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Announcements/Org
 #1 Video Recording 

 Link in TUbe & TeachCenter (lectures will be public)
 Optional attendance (independent of COVID)
 Virtual lectures (recorded) until end of the year

https://tugraz.webex.com/meet/m.boehm

https://tugraz.webex.com/meet/m.boehm
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Recap: Overview Query Processing
Overview Query Processing

Parsing

Semantic Analysis

Query Rewrites

Plan Optimization

Name Count
James Rodríguez 6
Thomas Müller 5

Robin van Persie 4
Neymar 4

Plan Execution

Plan CachingQEP

Compile Time Runtime

AST/IR

IR

IR

SELECT * FROM TopScorer
WHERE Count>=4
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Agenda
 Query Rewriting and Unnesting
 Cardinality and Cost Estimation
 Join Enumeration / Ordering
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Query Rewriting and Unnesting
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Query Rewrites
 Query Rewriting

 Rewrite query into semantically equivalent form that may be 
processed more efficiently or give the optimizer more freedom

 #1 Same query can be expressed differently, avoid hand-tuning
 #2 Complex queries may have redundancy

 A Simple Example
 Catalog meta data:

custkey is unique

 20+ years of experience 
on query rewriting 

Query Rewriting and Unnesting

SELECT DISTINCT custkey, name   
FROM TPCH.Customer

SELECT custkey, name   
FROM TPCH.Customer

rewrite

[Hamid Pirahesh, T. Y. Cliff Leung, Waqar Hasan: 
A Rule Engine for Query Transformation in 

Starburst and IBM DB2 C/S DBMS. ICDE 1997]
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Standardization and Simplification
 Normal Forms of Boolean Expressions

 Conjunctive normal form (P11 OR ... OR P1n) AND ... AND (Pm1 OR ... OR Pmp)
 Disjunctive normal form (P11 AND ... AND P1q) OR ... OR (Pr1 AND ... AND Prs)

 Transformation Rules for Boolean Expressions

Query Rewriting and Unnesting

Rule Name Examples
Commutativity rules A OR B ⇔ B OR A                             

A AND B ⇔ B AND A
Associativity rules (A OR B) OR C ⇔ A OR (B OR C)

(A AND B) AND C ⇔ A AND (B AND C)
Distributivity rules A OR (B AND C) ⇔ (A OR B) AND (A OR C)

A AND (B OR C) ⇔ (A AND B) OR (A AND C)
De Morgan’s rules NOT (A AND B) ⇔ NOT (A) OR NOT (B)

NOT (A OR B) ⇔ NOT (A) AND NOT (B)
Double-negation rules NOT(NOT(A)) ⇔ A
Idempotence rules A OR A ⇔ A A AND A ⇔ A

A OR NOT(A) ⇔ TRUE A AND NOT (A) ⇔ FALSE
A AND (A OR B) ⇔ A   A OR (A AND B) ⇔ A
A OR FALSE ⇔ A A OR TRUE ⇔ TRUE
A AND FALSE ⇔ FALSE
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Standardization and Simplification, cont.
 Elimination of Common Subexpressions

 (A1=a11 OR A1=a12) AND (A1=a12 OR A1=a11)  A1=a11 OR A1=a12

 Propagation of Constants
 A ≥ B AND B = 7  A ≥ 7 AND B = 7

 Detection of Contradictions
 A ≥ B AND B > C AND C ≥ A  A > A → FALSE

 Use of Constraints  
 A is primary key/unique: πA → no duplicate elimination necessary
 Rule MAR_STATUS = ‘married’  TAX_CLASS ≥ 3:
(MAR_STATUS = ‘married’ AND TAX_CLASS = 1)  FALSE

 Elimination of Redundancy (set semantics)
 R⋈R  R,  R∪R  R,  R−R  Ø
 R⋈(σpR)  σpR,  R∪(σpR)  R,  R−(σpR)  σ⌐pR
 (σp1R)⋈(σp2R)  σp1ᴧp2R,  (σp1R)∪(σp2R)  σp1vp2R

Query Rewriting and Unnesting

R⋈a=b(σb>0(S)) 
(σa>0(R))⋈a=b(σb>0(S))

Presenter
Presentation Notes
Additional redundancy example: (σp1R)−(σp2R)  σp1ᴧ⌐p2R




9

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22 

Query Unnesting
 Case 1: Type-A Nesting

 Inner block is not correlated and computes an aggregate
 Solution: Compute the aggregate once and insert into outer query

