
1
SCIENCE
PASSION

TECHNOLOGY

Architecture of DB Systems
10 Cloud DBMSs

Matthias Boehm

Graz University of Technology, Austria

Institute of Interactive Systems and Data Science
Computer Science and Biomedical Engineering

BMK endowed chair for Data Management

Last update: Jan 04, 2022

2

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

Announcements/Org
 #1 Video Recording

 Link in TUbe & TeachCenter (lectures will be public)
 Optional attendance (independent of COVID)
 Virtual lectures (recorded) until end of semester

https://tugraz.webex.com/meet/m.boehm

 #2 Oral Exams
 Oral exams, 45min each, via

https://tugraz.webex.com/meet/m.boehm
 Exam Slots: Feb 7 and Feb 8

https://doodle.com/poll/zqiat5svr4xng7g4
 Q: Why only so few registrations so far?

 #3 Updated Project Setup (since Dec 23)
 https://mboehm7.github.io/teaching/ws2122_adbs/Project_Setup_v3.zip

https://tugraz.webex.com/meet/m.boehm
https://tugraz.webex.com/meet/m.boehm
https://doodle.com/poll/zqiat5svr4xng7g4
https://mboehm7.github.io/teaching/ws2122_adbs/Project_Setup_v3.zip

3

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

Agenda
 Cloud Computing Background
 PaaS: SQL on Hadoop
 SaaS: Cloud DBs and Cloud DWHs
 FaaS: Serverless Database Systems

4

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

Cloud Computing Background

5

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

Motivation Cloud Computing
 Definition Cloud Computing

 On-demand, remote storage and compute resources, or services
 User: computing as a utility (similar to energy, water, internet services)
 Cloud provider: computation in data centers / multi-tenancy

 Service Models
 IaaS: Infrastructure as a service (e.g., storage/compute nodes)
 PaaS: Platform as a service (e.g., distributed systems/frameworks)
 SaaS: Software as a Service (e.g., email, databases, office, github)

 Transforming IT Industry/Landscape
 Since ~2010 increasing move from on-prem to cloud resources
 System software licenses become increasingly irrelevant
 Few cloud providers dominate IaaS/PaaS/SaaS markets (w/ 2018 revenue):

Microsoft Azure Cloud ($ 32.2B), Amazon AWS ($ 25.7B), Google Cloud (N/A),
IBM Cloud ($ 19.2B), Oracle Cloud ($ 5.3B), Alibaba Cloud ($ 2.1B)

Cloud Computing Background

6

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

Motivation Cloud Computing, cont.
 Argument #1: Pay as you go

 No upfront cost for infrastructure
 Variable utilization  over-provisioning
 Pay per use or acquired resources

 Argument #2: Economies of Scale
 Purchasing and managing IT infrastructure at scale  lower cost

(applies to both HW resources and IT infrastructure/system experts)
 Focus on scale-out on commodity HW over scale-up  lower cost

 Argument #3: Elasticity
 Assuming perfect scalability, work done

in constant time * resources
 Given virtually unlimited resources

allows to reduce time as necessary

Cloud Computing Background

Utili-
zation

Time

100%

100 days @ 1 node
≈

1 day @ 100 nodes

(but beware Amdahl’s law:
max speedup sp = 1/s)

7

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

Anatomy of a Data Center
Cloud Computing Background

Commodity CPU:
Xeon E5-2440: 6/12 cores

Xeon Gold 6148: 20/40 cores Server:
Multiple sockets,

RAM, disks
Rack:

16-64 servers +
top-of-rack switch

Cluster:
Multiple racks + cluster switch

Data Center:
>100,000 servers

[Google
Data Center,
Eemshaven,
Netherlands]

8

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

Infrastructure as a Service (IaaS)
 Overview

 Resources for compute, storage, networking as a service
 Virtualization as key enabler (simplicity and auto-scaling)

 Target user: sys admin / developer

 Storage
 Amazon AWS Simple Storage Service (S3)
 OpenStack Object Storage (Swift)
 IBM Cloud Object Storage
 Microsoft Azure Blob Storage

 Compute
 Amazon AWS Elastic Compute Cloud (EC2)
 Microsoft Azure Virtual Machines (VM)
 IBM Cloud Compute

Cloud Computing Background

Computing
as a utility

9

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

PaaS: SQL on Hadoop

10

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

Data-parallel Computation
 Concept “Data Lake”

 Store massive amounts of structured
and un/semi-structured data
(append only, no update in place)

 No need for architected schema or
upfront costs (unknown analysis)

