
1
SCIENCE
PASSION

TECHNOLOGY

Architecture of DB Systems
08 Query Optimization
Matthias Boehm

Graz University of Technology, Austria

Institute of Interactive Systems and Data Science
Computer Science and Biomedical Engineering

BMK endowed chair for Data Management

Last update: Nov 19, 2021

2

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Announcements/Org
 #1 Video Recording

 Link in TUbe & TeachCenter (lectures will be public)
 Optional attendance (independent of COVID)
 Virtual lectures (recorded) until end of the year

https://tugraz.webex.com/meet/m.boehm

https://tugraz.webex.com/meet/m.boehm

3

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Recap: Overview Query Processing
Overview Query Processing

Parsing

Semantic Analysis

Query Rewrites

Plan Optimization

Name Count
James Rodríguez 6
Thomas Müller 5

Robin van Persie 4
Neymar 4

Plan Execution

Plan CachingQEP

Compile Time Runtime

AST/IR

IR

IR

SELECT * FROM TopScorer
WHERE Count>=4

4

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Agenda
 Query Rewriting and Unnesting
 Cardinality and Cost Estimation
 Join Enumeration / Ordering

5

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Query Rewriting and Unnesting

6

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Query Rewrites
 Query Rewriting

 Rewrite query into semantically equivalent form that may be
processed more efficiently or give the optimizer more freedom

 #1 Same query can be expressed differently, avoid hand-tuning
 #2 Complex queries may have redundancy

 A Simple Example
 Catalog meta data:

custkey is unique

 20+ years of experience
on query rewriting

Query Rewriting and Unnesting

SELECT DISTINCT custkey, name
FROM TPCH.Customer

SELECT custkey, name
FROM TPCH.Customer

rewrite

[Hamid Pirahesh, T. Y. Cliff Leung, Waqar Hasan:
A Rule Engine for Query Transformation in

Starburst and IBM DB2 C/S DBMS. ICDE 1997]

7

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Standardization and Simplification
 Normal Forms of Boolean Expressions

 Conjunctive normal form (P11 OR ... OR P1n) AND ... AND (Pm1 OR ... OR Pmp)
 Disjunctive normal form (P11 AND ... AND P1q) OR ... OR (Pr1 AND ... AND Prs)

 Transformation Rules for Boolean Expressions

Query Rewriting and Unnesting

Rule Name Examples
Commutativity rules A OR B ⇔ B OR A

A AND B ⇔ B AND A
Associativity rules (A OR B) OR C ⇔ A OR (B OR C)

(A AND B) AND C ⇔ A AND (B AND C)
Distributivity rules A OR (B AND C) ⇔ (A OR B) AND (A OR C)

A AND (B OR C) ⇔ (A AND B) OR (A AND C)
De Morgan’s rules NOT (A AND B) ⇔ NOT (A) OR NOT (B)

NOT (A OR B) ⇔ NOT (A) AND NOT (B)
Double-negation rules NOT(NOT(A)) ⇔ A
Idempotence rules A OR A ⇔ A A AND A ⇔ A

A OR NOT(A) ⇔ TRUE A AND NOT (A) ⇔ FALSE
A AND (A OR B) ⇔ A A OR (A AND B) ⇔ A
A OR FALSE ⇔ A A OR TRUE ⇔ TRUE
A AND FALSE ⇔ FALSE

8

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Standardization and Simplification, cont.
 Elimination of Common Subexpressions

 (A1=a11 OR A1=a12) AND (A1=a12 OR A1=a11)  A1=a11 OR A1=a12

 Propagation of Constants
 A ≥ B AND B = 7  A ≥ 7 AND B = 7

 Detection of Contradictions
 A ≥ B AND B > C AND C ≥ A  A > A → FALSE

 Use of Constraints
 A is primary key/unique: πA → no duplicate elimination necessary
 Rule MAR_STATUS = ‘married’  TAX_CLASS ≥ 3:
(MAR_STATUS = ‘married’ AND TAX_CLASS = 1)  FALSE

 Elimination of Redundancy (set semantics)
 R⋈R  R, R∪R  R, R−R  Ø
 R⋈(σpR)  σpR, R∪(σpR)  R, R−(σpR)  σ⌐pR
 (σp1R)⋈(σp2R)  σp1ᴧp2R, (σp1R)∪(σp2R)  σp1vp2R

Query Rewriting and Unnesting

R⋈a=b(σb>0(S)) 
(σa>0(R))⋈a=b(σb>0(S))

Presenter
Presentation Notes
Additional redundancy example: (σp1R)−(σp2R)  σp1ᴧ⌐p2R