 Case 2: Type-N Nesting
 Inner block is not correlated and returns a set of tuples
 Solution: Transform into a symmetric form (via join)

Query Rewriting and Unnesting

SELECT OrderNo FROM Order
WHERE ProdNo = 
(SELECT MAX(ProdNo) 

FROM Product WHERE Price<100)

$X = SELECT MAX(ProdNo) 
FROM Product WHERE Price<100

SELECT OrderNo FROM Order
WHERE ProdNo = $X

SELECT OrderNo
FROM Order O, Product P
WHERE O.ProdNo = P.ProdNo
AND P.Price < 100

SELECT OrderNo FROM Order
WHERE ProdNo IN 
(SELECT ProdNo

FROM Product WHERE Price<100)

[Won Kim: On Optimizing an 
SQL-like Nested Query. ACM 
Trans. Database Syst. 1982]
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Query Unnesting, cont.
 Case 3: Type-J Nesting

 Un-nesting of correlated sub-queries w/o aggregation

 Case 4: Type-JA Nesting
 Un-nesting of correlated sub-queries w/ aggregation

 Further un-nesting via case 3 and 2

Query Rewriting and Unnesting

SELECT OrderNo FROM Order O
WHERE ProdNo IN
(SELECT ProdNo FROM
(SELECT ProjNo, MAX(ProdNo)
FROM Project 
WHERE Budget > 100.000
GROUP BY ProjNo) P

WHERE P.ProjNo = O.OrderNo)

SELECT OrderNo FROM Order O
WHERE ProdNo IN
(SELECT MAX(ProdNo) 
FROM Project P
WHERE P.ProjNo = O.OrderNo
AND P.Budget > 100,000)

SELECT OrderNo
FROM Order O, Project P
WHERE O.ProdNo = P.ProdNo
AND P.ProjNo = O.OrderNo
AND P.Budget > 100,000

SELECT OrderNo FROM Order O
WHERE ProdNo IN
(SELECT ProdNo FROM Project P
WHERE P.ProjNo = O.OrderNo
AND P.Budget > 100,000)

[Won Kim: On Optimizing an 
SQL-like Nested Query. ACM 
Trans. Database Syst. 1982]

Presenter
Presentation Notes
Note JA: max ProdNo only #distinct ProjNo solutions 
Note Unnesting Arbitrary Queries Neumann (via cross-product, #distinct)
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Unnesting Arbitrary Queries
 Overview

 General transformation for elimination of dependent joins
 Guaranteed lower or equal cost / reuse of subsequent rewrites

 #1 Simple Unnesting
 Move dependent predicates up as far as possible
 Transforms dependent into regular join if adjacent

 #2 General Unnesting
 Translate dependent join into 

regular and deduplicated dependent join
 Push down dependent join, 

turn dependent join over base relation into regular join
 Specific optimizations (e.g., sideways information passing), other rewrites 

Query Rewriting and Unnesting

[Thomas Neumann, Alfons 
Kemper: Unnesting Arbitrary 

Queries. BTW 2015]

Presenter
Presentation Notes
Note dependent join: execute right hand side once for every left tuple 
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Selections and Projections
 Example Transformation Rules

 Restructuring Algorithm
 #1 Split n-ary joins into binary joins 
 #2 Split multi-term selections 
 #3 Push-down selections as far as possible
 #4 Group adjacent selections again
 #5 Push-down projections as far as possible

Query Rewriting and Unnesting

1) Grouping of 
Selections

4) Pushdown of 
Projections

R

σp=q

σx>y

R

σx>yᴧp=q

R

πA,B

πA

R

πA

Input: Standardized, 
simplified, and un-nested 

query graph

Output: Restructured 
query graph

R

⋈A=B

σp(R)

S

⋈A=B

Sσp(R)

R R

⋈A=B

πC

S

⋈A=B

πA,C

R

πB

S

πC

2) Grouping of 
Projections

3) Pushdown of 
Selections
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Example Query Restructuring 
Query Rewriting and Unnesting

SELECT Name, count 
FROM TopScorer
WHERE count>=4 
AND Pos=‘FW’ 

CREATE VIEW TopScorer AS
SELECT P.Name, P.Pos, count(*) 

