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Announcements/Org
 #1 Video Recording 

 Link in TUbe & TeachCenter (lectures will be public)
 Optional attendance (independent of COVID)
 Virtual lectures (recorded) until end of semester

https://tugraz.webex.com/meet/m.boehm

 #2 Oral Exams
 Oral exams, 45min each, via

https://tugraz.webex.com/meet/m.boehm
 Exam Slots: Feb 7 and Feb 8

https://doodle.com/poll/zqiat5svr4xng7g4
 Q: Why only so few registrations so far?

 #3 Updated Project Setup (since Dec 23)
 https://mboehm7.github.io/teaching/ws2122_adbs/Project_Setup_v3.zip

https://tugraz.webex.com/meet/m.boehm
https://tugraz.webex.com/meet/m.boehm
https://doodle.com/poll/zqiat5svr4xng7g4
https://mboehm7.github.io/teaching/ws2122_adbs/Project_Setup_v3.zip
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Agenda
 Cloud Computing Background
 PaaS: SQL on Hadoop 
 SaaS: Cloud DBs and Cloud DWHs
 FaaS: Serverless Database Systems
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Cloud Computing Background
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Motivation Cloud Computing 
 Definition Cloud Computing

 On-demand, remote storage and compute resources, or services
 User: computing as a utility (similar to energy, water, internet services)
 Cloud provider: computation in data centers / multi-tenancy

 Service Models 
 IaaS: Infrastructure as a service (e.g., storage/compute nodes)
 PaaS: Platform as a service (e.g., distributed systems/frameworks)
 SaaS: Software as a Service (e.g., email, databases, office, github)

 Transforming IT Industry/Landscape
 Since ~2010 increasing move from on-prem to cloud resources
 System software licenses become increasingly irrelevant
 Few cloud providers dominate IaaS/PaaS/SaaS markets (w/ 2018 revenue):

Microsoft Azure Cloud ($ 32.2B), Amazon AWS ($ 25.7B), Google Cloud (N/A), 
IBM Cloud ($ 19.2B), Oracle Cloud ($ 5.3B), Alibaba Cloud ($ 2.1B) 

Cloud Computing Background
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Motivation Cloud Computing, cont.
 Argument #1: Pay as you go

 No upfront cost for infrastructure
 Variable utilization  over-provisioning
 Pay per use or acquired resources

 Argument #2: Economies of Scale
 Purchasing and managing IT infrastructure at scale  lower cost

(applies to both HW resources and IT infrastructure/system experts)
 Focus on scale-out on commodity HW over scale-up  lower cost

 Argument #3: Elasticity
 Assuming perfect scalability, work done 

in constant time * resources 
 Given virtually unlimited resources

allows to reduce time as necessary

Cloud Computing Background

Utili-
zation

Time

100%

100 days @ 1 node
≈

1 day @ 100 nodes

(but beware Amdahl’s law: 
max speedup sp = 1/s)
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Anatomy of a Data Center
Cloud Computing Background

Commodity CPU:
Xeon E5-2440: 6/12 cores

Xeon Gold 6148: 20/40 cores Server:
Multiple sockets, 

RAM, disks
Rack:

16-64 servers + 
top-of-rack switch

Cluster:
Multiple racks + cluster switch

Data Center:
>100,000 servers

[Google 
Data Center, 
Eemshaven, 
Netherlands]
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Infrastructure as a Service (IaaS)
 Overview

 Resources for compute, storage, networking as a service
 Virtualization as key enabler (simplicity and auto-scaling)

 Target user: sys admin / developer

 Storage
 Amazon AWS Simple Storage Service (S3)
 OpenStack Object Storage (Swift)
 IBM Cloud Object Storage
 Microsoft Azure Blob Storage

 Compute
 Amazon AWS Elastic Compute Cloud (EC2)
 Microsoft Azure Virtual Machines (VM)
 IBM Cloud Compute

Cloud Computing Background

Computing 
as a utility
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PaaS: SQL on Hadoop 
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Data-parallel Computation 
 Concept “Data Lake”

 Store massive amounts of structured 
and un/semi-structured data
(append only, no update in place)

 No need for architected schema or 
upfront costs (unknown analysis)

 Typically: file storage in open, raw formats (inputs and intermediates)

 Distributed Storage and Analysis
 Central abstraction: distributed collection

Different physical representations
 Easy distribution of pairs

via horizontal partitioning
(aka shards, partitions)