9

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Query Unnesting
 Case 1: Type-A Nesting

 Inner block is not correlated and computes an aggregate
 Solution: Compute the aggregate once and insert into outer query

 Case 2: Type-N Nesting
 Inner block is not correlated and returns a set of tuples
 Solution: Transform into a symmetric form (via join)

Query Rewriting and Unnesting

SELECT OrderNo FROM Order
WHERE ProdNo =
(SELECT MAX(ProdNo)

FROM Product WHERE Price<100)

$X = SELECT MAX(ProdNo)
FROM Product WHERE Price<100

SELECT OrderNo FROM Order
WHERE ProdNo = $X

SELECT OrderNo
FROM Order O, Product P
WHERE O.ProdNo = P.ProdNo
AND P.Price < 100

SELECT OrderNo FROM Order
WHERE ProdNo IN
(SELECT ProdNo

FROM Product WHERE Price<100)

[Won Kim: On Optimizing an
SQL-like Nested Query. ACM
Trans. Database Syst. 1982]

10

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Query Unnesting, cont.
 Case 3: Type-J Nesting

 Un-nesting of correlated sub-queries w/o aggregation

 Case 4: Type-JA Nesting
 Un-nesting of correlated sub-queries w/ aggregation

 Further un-nesting via case 3 and 2

Query Rewriting and Unnesting

SELECT OrderNo FROM Order O
WHERE ProdNo IN
(SELECT ProdNo FROM
(SELECT ProjNo, MAX(ProdNo)
FROM Project
WHERE Budget > 100.000
GROUP BY ProjNo) P

WHERE P.ProjNo = O.OrderNo)

SELECT OrderNo FROM Order O
WHERE ProdNo IN
(SELECT MAX(ProdNo)
FROM Project P
WHERE P.ProjNo = O.OrderNo
AND P.Budget > 100,000)

SELECT OrderNo
FROM Order O, Project P
WHERE O.ProdNo = P.ProdNo
AND P.ProjNo = O.OrderNo
AND P.Budget > 100,000

SELECT OrderNo FROM Order O
WHERE ProdNo IN
(SELECT ProdNo FROM Project P
WHERE P.ProjNo = O.OrderNo
AND P.Budget > 100,000)

[Won Kim: On Optimizing an
SQL-like Nested Query. ACM
Trans. Database Syst. 1982]

Presenter
Presentation Notes
Note JA: max ProdNo only #distinct ProjNo solutions
Note Unnesting Arbitrary Queries Neumann (via cross-product, #distinct)

11

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Unnesting Arbitrary Queries
 Overview

 General transformation for elimination of dependent joins
 Guaranteed lower or equal cost / reuse of subsequent rewrites

 #1 Simple Unnesting
 Move dependent predicates up as far as possible
 Transforms dependent into regular join if adjacent

 #2 General Unnesting
 Translate dependent join into

regular and deduplicated dependent join
 Push down dependent join,

turn dependent join over base relation into regular join
 Specific optimizations (e.g., sideways information passing), other rewrites

Query Rewriting and Unnesting

[Thomas Neumann, Alfons
Kemper: Unnesting Arbitrary

Queries. BTW 2015]

Presenter
Presentation Notes
Note dependent join: execute right hand side once for every left tuple

12

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Selections and Projections
 Example Transformation Rules

 Restructuring Algorithm
 #1 Split n-ary joins into binary joins
 #2 Split multi-term selections
 #3 Push-down selections as far as possible
 #4 Group adjacent selections again
 #5 Push-down projections as far as possible

Query Rewriting and Unnesting

1) Grouping of
Selections

4) Pushdown of
Projections

R

σp=q

σx>y

R

σx>yᴧp=q

R

πA,B

πA

R

πA

Input: Standardized,
simplified, and un-nested

query graph

Output: Restructured
query graph

R

⋈A=B

σp(R)

S

⋈A=B

Sσp(R)

R R

⋈A=B

πC

S

⋈A=B

πA,C

R

πB

S

πC

2) Grouping of
Projections

3) Pushdown of
Selections

13

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Example Query Restructuring
Query Rewriting and Unnesting

SELECT Name, count
FROM TopScorer
WHERE count>=4
AND Pos=‘FW’

CREATE VIEW TopScorer AS
SELECT P.Name, P.Pos, count(*)

FROM Players P, Goals G
WHERE P.Pid=G.Pid

AND G.GOwn=FALSE
GROUP BY P.Name, P.Pos
ORDER BY count(*) DESC

⋈Pid

πName

γName,count(*)

