parallelism

33

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Overview Query Parallelism
 Types of

Parallelism

 Beware: Danger of Interference
 #1 Locks and latches on hot data items increasing TX aborts
 #2 Temporary memory/IO requirements (see 03 buffer pool)
 #3 CPU and cache interference (e.g., context switches)
 #4 Throughput vs latency vs freshness vs fairness vs priorities
 Dedicated DB workload management & DB schedulers

Query Parallelization

Inter-
Query

Inter-
Operator

Intra-
Operator

Data Partitions
MT Ops, SIMD

Bushy Plans
Pipelining

Queries
and TXs

Multi-threaded / Distributed

34

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Recap: Iterator Model
 Volcano Iterator Model

 Pipelined & no global knowledge
 Open-Next-Close (ONC) interface
 Query execution from root node (pull-based)

 Example σA=7(R)

 Blocking Operators
 Sorting, grouping/aggregation,

build-phase of (simple) hash joins

Query Parallelization

[Goetz Graefe: Volcano - An Extensible
and Parallel Query Evaluation System.

IEEE Trans. Knowl. Data Eng. 1994]

Scalable (small memory)
High CPI measures

R

σA=7

open()

open()

next()
next()

next()
next()

close()
open()
next()
next()

close()

next()
next()

close()
 EOF

 EOF

 EOF

void open() { R.open(); }

void close() { R.close(); }

Record next() {
while((r = R.next()) != EOF)
if(p(r)) //A==7
return r;

return EOF;
}

PostgreSQL: Init(),
GetNext(), ReScan(), MarkPos(),

RestorePos(), End()

35

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Intra- and Inter-Operator Parallelism
 Overview

 Seamless parallelization in iterator
model via dedicated exchange operator

 Avoid unnecessary overhead for local subplans

 Inter-Operator Parallelism
 Vertical parallelism in terms of pipelining
 Open: create new process
 Next: transfer packets of records (1 .. 32,000)
 Close: shutdown child processes

Query Parallelization

⋈

XCHG

R

σA=7

XCHG

S

XCHG

γB,count(*)

σ(R) ⋈ γ

σ(R) ⋈ γ

σ(R) ⋈ γ

[Goetz Graefe: Encapsulation of
Parallelism in the Volcano Query

Processing System. SIGMOD 1990]

36

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Intra- and Inter-Operator Parallelism, cont.
 Intra-Operator Parallelism

 Horizontal parallelism on data partitions
 Partitioning of inputs and intermediates

(“support functions” and multiple queues)
 Process creation via propagation tree (fork tree)
 Partitioning: round-robin/range/hash

 Example Hash Partitioning:
 For all k ∈ R / k ∈ S
 pid = hash(k) % n

Query Parallelization

[Goetz Graefe: Encapsulation of
Parallelism in the Volcano Query

Processing System. SIGMOD 1990]

XCHG XCHG

R

σA=7 S

XCHG

⋈⋈

37

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Excursus: MapReduce – Execution Model
Query Parallelization

CSV
File 1

Input CSV files
(stored in HDFS)

CSV
File 2

CSV
File 3

Output Files
(HDFS)

Out 1

Out 2

Out 3

Split 11

Split 12

Split 21

Split 22

Split 31

Split 32

map
task

map
task
map
task

map
task

map
task
map
task
Sort, [Combine], [Compress]

Map-Phase

[Reduce-Phase]

reduce
task

reduce
task

reduce
task

Shuffle, Merge,
[Combine]

#1 Data Locality (delay sched., write affinity)
#2 Reduced shuffle (combine)
#3 Fault tolerance (replication, attempts)

w/ #reducers = 3

38

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Fine-grained Parallelism
 Motivation

 Non-uniform memory architecture (NUMA)
 Load imbalance / serial fraction due to plan-driven parallelism

 Scheduler (dispatcher)
 Fixed number of workers to

avoid over-provisioning
 Morsel: segment of tuples

(e.g., 100K)
 Task: operator pipeline on morsel
 Task distribution at runtime w/

static partitioning + work stealing
 NUMA data locality

 Hybrid Interpreted/compiled
 Exchange plans at morsel granularity

Query Parallelization

[Viktor Leis, Peter A. Boncz, Alfons Kemper,
Thomas Neumann: Morsel-driven parallelism:

a NUMA-aware query evaluation framework
for the many-core age. SIGMOD 2014]

[André Kohn, Viktor Leis, Thomas
Neumann: Adaptive Execution of

Compiled Queries. ICDE 2018]

Presenter
Presentation Notes
Note: non-partitioned hash join, + lazy page allocation of HT -> pseudo-randomly interleaved

39

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Fine-grained Parallelism, cont.
 Motivation, cont.