 Frameworks: Hadoop MR, Spark, Flink
 Deployment: on-prem and/or cloud

PaaS: SQL on Hadoop 

[Credit: www.collibra.com]

Key Value
4 Delta
2 Bravo
1 Alfa
3 Charlie
5 Echo
6 Foxtrot
7 Golf
1 Alfa

http://www.collibra.com/
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Recap: MapReduce – Execution Model
PaaS: SQL on Hadoop 

CSV 
File 1

Input CSV files 
(stored in HDFS)

CSV 
File 2

CSV 
File 3

Output Files 
(HDFS)

Out 1

Out 2

Out 3

Split 11

Split 12

Split 21

Split 22

Split 31

Split 32

map 
task

map 
task
map 
task

map 
task

map 
task
map 
task
Sort, [Combine], [Compress]

Map-Phase

[Reduce-Phase]

reduce 
task

reduce 
task

reduce 
task

Shuffle, Merge, 
[Combine]

#1 Data Locality (delay sched., write affinity)
#2 Reduced shuffle (combine)
#3 Fault tolerance (replication, attempts)

w/ #reducers = 3
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A History on “SQL on Hadoop”
 Criticism MapReduce for Data Analytics

 Litter control of data flow, simplicity leads to inefficiencies
 Fault tolerance not always necessary
 Lack of integration into existing eco system of data analysis

 SQL on Hadoop
 Query engines on distributed file systems and open storage formats 

(e.g., CSV, Sequence files, Avro, Parquet, OCR, Arrow)
 Challenges w.r.t. metadata (schema/stats), and resource management
 Non-relational data (e.g., JSON), and unclean, irregular, unreliable data 
 Specialized “SQL on Hadoop” systems (with open / native storage formats)

PaaS: SQL on Hadoop 

[Daniel Abadi, Shivnath Babu, Fatma
Ozcan, Ippokratis Pandis: Tutorial: SQL-

on-Hadoop Systems. PVLDB 8(12) 2015]

(see DM 
Exercise 4)

[Andrew Pavlo et al.: A comparison 
of approaches to large-scale data 
analysis. SIGMOD 2009]

[Spyros Blanas et al.: A comparison 
of join algorithms for log processing 
in MapReduce. SIGMOD 2010]

Presenter
Presentation Notes
Note: Parquet, OCR, Arrow  Column-oriented formats
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A History on “SQL on Hadoop” – Systems 
 Hadoop Eco-system

 HBase: logical tables, CRUD, key-value storage on HDFS
 Hive: SQL queries executed as MapReduce jobs (OLAP)
 Hive on Tez/Spark: SQL queries executed as DAGs of operations

 Proprietary Systems
 MS SCOPE

 HadoopDB/Hadapt
 Teradata (2014)

 Facebook Presto

 Cloudera Impala

 IBM BigSQL

PaaS: SQL on Hadoop 

[Azza Abouzeid et al.: HadoopDB: An Architectural Hybrid 
of MapReduce and DBMS Technologies for Analytical 

Workloads. PVLDB 2(1) 2009]

[Ronnie Chaiken et al.: SCOPE: easy and efficient parallel 
processing of massive data sets. PVLDB 1(2) 2008]

[Marcel Kornacker et al.: Impala: A Modern, 
Open-Source SQL Engine for Hadoop. CIDR 2015]

[Scott C. Gray, Fatma Ozcan, Hebert Pereyra, Bert van der Linden 
and Adriana Zubiri: SQL-on-Hadoop without compromise, 

IBM Whitepaper 2014]
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A History on “SQL on Hadoop” – SparkSQL
 Overview SparkSQL

 New dataframe / dataset abstractions
with various data source (+ pushdown)

 SQL and programmatic APIs
 Rewrite ruleset for query optimization
 Off-heap data storage (sun.misc.Unsafe)
 Whole-stage code generation

 Query Planning

PaaS: SQL on Hadoop 

[Michael Armbrust et al.: Spark 
SQL: Relational Data Processing 

in Spark. SIGMOD 2015]

[Reynold S. Xin, Josh Rosen, Matei
Zaharia, Michael J. Franklin, Scott 

Shenker, Ion Stoica: Shark: SQL and 
rich analytics at scale. SIGMOD 2013]
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Example Delta Lake (and Lakehouse Architecture)