σcount>=4

τcount DESC

πPid,Name πPid

σPos=FW σGown=F

Players Goals

πPid,Name,Pos πPid,Gown

Additional metadata:
P.Name is unique Players

⋈Pid

σGown=F

Goals

γName,Pos,count(*)

τcount DESC

σcount>=4ᴧPos=FW

πName,count

14

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Cardinality and Cost Estimation

15

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Overview Cost Models
 Overall Cost Models

 I/O costs (number of read pages, tuples)
 Computation costs (CPU costs, tuples)
 Others: Memory, Energy
 Aggregate operator costs (specific vs general) w/ awareness of parallelism

 Cost Model Inputs
 Base relations: number of pages, number of tuples, avg tuple length
 Intermediates: number of tuples  Cardinality estimation

 Common Assumptions
 No Skew: uniform value distributions of attributes
 Independence: no correlation among attributes
 underestimation  poor plans

Cardinality and Cost Estimation

Cars

σModel= ‘Golf‘

σMake=‘VW‘

10,000

1,000

10

10,000

5,000

590

(estimated) (real)

𝐶𝐶 = 𝐶𝐶𝐼𝐼/𝑂𝑂 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶 = max(𝐶𝐶𝐼𝐼/𝑂𝑂,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)

[Guido Moerkotte, Building Query
Compilers (Under Construction), 2020,

http://pi3.informatik.uni-mannheim.de/
~moer/querycompiler.pdf]

Presenter
Presentation Notes
Note: nested-loop joins in bushy trees require materialization or multiplication of subtree-costs for inner

http://pi3.informatik.uni-mannheim.de/%7Emoer/querycompiler.pdf

16

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Cardinality and Selectivity
 Cardinality |𝑅𝑅|

 Size of intermediates in number of tuples (sometimes distinct items)
 Examples: |𝜎𝜎𝑝𝑝𝑅𝑅|, |𝑅𝑅⋈𝑆𝑆|

 Selectivity 𝑠𝑠(𝑝𝑝)
 Fraction of tuples that pass operator, bounded by [0,1]
 “Highly-selective” operator  low selectivity 𝑠𝑠(𝑝𝑝)
 Example

Selection

 Example
Join

Cardinality and Cost Estimation

𝑠𝑠(𝑝𝑝) =
|𝜎𝜎𝑝𝑝𝑅𝑅|

|𝑅𝑅|

𝑠𝑠 𝑝𝑝 =
𝑅𝑅 ⋈𝑝𝑝 𝑆𝑆
𝑅𝑅 × 𝑆𝑆

=
𝑅𝑅 ⋈𝑝𝑝 𝑆𝑆
𝑅𝑅| ⋅ |𝑆𝑆

𝜎𝜎𝑝𝑝𝑅𝑅 = 𝑠𝑠 𝑝𝑝 ⋅ |𝑅𝑅|

𝑅𝑅 ⋈𝑝𝑝 𝑆𝑆 = 𝑠𝑠 𝑝𝑝 ⋅ 𝑅𝑅 ⋅ |𝑆𝑆|

[Guido Moerkotte, Building
Query Compilers, 2020]

17

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Cardinality Propagation
 Operator-level Propagation

 Selection: 𝜎𝜎𝑝𝑝𝑅𝑅 = 𝑠𝑠 𝑝𝑝 ⋅ |𝑅𝑅|
 Join: 𝑅𝑅 ⋈𝑝𝑝 𝑆𝑆 = 𝑠𝑠 𝑝𝑝 ⋅ 𝑅𝑅 ⋅ |𝑆𝑆|
 Sorting: 𝜏𝜏𝐴𝐴 𝑅𝑅 = |𝑅𝑅|
 Group-by: 𝛾𝛾𝐺𝐺;𝑓𝑓 𝑅𝑅 = ∏𝑔𝑔∈𝐺𝐺 𝑑𝑑𝑔𝑔(𝑅𝑅)
 Cross product: 𝑅𝑅 × 𝑆𝑆 = 𝑅𝑅 ⋅ |𝑆𝑆|
 Projection: 𝜋𝜋 𝑅𝑅 = |𝑅𝑅|
 Union All: 𝑅𝑅 ∪ 𝑆𝑆 = 𝑅𝑅 + |𝑆𝑆|

 Error Propagation
 Cardinality estimation errors propagate

exponentially through joins (max error)

 Q-Error
 Multiplicative error, produced plans

at most q4 worse than optimum

Cardinality and Cost Estimation

[Guido Moerkotte, Building
Query Compilers, 2020]