 Dark silicon due to
power and thermal constraints

 Sparc M7 platform w/ on-die ASIC,
Data Analytics Accelerator (DAX)

 Extensions
 Pipeline decomposition

for function-specific cores
 Cost-based work

submission to accelerator
 DAX: scan&filter, select,

semi-join

 Similar Abstractions for CPU/GPU balancing

Query Parallelization

[Kayhan Dursun, Carsten Binnig, Ugur Çetintemel,
Garret Swart, Weiwei Gong: A Morsel-Driven Query

Execution Engine for Heterogeneous Multi-Cores.
PVLDB 12(12) 2019]

40

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Excursus: DAPHNE Vectorized/Tiled Execution
 Example

 Data placement on CPUs, GPUs, FPGAs
 Fused pipeline for scale() and lmDS()

Query Parallelization

41

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Workload Management
 Example: DB2 Workload Management

 Concurrency thresholds
for incoming requests

 Stop/continue/remap on
violated thresholds

 Map DB2 service classes
to Linux classes

 Linux cgroups (control groups)
for resource isolation

Query Parallelization

[https://www.ibm.com/support/knowledge
center/SSEPGG_11.5.0/com.ibm.db2.luw.ad
min.wlm.doc/doc/c0053465.html]

[https://www.ibm.com/support/knowledge
center/SSEPGG_11.5.0/com.ibm.db2.luw.ad
min.wlm.doc/doc/c0053451.html]

Presenter
Presentation Notes
User vs system and maintenance requests

https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.admin.wlm.doc/doc/c0053465.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.admin.wlm.doc/doc/c0053451.html

42

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Workload Management, cont.
 Example H-Store VoltDB

 Cluster of single-threaded
storage and execution engines

 No disk-based logging or locking

Query Parallelization

[Robert Kallman et al.: H-store: a high-
performance, distributed main memory trans-

action processing system. PVLDB 1(2) 2008]

[Michael Stonebraker, Samuel Madden, Daniel J.
Abadi, Stavros Harizopoulos, Nabil Hachem, Pat

Helland: The End of an Architectural Era (It's Time
for a Complete Rewrite). VLDB 2007]

43

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Workload Management – Prioritization
 SAP HANA

 Main column store
and delta CSB tree

 Thread pool for network clients
 Scheduler for heavy-weight requests

(single- or multi-task intra-query parallelism)

 UDFs via
 OpenMP (since 1997,

Open Multi-Processing)
 DOALL parallel loops

(independent iterations)
 SAP HANA: custom OpenMP

backend for intercepting tasks
 DB job scheduler (w/ priorities)

Query Parallelization

#pragma omp parallel for reduction(+: nnz)
for (int i = 0; i < N; i++) {
int threadID = omp_get_thread_num();
R[i] = foo(A[i], threadID);
nnz += (R[i]!=0) ? 1 : 0;

}

[Florian Wolf, Iraklis Psaroudakis, Norman May,
Anastasia Ailamaki, Kai-Uwe Sattler: Extending

database task schedulers for multi-threaded
application code. SSDBM 2015]

“[…] the default configuration of SAP
HANA favors analytical throughput

over transactional throughput”

[Iraklis Psaroudakis, Florian Wolf, Norman May, Thomas
Neumann, Alexander Böhm, Anastasia Ailamaki, Kai-Uwe

Sattler: Scaling Up Mixed Workloads: A Battle of Data
Freshness, Flexibility, and Scheduling. TPCTC 2014]

44

706.543 Architecture of Database Systems – 07 Vectorization, Compilation, and Parallelization
Matthias Boehm, Graz University of Technology, WS 2021/22

Summary and Q&A
 Vectorization and SIMD
 Query Compilation
 Query Parallelization

 Next Lectures (Part B)
 08 Query Optimization (rewrites, costs, join ordering) [Nov 24]
 09 Adaptive Query Processing [Dec 01]

 Next Lectures (Part C)
 10 Cloud Database Systems [Jan 12]
 11 Modern Concurrency Control [Jan 19]
 12 Modern Storage and HW Accelerators [Jan 26]

	Architecture of DB Systems�07 Compilation and Parallelization
	Announcements/Org
	Recap: Overview Query Processing
	Agenda
	Vectorization and SIMD
	Terminology
	Background Vector Processors
	SIMD Data Processing
	SIMD Data Processing, cont.
	Vectorized Execution (vector-at-a-time)
	Query Compilation
	Query Compilation Motivation
	Holistic Query Evaluation
	Holistic Query Evaluation, cont.
	Holistic Query Evaluation, cont.
	Holistic Query Evaluation, cont.
	Holistic Query Evaluation, cont.
	Holistic Query Evaluation, cont.
	Data-centric Query Evaluation
	Data-centric Query Evaluation, cont.
	Data-centric Query Evaluation, cont.
	Data-centric Query Evaluation, cont.
	Data-centric Query Evaluation, cont.
	Other Systems w/ Query Compilation
	Specialized Code Generation
	Compilation w/ SIMD, Prefetch, Decompress
	Compilation vs Vectorized Execution
	Excursus: SystemDS Codegen
	Excursus: SystemDS Codegen – Ex. L2SVM
	Excursus: SystemDS Codegen – Ex. L2SVM
	Excursus: SystemDS Codegen – Ex. MLogReg
	Query Parallelization
	Overview Query Parallelism
	Recap: Iterator Model
	Intra- and Inter-Operator Parallelism
	Intra- and Inter-Operator Parallelism, cont.
	Excursus: MapReduce – Execution Model
	Fine-grained Parallelism
	Fine-grained Parallelism, cont.
	Excursus: DAPHNE Vectorized/Tiled Execution
	Workload Management
	Workload Management, cont.
	Workload Management – Prioritization
	Summary and Q&A