 Typically: file storage in open, raw formats (inputs and intermediates)

 Distributed Storage and Analysis
 Central abstraction: distributed collection

Different physical representations
 Easy distribution of pairs

via horizontal partitioning
(aka shards, partitions)

 Frameworks: Hadoop MR, Spark, Flink
 Deployment: on-prem and/or cloud

PaaS: SQL on Hadoop

[Credit: www.collibra.com]

Key Value
4 Delta
2 Bravo
1 Alfa
3 Charlie
5 Echo
6 Foxtrot
7 Golf
1 Alfa

http://www.collibra.com/

11

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

Recap: MapReduce – Execution Model
PaaS: SQL on Hadoop

CSV
File 1

Input CSV files
(stored in HDFS)

CSV
File 2

CSV
File 3

Output Files
(HDFS)

Out 1

Out 2

Out 3

Split 11

Split 12

Split 21

Split 22

Split 31

Split 32

map
task

map
task
map
task

map
task

map
task
map
task
Sort, [Combine], [Compress]

Map-Phase

[Reduce-Phase]

reduce
task

reduce
task

reduce
task

Shuffle, Merge,
[Combine]

#1 Data Locality (delay sched., write affinity)
#2 Reduced shuffle (combine)
#3 Fault tolerance (replication, attempts)

w/ #reducers = 3

12

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

A History on “SQL on Hadoop”
 Criticism MapReduce for Data Analytics

 Litter control of data flow, simplicity leads to inefficiencies
 Fault tolerance not always necessary
 Lack of integration into existing eco system of data analysis

 SQL on Hadoop
 Query engines on distributed file systems and open storage formats

(e.g., CSV, Sequence files, Avro, Parquet, OCR, Arrow)
 Challenges w.r.t. metadata (schema/stats), and resource management
 Non-relational data (e.g., JSON), and unclean, irregular, unreliable data
 Specialized “SQL on Hadoop” systems (with open / native storage formats)

PaaS: SQL on Hadoop

[Daniel Abadi, Shivnath Babu, Fatma
Ozcan, Ippokratis Pandis: Tutorial: SQL-

on-Hadoop Systems. PVLDB 8(12) 2015]

(see DM
Exercise 4)

[Andrew Pavlo et al.: A comparison
of approaches to large-scale data
analysis. SIGMOD 2009]

[Spyros Blanas et al.: A comparison
of join algorithms for log processing
in MapReduce. SIGMOD 2010]

Presenter
Presentation Notes
Note: Parquet, OCR, Arrow  Column-oriented formats

13

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

A History on “SQL on Hadoop” – Systems
 Hadoop Eco-system

 HBase: logical tables, CRUD, key-value storage on HDFS
 Hive: SQL queries executed as MapReduce jobs (OLAP)
 Hive on Tez/Spark: SQL queries executed as DAGs of operations

 Proprietary Systems
 MS SCOPE

 HadoopDB/Hadapt
 Teradata (2014)

 Facebook Presto

 Cloudera Impala

 IBM BigSQL

PaaS: SQL on Hadoop

[Azza Abouzeid et al.: HadoopDB: An Architectural Hybrid
of MapReduce and DBMS Technologies for Analytical

Workloads. PVLDB 2(1) 2009]

[Ronnie Chaiken et al.: SCOPE: easy and efficient parallel
processing of massive data sets. PVLDB 1(2) 2008]

[Marcel Kornacker et al.: Impala: A Modern,
Open-Source SQL Engine for Hadoop. CIDR 2015]

[Scott C. Gray, Fatma Ozcan, Hebert Pereyra, Bert van der Linden
and Adriana Zubiri: SQL-on-Hadoop without compromise,

IBM Whitepaper 2014]

14

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

A History on “SQL on Hadoop” – SparkSQL
 Overview SparkSQL

 New dataframe / dataset abstractions
with various data source (+ pushdown)

 SQL and programmatic APIs
 Rewrite ruleset for query optimization
 Off-heap data storage (sun.misc.Unsafe)
 Whole-stage code generation

 Query Planning

PaaS: SQL on Hadoop

[Michael Armbrust et al.: Spark
SQL: Relational Data Processing

in Spark. SIGMOD 2015]

[Reynold S. Xin, Josh Rosen, Matei
Zaharia, Michael J. Franklin, Scott

Shenker, Ion Stoica: Shark: SQL and
rich analytics at scale. SIGMOD 2013]

15

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

Example Delta Lake (and Lakehouse Architecture)