[Yannis E. Ioannidis, Stavros
Christodoulakis: On the

Propagation of Errors in the Size
of Join Results. SIGMOD 1991]

[Guido Moerkotte, Thomas Neumann,
Gabriele Steidl: Preventing Bad Plans by

Bounding the Impact of Cardinality
Estimation Errors. PVLDB 2(1) 2009]

Recursive
propagation over

query tree

Presenter
Presentation Notes
Note: q^2 estimation error (e.g., negative for selected, positive for optimal) -> q^4

18

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Cardinality Propagation
 Equality Predicates

 Based on histograms and #distinct item estimators, otherwise default 1/10

 Constant predicate: 𝑠𝑠 𝐴𝐴 = 𝑐𝑐 = 1
𝑑𝑑𝐴𝐴

 Binary predicate: 𝑠𝑠 𝐴𝐴 = 𝐵𝐵 = 1
max(𝑑𝑑𝐴𝐴,𝑑𝑑𝐵𝐵)

 Range Predicates

 One-sided: 𝑠𝑠 𝐴𝐴 > 𝑐𝑐 =
max
𝐴𝐴

− 𝑐𝑐

max𝐴𝐴 −min𝐴𝐴

 Two-sided: 𝑠𝑠 𝑐𝑐1 ≤ 𝐴𝐴 ≤ 𝑐𝑐_2 = 𝑐𝑐2−𝑐𝑐1
max𝐴𝐴 −min𝐴𝐴

 Composite Predicates ( sparsity in ML systems)
 Negation (NOT): 𝑠𝑠 ¬𝑝𝑝 = 1 − 𝑠𝑠(𝑝𝑝)
 Conjunction (AND): 𝑠𝑠 𝑝𝑝1 ∧ 𝑝𝑝2 = 𝑠𝑠 𝑝𝑝1 ⋅ 𝑠𝑠 𝑝𝑝2
 Disjunction (OR): 𝑠𝑠 𝑝𝑝1 ∨ 𝑝𝑝2 = 𝑠𝑠 𝑝𝑝1 + 𝑠𝑠 𝑝𝑝2 − 𝑠𝑠 𝑝𝑝1 ⋅ 𝑠𝑠(𝑝𝑝2)

Cardinality and Cost Estimation

//assumes uniformity

//assumes matching
domains

//assumes independence

[Patricia G. Selinger et al.: Access Path
Selection in a Relational Database

Management System. SIGMOD 1979]

19

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Cardinality Estimation
 Overview

 Min, Max, #distinct items d crucial for cardinality estimation
 Exact frequency distribution 𝑣𝑣1, 𝑓𝑓1 , 𝑣𝑣2, 𝑓𝑓2 , … , 𝑣𝑣𝑑𝑑, 𝑓𝑓𝑑𝑑 too detailed

 Equi-width Histogram
 Divide min-max range into B buckets
 Store sum frequency, #distinct

 Equi-height Histogram
 Divide range into variable buckets

with constant frequency
 E.g., via quantiles + duplicate handling

 Other Histograms
 Homogeneous/heterogeneous

histograms w/ bounded error

Cardinality and Cost Estimation

[Guido Moerkotte, Building
Query Compilers, 2020]

0

71
(4)

143
(5)

125
(3) 9 (2)

5 10 15 20

0

87
(5)

6 9 12 20

87
(3)

87
(3)

87
(3)

[Carl-Christian Kanne, Guido Moerkotte:
Histograms reloaded: the merits of

bucket diversity. SIGMOD 2010]

20

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Number of Distinct Items
 Problem

 Estimate # distinct items in a dataset / data stream w/ limited memory
 Support for set operations (union, intersect, difference)

 K-Minimum Values (KMV)
 Hash values 𝑑𝑑𝑖𝑖 to ℎ𝑖𝑖 ∈ [0,𝑀𝑀]
 Domain 𝑀𝑀 = 𝑂𝑂(𝐷𝐷2) to avoid

collisions  𝐎𝐎(𝒌𝒌 𝒍𝒍𝒍𝒍𝒍𝒍 𝑫𝑫) space
 Store k minimum hash values

(e.g., via priority queue) in
normalized form ℎ𝑖𝑖 ∈ [0,1]

 Basic estimator:
 Unbiased estimator:

Cardinality and Cost Estimation

0 1

Duplicates yield
same hash!