PaaS: SQL on Hadoop 

DWH Data Lake Lakehouse

SQL Data Frames

Metadata APIs

Open Formats

TXs

Versioning

DCtlg

[Michael Armbrust, Ali Ghodsi, Reynold Xin, 
Matei Zaharia: Lakehouse: A New Generation 
of Open Platforms that Unify Data Ware-
housing and Advanced Analytics, CIDR 2021]

[Michael Armbrust et al: Delta 
Lake: High-Performance ACID 
Table Storage over Cloud Object 
Stores. PVLDB 13(12) 2020]

[Alexander Behm: Photon: A 
High-Performance Query Engine for the 
Lakehouse, CIDR 2022]
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SaaS: Cloud DBs and Cloud DWHs
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Cloud Databases (DBaaS)
 Motivation DBaaS

 Simplified setup, maintenance, tuning  and auto scaling
 Multi-tenant systems (scalability, learning opportunities)
 Different types based on workload (OLTP vs OLAP, NoSQL)

 Elastic Data Warehouses
 Motivation: Intersection of data warehousing, 

cloud computing, distributed storage
 Example Systems

 #1 Snowflake
 #2 Google BigQuery (Dremel)
 #3 Amazon Redshift
 Azure SQL Data Warehouse /

#4 Azure SQL Database Hyperscale (Socrates) 

SaaS: Cloud DBs and Cloud DWHs

Microsoft

Commonalities:
SQL, column stores, 

data on object store / DFS, 
elastic cloud scaling 
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Example Snowflake
 Motivation (impl started late 2012)

 Enterprise-ready DWH solution for the cloud (elasticity, semi-structured)
 Pure SaaS experience, high availability, cost efficient 

 Cloud Services
 Manage virtual DHWs, 

TXs, and queries
 Meta data and catalogs

 Virtual Warehouses
 Query execution in EC2
 Caching/intermediates

 Data Storage
 Storage in AWS S3
 PAX / hybrid columnar
 Min-max pruning

SaaS: Cloud DBs and Cloud DWHs

[Benoît Dageville et al.: The 
Snowflake Elastic Data 

Warehouse. SIGMOD 2016]

Presenter
Presentation Notes
Note: Sep 2020 -> IPO (initial public offering), 33B eval
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Example Google BigQuery
 Background Dremel

 Scalable and fast in-situ analysis of read-only nested data (DFS, BigTable)
 Data model: protocol buffers - strongly-typed nested records
 Storage model: columnar storage of nested data

(efficient splitting and assembly records)
 Query execution via multi-level serving tree

 BigQuery System Architecture
 Public impl of internal Dremel system (2012)
 SQL over structured, nested data (OLAP, BI)
 Extensions: web Uis, REST APIs and ML 
 Data storage: Colossus (NextGen GFS)

SaaS: Cloud DBs and Cloud DWHs

[Sergey Melnik et al.: Dremel: 
Interactive Analysis of Web-Scale 

Datasets. PVLDB 3(1) 2010]

[Kazunori Sato: An Inside Look at Google 
BigQuery, Google BigQuery White Paper 2012.]
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Example Amazon Redshift
 Motivation (release 02/2013)

 Simplicity and cost-effectiveness
(fully-managed DWH at petabyte scale)

 System Architecture
 Data plane: data storage and SQL execution
 Control plane: workflows for monitoring, 

and managing databases, AWS services

 Data Plane
 Initial engine licensed from ParAccel
 Leader node + sliced compute nodes 

in EC2 (with local storage)
 Replication across nodes + S3 backup
 Query compilation in C++ code
 Support for flat and nested files

SaaS: Cloud DBs and Cloud DWHs

[Anurag Gupta et al.: Amazon 
Redshift and the Case for Simpler 

Data Warehouses. SIGMOD 2015]

[Mengchu Cai et al.: Integrated 
Querying of SQL database data 

and S3 data in Amazon Redshift. 
IEEE Data Eng. Bull.  41(2) 2018]



21

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22 

Example Microsoft Hyperscale (OLTP)
 Overview

 Challenges of monolithic DBMSs in the cloud
(cost-elasticity  scale-out/in data movement, availability/SW updates)