FROM Players P, Goals G 
WHERE P.Pid=G.Pid

AND G.GOwn=FALSE
GROUP BY P.Name, P.Pos
ORDER BY count(*) DESC

⋈Pid

πName

γName,count(*)

σcount>=4

τcount DESC

πPid,Name πPid

σPos=FW σGown=F

Players Goals

πPid,Name,Pos πPid,Gown

Additional metadata: 
P.Name is unique Players

⋈Pid

σGown=F

Goals

γName,Pos,count(*)

τcount DESC

σcount>=4ᴧPos=FW

πName,count
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Cardinality and Cost Estimation
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Overview Cost Models
 Overall Cost Models

 I/O costs (number of read pages, tuples)
 Computation costs (CPU costs, tuples)
 Others: Memory, Energy
 Aggregate operator costs (specific vs general) w/ awareness of parallelism

 Cost Model Inputs
 Base relations: number of pages, number of tuples, avg tuple length
 Intermediates: number of tuples  Cardinality estimation

 Common Assumptions
 No Skew: uniform value distributions of attributes
 Independence: no correlation among attributes
 underestimation  poor plans

Cardinality and Cost Estimation

Cars

σModel= ‘Golf‘

σMake=‘VW‘

10,000

1,000

10

10,000

5,000

590

(estimated) (real)

𝐶𝐶 = 𝐶𝐶𝐼𝐼/𝑂𝑂 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶 = max(𝐶𝐶𝐼𝐼/𝑂𝑂,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)

[Guido Moerkotte, Building Query 
Compilers (Under Construction), 2020, 

http://pi3.informatik.uni-mannheim.de/
~moer/querycompiler.pdf]

Presenter
Presentation Notes
Note: nested-loop joins in bushy trees require materialization or multiplication of subtree-costs for inner

http://pi3.informatik.uni-mannheim.de/%7Emoer/querycompiler.pdf
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Cardinality and Selectivity
 Cardinality |𝑅𝑅|

 Size of intermediates in number of tuples (sometimes distinct items)
 Examples: |𝜎𝜎𝑝𝑝𝑅𝑅|, |𝑅𝑅⋈𝑆𝑆|

 Selectivity 𝑠𝑠(𝑝𝑝)
 Fraction of tuples that pass operator, bounded by [0,1]
 “Highly-selective” operator  low selectivity 𝑠𝑠(𝑝𝑝)
 Example 

Selection

 Example
Join

Cardinality and Cost Estimation

𝑠𝑠(𝑝𝑝) =
|𝜎𝜎𝑝𝑝𝑅𝑅|

|𝑅𝑅|

𝑠𝑠 𝑝𝑝 =
𝑅𝑅 ⋈𝑝𝑝 𝑆𝑆
𝑅𝑅 × 𝑆𝑆

=
𝑅𝑅 ⋈𝑝𝑝 𝑆𝑆
𝑅𝑅| ⋅ |𝑆𝑆

𝜎𝜎𝑝𝑝𝑅𝑅 = 𝑠𝑠 𝑝𝑝 ⋅ |𝑅𝑅|

𝑅𝑅 ⋈𝑝𝑝 𝑆𝑆 = 𝑠𝑠 𝑝𝑝 ⋅ 𝑅𝑅 ⋅ |𝑆𝑆|

[Guido Moerkotte, Building 
Query Compilers, 2020]
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Cardinality Propagation
 Operator-level Propagation  

 Selection: 𝜎𝜎𝑝𝑝𝑅𝑅 = 𝑠𝑠 𝑝𝑝 ⋅ |𝑅𝑅|
 Join: 𝑅𝑅 ⋈𝑝𝑝 𝑆𝑆 = 𝑠𝑠 𝑝𝑝 ⋅ 𝑅𝑅 ⋅ |𝑆𝑆|
 Sorting: 𝜏𝜏𝐴𝐴 𝑅𝑅 = |𝑅𝑅|
 Group-by: 𝛾𝛾𝐺𝐺;𝑓𝑓 𝑅𝑅 = ∏𝑔𝑔∈𝐺𝐺 𝑑𝑑𝑔𝑔(𝑅𝑅)
 Cross product: 𝑅𝑅 × 𝑆𝑆 = 𝑅𝑅 ⋅ |𝑆𝑆|
 Projection: 𝜋𝜋 𝑅𝑅 = |𝑅𝑅|
 Union All: 𝑅𝑅 ∪ 𝑆𝑆 = 𝑅𝑅 + |𝑆𝑆|