U(k=4)=0.24

�𝐷𝐷𝑘𝑘𝐵𝐵𝐵𝐵 = 𝑘𝑘/𝑈𝑈(𝑘𝑘)

�𝐷𝐷𝑘𝑘𝑈𝑈𝑈𝑈 = (𝑘𝑘 − 1)/𝑈𝑈(𝑘𝑘)

Example:
16.67 vs 12.5

[Kevin S. Beyer, Peter J. Haas, Berthold Reinwald, Yannis
Sismanis, Rainer Gemulla: On synopses for distinct-value
estimation under multiset operations. SIGMOD 2007]

Presenter
Presentation Notes
Note: birthday problem argument -> collisions avoided if M much larger than D, so D^2

21

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Number of Distinct Items, cont.
 KMV Set Operations

 Union and intersection directly
on partition synopses

 Difference via Augmented KMV
(AKMV) that include counters of
multiplicities of k-minimum values

 HyperLogLog
 Hash values and maintain maximum

of leading zeros p  �𝐷𝐷 = 2𝑝𝑝

 Stochastic averaging over M streams
(p maintained in M registers)

 HyperLogLog++
 Updatable HyperLogLog, with

sampling for multi-column estimates

Cardinality and Cost Estimation

0 1
𝐷𝐷 = 𝐴𝐴 ∪ 𝐵𝐵

𝐾𝐾𝐾𝐾𝐾𝐾(𝐷𝐷∪) ≡ 𝐾𝐾𝐾𝐾𝐾𝐾(𝐴𝐴) ⊕𝐾𝐾𝐾𝐾𝐾𝐾(𝐵𝐵)

[Stefan Heule, Marc Nunkesser, Alexander
Hall: HyperLogLog in practice: algorithmic

engineering of a state of the art cardinality
estimation algorithm. EDBT 2013]

[P. Flajolet, Éric Fusy, O. Gandouet,
and F. Meunier: Hyperloglog: The

analysis of a near-optimal cardinality
estimation algorithm. AOFA 2007]

[Michael J. Freitag, Thomas Neumann:
Every Row Counts: Combining Sketches

and Sampling for Accurate Group-By
Result Estimates. CIDR 2019]

Presenter
Presentation Notes
Note: HyperLogLog extension of LogLog algorithm (2003) and Flajolet–Martin algorithm (1985)

22

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Sample-based Cardinality Estimation
 Overview and Problems

 Sample subset S with |𝑆𝑆| ≪ 𝑁𝑁 of tuples and estimate #distinct items d
 Naïve estimators: 𝑑𝑑𝑆𝑆 underestimate, or 𝑑𝑑𝑆𝑆 ⋅ 𝑁𝑁/|𝑆𝑆| overestimate

 #1 Sample-based Estimators
 “Generalized jackknife”

estimator

 Guaranteed error estimator (GEE)
 Basic and adaptive estimators

Cardinality and Cost Estimation

𝑑̂𝑑ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 =
𝑑̂𝑑𝑢𝑢𝑢𝑢𝑢, 0 < �𝛾𝛾2 𝑑̂𝑑𝑢𝑢𝑢𝑢1 < 𝛼𝛼1
𝑑̂𝑑𝑢𝑢𝑢𝑢𝑢𝑢𝑢, 𝛼𝛼1 ≤ �𝛾𝛾2 𝑑̂𝑑𝑢𝑢𝑢𝑢𝑢 < 𝛼𝛼2
𝑑̂𝑑𝑆𝑆𝑆𝑆, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

squared coefficient
of variation

simple estimator

𝑑̂𝑑 = 𝑑𝑑𝑆𝑆 + 𝐾𝐾 ⋅ 𝑓𝑓1/𝑁𝑁

[P. J. Haas and L. Stokes: Estimating the
Number of Classes in a Finite Population,
J. Amer. Statist. Assoc., 93(444), 1998]

𝑑̂𝑑 =
𝑁𝑁
|𝑆𝑆|

𝑓𝑓1 + �
𝑖𝑖=2

|𝑆𝑆|
𝑓𝑓𝑖𝑖[Moses Charikar, Surajit Chaudhuri, Rajeev

Motwani, Vivek R. Narasayya: Towards Estimation
Error Guarantees for Distinct Values. PODS 2000]

Presenter
Presentation Notes
Note: coverage computation based on number of singletons (tuples appearing once in the sample)
Estimator implementations: https://github.com/apache/systemds/tree/master/src/main/java/org/apache/sysds/runtime/compress/estim/sample

23

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Sample-based Cardinality Estimation, cont.
 Sample Views

 Random sampling +
materialized views w/
statistical guarantees

 Query feedback (actual card)