 Socrates: new OLTP cloud database system Azure DB Hyperscale

 Key Features
 Separated Compute, Storage, Log
 SQL Server compute node w/ 

secondary and SSD-based caching
 128GB Page Servers  up to 100TB DB
 Log server (landing zone, 

long-term log storage) 
 Azure storage layer
 Period checkpointing

SaaS: Cloud DBs and Cloud DWHs

[Panagiotis Antonopoulos et al.: 
Socrates: The New SQL Server in 

the Cloud. SIGMOD 2019]

[Microsoft Mechanics: What is Azure Database Hyperscale?, 
https://www.youtube.com/watch?v=Z9AFnKI7sfI]

Presenter
Presentation Notes
Note: single primary (read/write), up to four secondary (read only); shared page servers

https://www.youtube.com/watch?v=Z9AFnKI7sfI
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Example Dynamo (KV Store)
 Motivation

 Simple, highly-available data storage for small objects in ~1MB range
 Aim for good load balance (99.9th percentile SLAs)

 #1 System Interface
 Simple get(k, ctx) and put(k, ctx) ops

 #2 Partitioning
 Consistent hashing of nodes and keys

on circular ring for incremental scaling
 Nodes hold multiple virtual nodes

for load balance (add/rm, heterogeneous)

 #3 Replication
 Each data item replicated N times 

(at coord node and N-1 successors) 
 Eventual consistency with async update

propagation based on vector clocks
 Replica synchronization via Merkle trees

SaaS: Cloud DBs and Cloud DWHs

[Giuseppe DeCandia et al: 
Dynamo: amazon's highly available 

key-value store. SOSP 2007]

Amazon 
e-Commerce 

Platform

Presenter
Presentation Notes
Notes:
* vector clocks (node, counter) for capturing causality between versions
* Replica synchronization via anti-entropy and Merkle-trees
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FaaS: Serverless Database Systems
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Serverless Computing
 Definition Serverless

 FaaS: functions-as-a-service (event-driven, stateless input-output mapping)
 Infrastructure for deployment and auto-scaling of APIs/functions
 Examples: Amazon Lambda, Microsoft Azure Functions, etc

 Example

FaaS: Serverless Database Systems

Event Source 
(e.g., cloud 

services)

Lambda Functions
Other APIs 

and Services
Auto scaling 

Pay-per-request 
(1M x 100ms = 0.2$)

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

public class MyHandler implements RequestHandler<Tuple, MyResponse> {
@Override
public MyResponse handleRequest(Tuple input, Context context) {

return expensiveStatelessComputation(input);
}

}

[Joseph M. Hellerstein et al: Serverless
Computing: One Step Forward, Two 

Steps Back. CIDR 2019]

Presenter
Presentation Notes
Others: Google Cloud Functions, IBM OpenWhisk
Disadvantages: communication over storage, unaware of distributed computation
Limitations: restricted network connectivity (no inbound /within connectivity NAT), limited running time, stateless, limited cache between invocations, lack of control of scheduling
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Applications
 Embarrassingly-Parallel Use Cases

 Stateless image/video processing (thumbnails, encoding, rendering)
 ML inference/scoring (e.g., object classification and detection)
 Distributed compilation, unit testing

 Data Analytics – CloudSort
(http://sortbenchmark.org/)
 Minimum cost for sorting 100TB
 500x slower on serverless compared to VMs  reason: slow data shuffling
 Multi-round, hybrid shuffle (w/ same range partitioner)

 Small, fast storage (e.g., Redis) 
for intermediates per round

 Large, slow storage (S3) output
 Final merge of runs into S3

FaaS: Serverless Database Systems

[Qifan Pu, Shivaram Venkataraman, Ion Stoica: 
Shuffling, Fast and Slow: Scalable Analytics on 
Serverless Infrastructure. NSDI 2019] (Locus)

Presenter
Presentation Notes
Note: S3: saturates at make IOPs independent of requests, pay per request  many small shuffle files is a problem.

http://sortbenchmark.org/
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FaaS Query Processing – Starling (MIT) 
 Motivation

 Avoid pre-provisioning, and data loading
 Pay per query w/ competitive performance 
 Tunable cost-performance per query

 Starling Query Processing
 Coordinator compiles queries, and

schedules tasks
 Open input formats (CSV, ORC, Parquet)
 Intermediates stored in S3
 Shuffling: Mitigate many file problem by

writing single file per task, read portions
 Data centric query compilation
 Task pipelining and straggler mitigation   