 Error Propagation
 Cardinality estimation errors propagate 

exponentially through joins (max error)

 Q-Error
 Multiplicative error, produced plans 

at most q4 worse than optimum 

Cardinality and Cost Estimation

[Guido Moerkotte, Building 
Query Compilers, 2020]

[Yannis E. Ioannidis, Stavros 
Christodoulakis: On the 

Propagation of Errors in the Size 
of Join Results. SIGMOD 1991]

[Guido Moerkotte, Thomas Neumann, 
Gabriele Steidl: Preventing Bad Plans by 

Bounding the Impact of Cardinality 
Estimation Errors. PVLDB 2(1) 2009]

Recursive 
propagation over 

query tree

Presenter
Presentation Notes
Note: q^2 estimation error (e.g., negative for selected, positive for optimal) -> q^4
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Cardinality Propagation
 Equality Predicates

 Based on histograms and #distinct item estimators, otherwise default 1/10

 Constant predicate: 𝑠𝑠 𝐴𝐴 = 𝑐𝑐 = 1
𝑑𝑑𝐴𝐴

 Binary predicate: 𝑠𝑠 𝐴𝐴 = 𝐵𝐵 = 1
max(𝑑𝑑𝐴𝐴,𝑑𝑑𝐵𝐵)

 Range Predicates

 One-sided: 𝑠𝑠 𝐴𝐴 > 𝑐𝑐 =
max
𝐴𝐴

− 𝑐𝑐

max𝐴𝐴 −min𝐴𝐴

 Two-sided: 𝑠𝑠 𝑐𝑐1 ≤ 𝐴𝐴 ≤ 𝑐𝑐_2 = 𝑐𝑐2−𝑐𝑐1
max𝐴𝐴 −min𝐴𝐴

 Composite Predicates ( sparsity in ML systems)
 Negation (NOT): 𝑠𝑠 ¬𝑝𝑝 = 1 − 𝑠𝑠(𝑝𝑝)
 Conjunction (AND): 𝑠𝑠 𝑝𝑝1 ∧ 𝑝𝑝2 = 𝑠𝑠 𝑝𝑝1 ⋅ 𝑠𝑠 𝑝𝑝2
 Disjunction (OR): 𝑠𝑠 𝑝𝑝1 ∨ 𝑝𝑝2 = 𝑠𝑠 𝑝𝑝1 + 𝑠𝑠 𝑝𝑝2 − 𝑠𝑠 𝑝𝑝1 ⋅ 𝑠𝑠(𝑝𝑝2)

Cardinality and Cost Estimation

//assumes uniformity

//assumes matching 
domains

//assumes independence

[Patricia G. Selinger et al.: Access Path 
Selection in a Relational Database 

Management System. SIGMOD 1979]
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Cardinality Estimation
 Overview

 Min, Max, #distinct items d crucial for cardinality estimation
 Exact frequency distribution 𝑣𝑣1, 𝑓𝑓1 , 𝑣𝑣2, 𝑓𝑓2 , … , 𝑣𝑣𝑑𝑑, 𝑓𝑓𝑑𝑑 too detailed

 Equi-width Histogram
 Divide min-max range into B buckets
 Store sum frequency, #distinct

 Equi-height Histogram
 Divide range into variable buckets

with constant frequency
 E.g., via quantiles + duplicate handling

 Other Histograms
 Homogeneous/heterogeneous 

histograms w/ bounded error

Cardinality and Cost Estimation

[Guido Moerkotte, Building 
Query Compilers, 2020]

0

71
(4)

143
(5)

125
(3) 9 (2)

5 10 15 20

0

87
(5)

6 9 12 20

87
(3)

87
(3)

87
(3)

[Carl-Christian Kanne, Guido Moerkotte: 
Histograms reloaded: the merits of 

bucket diversity. SIGMOD 2010]
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Number of Distinct Items
 Problem 

 Estimate # distinct items in a dataset / data stream w/ limited memory
 Support for set operations (union, intersect, difference)

 K-Minimum Values (KMV)
 Hash values 𝑑𝑑𝑖𝑖 to ℎ𝑖𝑖 ∈ [0,𝑀𝑀]
 Domain 𝑀𝑀 = 𝑂𝑂(𝐷𝐷2) to avoid 

collisions  𝐎𝐎(𝒌𝒌 𝒍𝒍𝒍𝒍𝒍𝒍 𝑫𝑫) space
 Store k minimum hash values

(e.g., via priority queue) in
normalized form ℎ𝑖𝑖 ∈ [0,1]

 Basic estimator: 
 Unbiased estimator:

Cardinality and Cost Estimation

0 1

Duplicates yield 
same hash!