PaaS: SQL on Hadoop

DWH Data Lake Lakehouse

SQL Data Frames

Metadata APIs

Open Formats

TXs

Versioning

DCtlg

[Michael Armbrust, Ali Ghodsi, Reynold Xin,
Matei Zaharia: Lakehouse: A New Generation
of Open Platforms that Unify Data Ware-
housing and Advanced Analytics, CIDR 2021]

[Michael Armbrust et al: Delta
Lake: High-Performance ACID
Table Storage over Cloud Object
Stores. PVLDB 13(12) 2020]

[Alexander Behm: Photon: A
High-Performance Query Engine for the
Lakehouse, CIDR 2022]

16

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

SaaS: Cloud DBs and Cloud DWHs

17

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

Cloud Databases (DBaaS)
 Motivation DBaaS

 Simplified setup, maintenance, tuning and auto scaling
 Multi-tenant systems (scalability, learning opportunities)
 Different types based on workload (OLTP vs OLAP, NoSQL)

 Elastic Data Warehouses
 Motivation: Intersection of data warehousing,

cloud computing, distributed storage
 Example Systems

 #1 Snowflake
 #2 Google BigQuery (Dremel)
 #3 Amazon Redshift
 Azure SQL Data Warehouse /

#4 Azure SQL Database Hyperscale (Socrates)

SaaS: Cloud DBs and Cloud DWHs

Microsoft

Commonalities:
SQL, column stores,

data on object store / DFS,
elastic cloud scaling

18

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

Example Snowflake
 Motivation (impl started late 2012)

 Enterprise-ready DWH solution for the cloud (elasticity, semi-structured)
 Pure SaaS experience, high availability, cost efficient

 Cloud Services
 Manage virtual DHWs,

TXs, and queries
 Meta data and catalogs

 Virtual Warehouses
 Query execution in EC2
 Caching/intermediates

 Data Storage
 Storage in AWS S3
 PAX / hybrid columnar
 Min-max pruning

SaaS: Cloud DBs and Cloud DWHs

[Benoît Dageville et al.: The
Snowflake Elastic Data

Warehouse. SIGMOD 2016]

Presenter
Presentation Notes
Note: Sep 2020 -> IPO (initial public offering), 33B eval

19

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

Example Google BigQuery
 Background Dremel

 Scalable and fast in-situ analysis of read-only nested data (DFS, BigTable)
 Data model: protocol buffers - strongly-typed nested records
 Storage model: columnar storage of nested data

(efficient splitting and assembly records)
 Query execution via multi-level serving tree

 BigQuery System Architecture
 Public impl of internal Dremel system (2012)
 SQL over structured, nested data (OLAP, BI)
 Extensions: web Uis, REST APIs and ML
 Data storage: Colossus (NextGen GFS)

SaaS: Cloud DBs and Cloud DWHs

[Sergey Melnik et al.: Dremel:
Interactive Analysis of Web-Scale

Datasets. PVLDB 3(1) 2010]

[Kazunori Sato: An Inside Look at Google
BigQuery, Google BigQuery White Paper 2012.]

20

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

Example Amazon Redshift
 Motivation (release 02/2013)

 Simplicity and cost-effectiveness
(fully-managed DWH at petabyte scale)

 System Architecture
 Data plane: data storage and SQL execution
 Control plane: workflows for monitoring,

and managing databases, AWS services

 Data Plane
 Initial engine licensed from ParAccel
 Leader node + sliced compute nodes

in EC2 (with local storage)
 Replication across nodes + S3 backup
 Query compilation in C++ code
 Support for flat and nested files

SaaS: Cloud DBs and Cloud DWHs

[Anurag Gupta et al.: Amazon
Redshift and the Case for Simpler

Data Warehouses. SIGMOD 2015]

[Mengchu Cai et al.: Integrated
Querying of SQL database data

and S3 data in Amazon Redshift.
IEEE Data Eng. Bull. 41(2) 2018]

21

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

Example Microsoft Hyperscale (OLTP)
 Overview

 Challenges of monolithic DBMSs in the cloud
(cost-elasticity  scale-out/in data movement, availability/SW updates)

 Socrates: new OLTP cloud database system Azure DB Hyperscale

 Key Features
 Separated Compute, Storage, Log
 SQL Server compute node w/

secondary and SSD-based caching
 128GB Page Servers  up to 100TB DB
 Log server (landing zone,

long-term log storage)
 Azure storage layer
 Period checkpointing

SaaS: Cloud DBs and Cloud DWHs

[Panagiotis Antonopoulos et al.:
Socrates: The New SQL Server in

the Cloud. SIGMOD 2019]