FaaS: Serverless Database Systems

[Matthew Perron, Raul Castro Fernandez, 
David J. DeWitt, Samuel Madden: 

Starling: A Scalable Query Engine on 
Cloud Functions. SIGMOD 2020]
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FaaS Query Processing – Lambada (ETH)
 Potential Analysis

 Simulation of scan 1TB from S3
(2min VM startup, 4s fun startup)

 Short startup + demand scaling
 Interactive analytics on cold data

(e.g., Hydrology, HE Physics)

 Lambada Query Processing
 Driver on client machine

w/ batched, two-level invocation
 Data-parallel execution solely

with serverless workers (lambda funs)
 Parquet scan operator (sel/proj pushdown)
 Exchange operators for join/sort/group-by 

(communication through shared storage)

FaaS: Serverless Database Systems

~220 calls/s
(batched)

[Ingo Müller et al: Lambada: 
Interactive Data Analytics on Cold 

Data Using Serverless Cloud 
Infrastructure. SIGMOD 2020]

Presenter
Presentation Notes
Note: two-level invocation: sqrt(P) driver-1st, sqrt(P) each 1st – 2nd level  
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FaaS Query Processing – Lambada (ETH), cont.
 Function-to-function TCP Networking

 Problem: FaaS functions behind NAT
 NAT Hole Punching (e.g., P2P research,  exchange network addresses)
 Setup and communication processes

 TPC-H 
Performance

FaaS: Serverless Database Systems

λ λ

NAT

TCP

Boxer lib intercepts connect(), 
exchanges IP info, and established 

normal TCP connection

λ
λ

λEC2

Name 
service

[Michal Wawrzoniak et al: Boxer: 
Data Analytics on Network-enabled 

Serverless Platforms, CIDR 2021]

Presenter
Presentation Notes
NAT (network address translation)
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FaaS Query Processing – Cloudburst (UC Berkeley)
 Motivation

 Autoscaling serverless computing, 
with low-latency mutable state broader class of apps

 State sharing and mutable caches co-located w/ functions (data locality)

 Architecture
 VM orchestration via

Kubernetes
 Logical disaggregation

with physical co-location
 Functions interact w/

the cache not KV-Store
 Anna periodically 

propagates key updates
 Coordination-free consistency

(via lattice data types: MapLattice)

FaaS: Serverless Database Systems

[Vikram Sreekanti et al: Cloudburst: 
Stateful Functions-as-a-Service. 

PVLDB 13(11) 2020]

Prototype not compatible w/ 
Public Cloud Lambda Functions

Presenter
Presentation Notes
MapLattice: a convergent and commutative replicated data-types (CRDT), bounded join semilattice -> least upper bound operator is commutative, associative, idempotent
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Summary and Q&A
 Cloud Computing Background
 PaaS: SQL on Hadoop 
 SaaS: Cloud DBs and Cloud DWHs
 FaaS: Serverless Database Systems

 Next Lectures (Part C)
 11 Modern Concurrency Control [Jan 19]

 12 Modern Storage and HW Accelerators [Jan 26]

Is FaaS/serverless the right underlying 
abstraction for query processing?
(general-purpose, startup time, 

price model, elasticity)


	Architecture of DB Systems�10 Cloud DBMSs
	Announcements/Org
	Agenda
	Cloud Computing Background
	Motivation Cloud Computing 
	Motivation Cloud Computing, cont.
	Anatomy of a Data Center
	Infrastructure as a Service (IaaS)
	PaaS: SQL on Hadoop 
	Data-parallel Computation 
	Recap: MapReduce – Execution Model
	A History on “SQL on Hadoop”
	A History on “SQL on Hadoop” – Systems 
	A History on “SQL on Hadoop” – SparkSQL
	Example Delta Lake (and Lakehouse Architecture)
	SaaS: Cloud DBs and Cloud DWHs
	Cloud Databases (DBaaS)
	Example Snowflake
	Example Google BigQuery
	Example Amazon Redshift
	Example Microsoft Hyperscale (OLTP)
	Example Dynamo (KV Store)
	FaaS: Serverless Database Systems
	Serverless Computing
	Applications
	FaaS Query Processing – Starling (MIT) 
	FaaS Query Processing – Lambada (ETH)
	FaaS Query Processing – Lambada (ETH), cont.
	FaaS Query Processing – Cloudburst (UC Berkeley)
	Summary and Q&A