U(k=4)=0.24

�𝐷𝐷𝑘𝑘𝐵𝐵𝐵𝐵 = 𝑘𝑘/𝑈𝑈(𝑘𝑘)

�𝐷𝐷𝑘𝑘𝑈𝑈𝑈𝑈 = (𝑘𝑘 − 1)/𝑈𝑈(𝑘𝑘)

Example: 
16.67 vs 12.5

[Kevin S. Beyer, Peter J. Haas, Berthold Reinwald, Yannis
Sismanis, Rainer Gemulla: On synopses for distinct-value 
estimation under multiset operations. SIGMOD 2007]

Presenter
Presentation Notes
Note: birthday problem argument -> collisions avoided if M much larger than D, so D^2
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Number of Distinct Items, cont.
 KMV Set Operations

 Union and intersection directly
on partition synopses

 Difference via Augmented KMV 
(AKMV) that include counters of 
multiplicities of k-minimum values

 HyperLogLog
 Hash values and maintain maximum 

# of leading zeros p  �𝐷𝐷 = 2𝑝𝑝

 Stochastic averaging over M streams
(p maintained in M registers)

 HyperLogLog++
 Updatable HyperLogLog, with 

sampling for multi-column estimates

Cardinality and Cost Estimation

0 1
𝐷𝐷 = 𝐴𝐴 ∪ 𝐵𝐵

𝐾𝐾𝐾𝐾𝐾𝐾(𝐷𝐷∪) ≡ 𝐾𝐾𝐾𝐾𝐾𝐾(𝐴𝐴) ⊕𝐾𝐾𝐾𝐾𝐾𝐾(𝐵𝐵)

[Stefan Heule, Marc Nunkesser, Alexander 
Hall: HyperLogLog in practice: algorithmic 

engineering of a state of the art cardinality 
estimation algorithm. EDBT 2013]

[P. Flajolet, Éric Fusy, O. Gandouet, 
and F. Meunier: Hyperloglog: The 

analysis of a near-optimal cardinality 
estimation algorithm. AOFA 2007]

[Michael J. Freitag, Thomas Neumann: 
Every Row Counts: Combining Sketches 

and Sampling for Accurate Group-By 
Result Estimates. CIDR 2019]

Presenter
Presentation Notes
Note: HyperLogLog extension of LogLog algorithm (2003) and Flajolet–Martin algorithm (1985)
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Sample-based Cardinality Estimation
 Overview and Problems

 Sample subset S with |𝑆𝑆| ≪ 𝑁𝑁 of tuples and estimate #distinct items d
 Naïve estimators: 𝑑𝑑𝑆𝑆 underestimate, or 𝑑𝑑𝑆𝑆 ⋅ 𝑁𝑁/|𝑆𝑆| overestimate

 #1 Sample-based Estimators
 “Generalized jackknife” 

estimator

 Guaranteed error estimator (GEE)
 Basic and adaptive estimators

Cardinality and Cost Estimation

𝑑̂𝑑ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 =
𝑑̂𝑑𝑢𝑢𝑢𝑢𝑢, 0 < �𝛾𝛾2 𝑑̂𝑑𝑢𝑢𝑢𝑢1 < 𝛼𝛼1
𝑑̂𝑑𝑢𝑢𝑢𝑢𝑢𝑢𝑢, 𝛼𝛼1 ≤ �𝛾𝛾2 𝑑̂𝑑𝑢𝑢𝑢𝑢𝑢 < 𝛼𝛼2
𝑑̂𝑑𝑆𝑆𝑆𝑆, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

squared coefficient 
of variation 

simple estimator

𝑑̂𝑑 = 𝑑𝑑𝑆𝑆 + 𝐾𝐾 ⋅ 𝑓𝑓1/𝑁𝑁

[P. J. Haas and L. Stokes: Estimating the 
Number of Classes in a Finite Population, 
J. Amer. Statist. Assoc., 93(444), 1998]