 Index-based Join Sampling
 Joins on samples might result in ∅
 Use existing indexes to explore

intermediate results bottom-up

Cardinality and Cost Estimation

[Viktor Leis, Bernhard Radke, Andrey
Gubichev, Alfons Kemper, Thomas Neumann:
Cardinality Estimation Done Right: Index-
Based Join Sampling. CIDR 2017]

[Per-Åke Larson, Wolfgang Lehner, Jingren Zhou,
Peter Zabback: Cardinality estimation using sample
views with quality assurance. SIGMOD 2007]

24

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Excursus: Robust Query Optimization
 Overview Picasso Project

 Plan diagram: plan choice over selectivity ranges
 Cost diagram: estimated plan execution costs over ranges

 Towards Robust
Optimization

Cardinality and Cost Estimation

[Naveen Reddy, Jayant R.
Haritsa: Analyzing Plan
Diagrams of Database Query
Optimizers. VLDB 2005]

Duplicate Islands Plan Switch Points Venetian Blinds Footprint Pattern

Presenter
Presentation Notes
Plan switch point: join order changed
Venetian blinds: alternation between left and right deep trees
Footprint: hash vs sort-merge join at top join

25

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Excursus: Robust Query Optimization, cont.
Cardinality and Cost Estimation

[Harish Doraiswamy, Pooja N. Darera, Jayant R. Haritsa:
On the Production of Anorexic Plan Diagrams. VLDB 2007]

09 Adaptive Query Processing
(learned cardinalities, re-optimization)

[Jayant R. Haritsa: Robust Query Processing:
Mission Possible. PVLDB 13(12) 2020]

[Harish Doraiswamy, Pooja N. Darera, Jayant R. Haritsa:
Identifying robust plans through plan diagram reduction. PVLDB 1(1) 2008]

[M. Abhirama, Sourjya Bhaumik, Atreyee Dey, Harsh Shrimal, Jayant R. Haritsa:
On the Stability of Plan Costs and the Costs of Plan Stability. PVLDB 3(1) 2010]

[Anshuman Dutt, Jayant R. Haritsa:
Plan bouquets: query processing without selectivity estimation. SIGMOD 2014]

[Goetz Graefe, Wey Guy, Harumi A. Kuno, Glenn N. Paulley:
Robust Query Processing (Dagstuhl Seminar 12321). Dagstuhl Reports 2(8) 2012]

26

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Join Enumeration / Ordering

27

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Plan Optimization Overview
 Plan Generation Overview

 Selection of physical access path and plan operators
 Selection of execution order of plan operators (joins, group-by)
 Input: logical query plan  Output: optimal physical query plan
 Costs of query optimization should not exceed yielded improvements

 Interesting Properties
 Interesting orders (sorted vs unsorted),

partitioning (e.g., join column), pipelining
 Avoid unnecessary sorting operations

 Simple Cost Functions
 Join-specific cost functions (Cnlj, Chj, Csmj)
 Cardinalities

Cout

Join Enumeration / Ordering

[Guido Moerkotte, Building
Query Compilers, 2020]

[Ihab F. Ilyas, Jun Rao, Guy M.
Lohman, Dengfeng Gao, Eileen Tien
Lin: Estimating Compilation Time of

a Query Optimizer. SIGMOD 2003]

28

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Query and Plan Types
 Query Types

 Nodes: Tables
 Edges: Join conditions
 Determine hardness

of query optimization (w/o cross products)

 Join Tree Types / Plan Types
 Data flow graph of tables and joins (logical/physical query trees)
 Edges: data dependencies (fixed execution order: bottom-up)

Join Enumeration / Ordering

Chains

Stars

Cliques

Left-Deep Tree Right-Deep Tree Zig-Zag Tree Bushy Tree

[Guido Moerkotte, Building
Query Compilers, 2020]

29

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Join Ordering Problem
 Join Ordering

 Given a join query graph, find the optimal join ordering
 In general, NP-hard; but polynomial algorithms exist for special cases

 Search Space
 Dependent on query and plan types
 Note: if we allow cross products similar to cliques (fully connected)

Join Enumeration / Ordering

Chain (no CP) Star (no CP)

left-
deep

zig-zag bushy left-
deep

zig-zag/
bushy

n 2n-1 22n-3 2n-1C(n-1) 2(n-1)! 2n-1(n-1)!

5 16 128 224 48 384

10 512 ~131K ~2.4M ~726K ~186M

Clique / CP (cross product)

left-
deep

zig-zag bushy

n! 2n-2n! n! C(n-1)

120 960 1,680

~3.6M ~929M ~17.6G

C(n) … Catalan Numbers

[Guido Moerkotte, Building
Query Compilers, 2020]

30

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Join Order Search Strategies
 Tradeoff: Optimal (or good) plan vs compilation time

 #1 Naïve Full Enumeration
 Infeasible for reasonably large queries (long tail up to 1000s of joins)

 #2 Exact Dynamic Programming / Memoization
 Guarantees optimal plan, often too expensive (beyond 20 relations)
 Bottom-up vs top-down approaches

 #3 Greedy / Heuristic Algorithms
 #4 Approximate Algorithms

 E.g., Genetic algorithms, simulated
annealing, MIL programming

 Example PostgreSQL
 Exact optimization (DPSize) if < 12

relations (geqo_threshold)
 Genetic algorithm for larger queries
 Join methods: NLJ, SMJ, HJ

Join Enumeration / Ordering

All
(unknown)

Actual

Explored

DP Enum

Heuristics

[Nicolas Bruno, César A. Galindo-Legaria,
Milind Joshi: Polynomial heuristics for

query optimization. ICDE 2010]

31

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Greedy Join Ordering
 Example

 Part ⋈ Lineorder ⋈ Supplier ⋈ σ(Customer) ⋈ σ(Date), left-deep plans

Join Enumeration / Ordering

Star Schema
Benchmark

Plan Costs

1 Lineorder ⋈ Part 30M

Lineorder ⋈ Supplier 20M

Lineorder ⋈ σ(Customer) 90K

Lineorder ⋈ σ(Date) 40K

Part ⋈ Customer N/A

… …

2 (Lineorder ⋈ σ(Date)) ⋈ Part 150K

(Lineorder ⋈ σ(Date)) ⋈ Supplier 100K

(Lineorder ⋈ σ(Date)) ⋈ σ(Customer) 75K

Plan Costs

3 ((Lineorder ⋈ σ(Date)) ⋈
σ(Customer)) ⋈ Part

120M

((Lineorder ⋈ σ(Date)) ⋈
σ(Customer)) ⋈ Supplier

105M

4 (((Lineorder ⋈ σ(Date)) ⋈
σ(Customer)) ⋈ Supplier) ⋈ Part

135M

Note: Simple O(n2) algorithm
for left-deep trees;

O(n3) algorithms for bushy trees
existing (e.g., GOO)

Presenter
Presentation Notes
GOO .. Greedy operator ordering

32

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Greedy Join Ordering, cont.
 Basic Algorithms

 GreedyJO-1: sort by relation weights (e.g., card)
 GreedyJO-2: greedy selection of next best relation
 GreedyJO-3: Greedy-JO-2 w/ start from each relation

 GOO
Algorithm

Join Enumeration / Ordering

Previous example as
a hybrid w/ O(n2)

[Guido Moerkotte, Building
Query Compilers, 2020]

// Greedy Operator Ordering

[Leonidas Fegaras: A New
Heuristic for Optimizing

Large Queries. DEXA 1998]

33

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Dynamic Programming Join Ordering
 Exact Enumeration via Dynamic Programming

 #1: Optimal substructure (Bellman’s Principle of Optimality)
 #2: Overlapping subproblems allow for memorization

 Bottom-Up (Dynamic Programming)
 Split in independent sub-problems (optimal plan per set of quantifiers

and interesting properties), solve sub-problems, combine solutions
 Algorithms: DPsize, DPsub, DPcpp

 Top-Down (Memoization)
 Recursive generation of join trees

w/ memorization and pruning
 Algorithms: Cascades, MinCutLazy,

MinCutAGat, MinCutBranch

Join Enumeration / Ordering

[Goetz Graefe: The Cascades
Framework for Query Optimization.

IEEE Data Eng. Bull. 18(3) 1995]

[Pit Fender: Algorithms for Efficient Top-
Down Join Enumeration. PhD Thesis,

University of Mannheim 2014]

[Guido Moerkotte, Thomas Neumann:
Analysis of Two Existing and One New

Dynamic Programming Algorithm for the
Generation of Optimal Bushy Join Trees

without Cross Products. VLDB 2006]

34

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Dynamic Programming Join Ordering, cont.
 DPSize Algorithm

 Pioneered by Pat Selinger et al.
 Implemented in IBM DB2, Postgres, etc

Join Enumeration / Ordering

[Patricia G. Selinger et al.: Access Path
Selection in a Relational Database

Management System. SIGMOD 1979]