𝑑̂𝑑 =
𝑁𝑁
|𝑆𝑆|

𝑓𝑓1 + �
𝑖𝑖=2

|𝑆𝑆|
𝑓𝑓𝑖𝑖[Moses Charikar, Surajit Chaudhuri, Rajeev 

Motwani, Vivek R. Narasayya: Towards Estimation 
Error Guarantees for Distinct Values. PODS 2000]

Presenter
Presentation Notes
Note: coverage computation based on number of singletons (tuples appearing once in the sample)
Estimator implementations: https://github.com/apache/systemds/tree/master/src/main/java/org/apache/sysds/runtime/compress/estim/sample
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Sample-based Cardinality Estimation, cont.
 Sample Views

 Random sampling + 
materialized views w/ 
statistical guarantees

 Query feedback (actual card)

 Index-based Join Sampling
 Joins on samples might result in ∅
 Use existing indexes to explore 

intermediate results bottom-up

Cardinality and Cost Estimation

[Viktor Leis, Bernhard Radke, Andrey 
Gubichev, Alfons Kemper, Thomas Neumann: 
Cardinality Estimation Done Right: Index-
Based Join Sampling. CIDR 2017]

[Per-Åke Larson, Wolfgang Lehner, Jingren Zhou, 
Peter Zabback: Cardinality estimation using sample 
views with quality assurance. SIGMOD 2007]
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Excursus: Robust Query Optimization
 Overview Picasso Project

 Plan diagram: plan choice over selectivity ranges
 Cost diagram: estimated plan execution costs over ranges

 Towards Robust 
Optimization

Cardinality and Cost Estimation

[Naveen Reddy, Jayant R. 
Haritsa: Analyzing Plan 
Diagrams of Database Query 
Optimizers. VLDB 2005]

Duplicate Islands Plan Switch Points Venetian Blinds Footprint Pattern

Presenter
Presentation Notes
Plan switch point: join order changed
Venetian blinds: alternation between left and right deep trees
Footprint: hash vs sort-merge join at top join
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Excursus: Robust Query Optimization, cont.
Cardinality and Cost Estimation

[Harish Doraiswamy, Pooja N. Darera, Jayant R. Haritsa: 
On the Production of Anorexic Plan Diagrams. VLDB 2007]

09 Adaptive Query Processing
(learned cardinalities, re-optimization)

[Jayant R. Haritsa: Robust Query Processing: 
Mission Possible. PVLDB 13(12) 2020]

[Harish Doraiswamy, Pooja N. Darera, Jayant R. Haritsa: 
Identifying robust plans through plan diagram reduction. PVLDB 1(1) 2008]

[M. Abhirama, Sourjya Bhaumik, Atreyee Dey, Harsh Shrimal, Jayant R. Haritsa: 
On the Stability of Plan Costs and the Costs of Plan Stability. PVLDB 3(1)  2010]

[Anshuman Dutt, Jayant R. Haritsa:
Plan bouquets: query processing without selectivity estimation. SIGMOD 2014]

[Goetz Graefe, Wey Guy, Harumi A. Kuno, Glenn N. Paulley:
Robust Query Processing (Dagstuhl Seminar 12321). Dagstuhl Reports 2(8) 2012]
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Join Enumeration / Ordering
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Plan Optimization Overview
 Plan Generation Overview

 Selection of physical access path and plan operators
 Selection of execution order of plan operators (joins, group-by)
 Input: logical query plan  Output: optimal physical query plan
 Costs of query optimization should not exceed yielded improvements 

 Interesting Properties
 Interesting orders (sorted vs unsorted), 

partitioning (e.g., join column), pipelining
 Avoid unnecessary sorting operations

 Simple Cost Functions
 Join-specific cost functions (Cnlj, Chj, Csmj)
 Cardinalities 

Cout

Join Enumeration / Ordering

[Guido Moerkotte, Building 
Query Compilers, 2020]

[Ihab F. Ilyas, Jun Rao, Guy M. 
Lohman, Dengfeng Gao, Eileen Tien 
Lin: Estimating Compilation Time of 

a Query Optimizer. SIGMOD 2003]
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Query and Plan Types
 Query Types

 Nodes: Tables
 Edges: Join conditions
 Determine hardness 

of query optimization (w/o cross products)

 Join Tree Types / Plan Types
 Data flow graph of tables and joins (logical/physical query trees)
 Edges: data dependencies (fixed execution order: bottom-up) 

Join Enumeration / Ordering

Chains

Stars

Cliques

Left-Deep Tree Right-Deep Tree Zig-Zag Tree Bushy Tree

[Guido Moerkotte, Building 
Query Compilers, 2020]
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Join Ordering Problem
 Join Ordering

 Given a join query graph, find the optimal join ordering
 In general, NP-hard; but polynomial algorithms exist for special cases

 Search Space
 Dependent on query and plan types
 Note: if we allow cross products similar to cliques (fully connected) 

Join Enumeration / Ordering

Chain (no CP) Star (no CP)

left-
deep

zig-zag bushy left-
deep

zig-zag/
bushy

n 2n-1 22n-3 2n-1C(n-1) 2(n-1)! 2n-1(n-1)!