[Wook-Shin Han, Wooseong
Kwak, Jinsoo Lee, Guy M. Lohman,

Volker Markl: Parallelizing query
optimization. PVLDB 1(1) 2008]

disjoint

connected

35

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Dynamic Programming Join Ordering, cont.
 DPSize Example

 Simplified: no interesting properties

Join Enumeration / Ordering

Q1 Plan

{C} Tbl, IX

{D} Tbl, IX

{L} …

{P} …

{S} …

Q2 Plan

{C,L} L⋈C, C⋈L

{D,L} L⋈D, D⋈L

{L,P} L⋈P, P⋈L

{L,S} L⋈S, S⋈L

{C,D} N/A

… …

Q3 Plan

{C,D,L} (L⋈C)⋈D, D⋈(L⋈C),
(L⋈D)⋈C, C⋈(L⋈D)

{C,L,P} (L⋈C)⋈P, P⋈(L⋈C),
(P⋈L)⋈C, C⋈(P⋈L)

{C,L,S} …

{D,L,P} …

{D,L,S} …

{L,P,S} …

Q4 Plan

{C,D,L,P} ((L⋈C)⋈D)⋈P,
P⋈((L⋈C)⋈D)

{C,D,L,S} …

{C,L,P,S} …

{D,L,P,S} …

Q1+Q1
Q1+Q2, Q2+Q1

Q1+Q3, Q2+Q2, Q3+Q1

Q5 Plan

{C,D,L,P,S} …

Q1+Q4, Q2+Q3,
Q3+Q2, Q4+Q1

Presenter
Presentation Notes
NOTE: The plan generation algorithm also includes the selection of physical operators (NLJ, SMJ, HJ)

36

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Graceful Degradation
 Problem Bottom-Up

 Until end of optimization no valid full QEP created (no anytime algorithm)
 Fallback: resort to heuristic if ran out of memory / time budget

 #1 Query Simplification
 Simplify query with heuristics until

solvable via dynamic programming
 Choose plans to avoid, not join

 #2 Search Space Linearization
 Small queries: count connected

subgraphs, optimized exactly
 Medium queries (<100): restrict

algorithm to consider connected sub-chains of linear relation ordering
 Large queries: greedy algorithm, then Medium on sub-trees of size K

Join Enumeration / Ordering

[Thomas Neumann: Query
simplification: graceful degradation for

join-order optimization. SIGMOD 2009]

O(n3)

DP

[Thomas Neumann, Bernhard Radke:
Adaptive Optimization of Very Large

Join Queries. SIGMOD 2018]

37

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Join Order Benchmark (JOB)
 Data: Internet Movie Data Bases (IMDB)
 Workload: 33 query templates, 2-6 variants / 3-16 joins per query

Join Enumeration / Ordering

[Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper, Thomas Neumann:
How Good Are Query Optimizers, Really? PVLDB 9(3) 2015]

underestimate

38

706.543 Architecture of Database Systems – 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2021/22

Summary and Q&A
 Query Rewriting and Unnesting
 Cardinality and Cost Estimation
 Join Enumeration / Ordering

 Next Lectures (Part B)
 09 Adaptive Query Processing [Dec 01]

 Holidays (time for working on the prog. projects)

 Next Lectures (Part C)
 10 Cloud Database Systems [Jan 12]

 11 Modern Concurrency Control [Jan 19]

 12 Modern Storage and HW Accelerators [Jan 26]

	Architecture of DB Systems�08 Query Optimization
	Announcements/Org
	Recap: Overview Query Processing
	Agenda
	Query Rewriting and Unnesting
	Query Rewrites
	Standardization and Simplification
	Standardization and Simplification, cont.
	Query Unnesting
	Query Unnesting, cont.
	Unnesting Arbitrary Queries
	Selections and Projections
	Example Query Restructuring
	Cardinality and Cost Estimation
	Overview Cost Models
	Cardinality and Selectivity
	Cardinality Propagation
	Cardinality Propagation
	Cardinality Estimation
	Number of Distinct Items
	Number of Distinct Items, cont.
	Sample-based Cardinality Estimation
	Sample-based Cardinality Estimation, cont.
	Excursus: Robust Query Optimization
	Excursus: Robust Query Optimization, cont.
	Join Enumeration / Ordering
	Plan Optimization Overview
	Query and Plan Types
	Join Ordering Problem
	Join Order Search Strategies
	Greedy Join Ordering
	Greedy Join Ordering, cont.
	Dynamic Programming Join Ordering
	Dynamic Programming Join Ordering, cont.
	Dynamic Programming Join Ordering, cont.
	Graceful Degradation
	Join Order Benchmark (JOB)
	Summary and Q&A