5 16 128 224 48 384

10 512 ~131K ~2.4M ~726K ~186M

Clique / CP (cross product)

left-
deep

zig-zag bushy

n! 2n-2n! n! C(n-1)

120 960 1,680

~3.6M ~929M ~17.6G

C(n) … Catalan Numbers

[Guido Moerkotte, Building 
Query Compilers, 2020]



30

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22 

Join Order Search Strategies
 Tradeoff: Optimal (or good) plan vs compilation time

 #1 Naïve Full Enumeration
 Infeasible for reasonably large queries (long tail up to 1000s of joins)

 #2 Exact Dynamic Programming / Memoization
 Guarantees optimal plan, often too expensive (beyond 20 relations)
 Bottom-up vs top-down approaches

 #3 Greedy / Heuristic Algorithms
 #4 Approximate Algorithms

 E.g., Genetic algorithms, simulated 
annealing, MIL programming

 Example PostgreSQL
 Exact optimization (DPSize) if < 12 

relations (geqo_threshold)
 Genetic algorithm for larger queries
 Join methods: NLJ, SMJ, HJ

Join Enumeration / Ordering

All
(unknown)

Actual

Explored

DP Enum

Heuristics

[Nicolas Bruno, César A. Galindo-Legaria, 
Milind Joshi: Polynomial heuristics for 

query optimization. ICDE 2010]
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Greedy Join Ordering
 Example

 Part ⋈ Lineorder ⋈ Supplier ⋈ σ(Customer) ⋈ σ(Date), left-deep plans

Join Enumeration / Ordering

Star Schema 
Benchmark

# Plan Costs

1 Lineorder ⋈ Part 30M

Lineorder ⋈ Supplier 20M

Lineorder ⋈ σ(Customer) 90K

Lineorder ⋈ σ(Date) 40K

Part ⋈ Customer N/A

… …

2 (Lineorder ⋈ σ(Date)) ⋈ Part 150K 

(Lineorder ⋈ σ(Date)) ⋈ Supplier 100K

(Lineorder ⋈ σ(Date)) ⋈ σ(Customer) 75K

# Plan Costs

3 ((Lineorder ⋈ σ(Date)) ⋈
σ(Customer)) ⋈ Part

120M

((Lineorder ⋈ σ(Date)) ⋈
σ(Customer)) ⋈ Supplier

105M

4 (((Lineorder ⋈ σ(Date)) ⋈
σ(Customer)) ⋈ Supplier) ⋈ Part

135M

Note: Simple O(n2) algorithm 
for left-deep trees; 

O(n3) algorithms for bushy trees 
existing (e.g., GOO)

Presenter
Presentation Notes
GOO .. Greedy operator ordering



32

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22 

Greedy Join Ordering, cont.
 Basic Algorithms

 GreedyJO-1: sort by relation weights (e.g., card)
 GreedyJO-2: greedy selection of next best relation
 GreedyJO-3: Greedy-JO-2 w/ start from each relation

 GOO 
Algorithm

Join Enumeration / Ordering

Previous example as 
a hybrid w/ O(n2)

[Guido Moerkotte, Building 
Query Compilers, 2020]

// Greedy Operator Ordering

[Leonidas Fegaras: A New 
Heuristic for Optimizing 

Large Queries. DEXA 1998]
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Dynamic Programming Join Ordering
 Exact Enumeration via Dynamic Programming

 #1: Optimal substructure (Bellman’s Principle of Optimality)
 #2: Overlapping subproblems allow for memorization

 Bottom-Up (Dynamic Programming)
 Split in independent sub-problems (optimal plan per set of quantifiers 

and interesting properties), solve sub-problems, combine solutions
 Algorithms: DPsize, DPsub, DPcpp

 Top-Down (Memoization)
 Recursive generation of join trees 

w/ memorization and pruning
 Algorithms: Cascades, MinCutLazy, 

MinCutAGat, MinCutBranch

Join Enumeration / Ordering

[Goetz Graefe: The Cascades 
Framework for Query Optimization. 

IEEE Data Eng. Bull. 18(3) 1995]

[Pit Fender: Algorithms for Efficient Top-
Down Join Enumeration. PhD Thesis, 

University of Mannheim 2014]

[Guido Moerkotte, Thomas Neumann: 
Analysis of Two Existing and One New 

Dynamic Programming Algorithm for the 
Generation of Optimal Bushy Join Trees 

without Cross Products. VLDB 2006]
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Dynamic Programming Join Ordering, cont.
 DPSize Algorithm

 Pioneered by Pat Selinger et al.
 Implemented in IBM DB2, Postgres, etc

Join Enumeration / Ordering

[Patricia G. Selinger et al.: Access Path 
Selection in a Relational Database 

Management System. SIGMOD 1979]

[Wook-Shin Han, Wooseong
Kwak, Jinsoo Lee, Guy M. Lohman, 

Volker Markl: Parallelizing query 
optimization. PVLDB 1(1) 2008]

disjoint

connected
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Dynamic Programming Join Ordering, cont.
 DPSize Example

 Simplified: no interesting properties 

Join Enumeration / Ordering

Q1 Plan

{C} Tbl, IX

{D} Tbl, IX

{L} …

{P} …

{S} …

Q2 Plan

{C,L} L⋈C, C⋈L

{D,L} L⋈D, D⋈L

{L,P} L⋈P, P⋈L

{L,S} L⋈S, S⋈L

{C,D} N/A

… …

Q3 Plan

{C,D,L} (L⋈C)⋈D, D⋈(L⋈C), 
(L⋈D)⋈C, C⋈(L⋈D)

{C,L,P} (L⋈C)⋈P, P⋈(L⋈C), 
(P⋈L)⋈C, C⋈(P⋈L)

{C,L,S} …

{D,L,P} …

{D,L,S} …

{L,P,S} …

Q4 Plan

{C,D,L,P} ((L⋈C)⋈D)⋈P,
P⋈((L⋈C)⋈D)

{C,D,L,S} …

{C,L,P,S} …

{D,L,P,S} …

Q1+Q1
Q1+Q2, Q2+Q1

Q1+Q3, Q2+Q2, Q3+Q1

Q5 Plan

{C,D,L,P,S} …

Q1+Q4, Q2+Q3, 
Q3+Q2, Q4+Q1

Presenter
Presentation Notes
NOTE: The plan generation algorithm also includes the selection of physical operators (NLJ, SMJ, HJ)
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Graceful Degradation
 Problem Bottom-Up

 Until end of optimization no valid full QEP created (no anytime algorithm)
 Fallback: resort to heuristic if ran out of memory / time budget

 #1 Query Simplification
 Simplify query with heuristics until 

solvable via dynamic programming  
 Choose plans to avoid, not join

 #2 Search Space Linearization
 Small queries: count connected 

subgraphs, optimized exactly
 Medium queries (<100): restrict 

algorithm to consider connected sub-chains of linear relation ordering
 Large queries: greedy algorithm, then Medium on sub-trees of size K

Join Enumeration / Ordering

[Thomas Neumann: Query 
simplification: graceful degradation for 

join-order optimization. SIGMOD 2009]

O(n3)

DP

[Thomas Neumann, Bernhard Radke: 
Adaptive Optimization of Very Large 

Join Queries. SIGMOD 2018]
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Join Order Benchmark (JOB)
 Data: Internet Movie Data Bases (IMDB)
 Workload: 33 query templates, 2-6 variants / 3-16 joins per query

Join Enumeration / Ordering

[Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper, Thomas Neumann: 
How Good Are Query Optimizers, Really? PVLDB 9(3) 2015]

underestimate
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Summary and Q&A
 Query Rewriting and Unnesting
 Cardinality and Cost Estimation
 Join Enumeration / Ordering

 Next Lectures (Part B)
 09 Adaptive Query Processing [Dec 01]

 Holidays (time for working on the prog. projects)

 Next Lectures (Part C)
 10 Cloud Database Systems [Jan 12]

 11 Modern Concurrency Control [Jan 19]

 12 Modern Storage and HW Accelerators [Jan 26]
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