[Microsoft Mechanics: What is Azure Database Hyperscale?,
https://www.youtube.com/watch?v=Z9AFnKI7sfI]

Presenter
Presentation Notes
Note: single primary (read/write), up to four secondary (read only); shared page servers

https://www.youtube.com/watch?v=Z9AFnKI7sfI

22

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

Example Dynamo (KV Store)
 Motivation

 Simple, highly-available data storage for small objects in ~1MB range
 Aim for good load balance (99.9th percentile SLAs)

 #1 System Interface
 Simple get(k, ctx) and put(k, ctx) ops

 #2 Partitioning
 Consistent hashing of nodes and keys

on circular ring for incremental scaling
 Nodes hold multiple virtual nodes

for load balance (add/rm, heterogeneous)

 #3 Replication
 Each data item replicated N times

(at coord node and N-1 successors)
 Eventual consistency with async update

propagation based on vector clocks
 Replica synchronization via Merkle trees

SaaS: Cloud DBs and Cloud DWHs

[Giuseppe DeCandia et al:
Dynamo: amazon's highly available

key-value store. SOSP 2007]

Amazon
e-Commerce

Platform

Presenter
Presentation Notes
Notes:
* vector clocks (node, counter) for capturing causality between versions
* Replica synchronization via anti-entropy and Merkle-trees

23

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

FaaS: Serverless Database Systems

24

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

Serverless Computing
 Definition Serverless

 FaaS: functions-as-a-service (event-driven, stateless input-output mapping)
 Infrastructure for deployment and auto-scaling of APIs/functions
 Examples: Amazon Lambda, Microsoft Azure Functions, etc

 Example

FaaS: Serverless Database Systems

Event Source
(e.g., cloud

services)

Lambda Functions
Other APIs

and Services
Auto scaling

Pay-per-request
(1M x 100ms = 0.2$)

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

public class MyHandler implements RequestHandler<Tuple, MyResponse> {
@Override
public MyResponse handleRequest(Tuple input, Context context) {

return expensiveStatelessComputation(input);
}

}

[Joseph M. Hellerstein et al: Serverless
Computing: One Step Forward, Two

Steps Back. CIDR 2019]

Presenter
Presentation Notes
Others: Google Cloud Functions, IBM OpenWhisk
Disadvantages: communication over storage, unaware of distributed computation
Limitations: restricted network connectivity (no inbound /within connectivity NAT), limited running time, stateless, limited cache between invocations, lack of control of scheduling

25

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

Applications
 Embarrassingly-Parallel Use Cases

 Stateless image/video processing (thumbnails, encoding, rendering)
 ML inference/scoring (e.g., object classification and detection)
 Distributed compilation, unit testing

 Data Analytics – CloudSort
(http://sortbenchmark.org/)
 Minimum cost for sorting 100TB
 500x slower on serverless compared to VMs  reason: slow data shuffling
 Multi-round, hybrid shuffle (w/ same range partitioner)

 Small, fast storage (e.g., Redis)
for intermediates per round

 Large, slow storage (S3) output
 Final merge of runs into S3

FaaS: Serverless Database Systems

[Qifan Pu, Shivaram Venkataraman, Ion Stoica:
Shuffling, Fast and Slow: Scalable Analytics on
Serverless Infrastructure. NSDI 2019] (Locus)

Presenter
Presentation Notes
Note: S3: saturates at make IOPs independent of requests, pay per request  many small shuffle files is a problem.

http://sortbenchmark.org/

26

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

FaaS Query Processing – Starling (MIT)
 Motivation

 Avoid pre-provisioning, and data loading
 Pay per query w/ competitive performance
 Tunable cost-performance per query

 Starling Query Processing
 Coordinator compiles queries, and

schedules tasks
 Open input formats (CSV, ORC, Parquet)
 Intermediates stored in S3
 Shuffling: Mitigate many file problem by

writing single file per task, read portions
 Data centric query compilation
 Task pipelining and straggler mitigation

FaaS: Serverless Database Systems

[Matthew Perron, Raul Castro Fernandez,
David J. DeWitt, Samuel Madden:

Starling: A Scalable Query Engine on
Cloud Functions. SIGMOD 2020]

27

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

FaaS Query Processing – Lambada (ETH)
 Potential Analysis

 Simulation of scan 1TB from S3
(2min VM startup, 4s fun startup)

 Short startup + demand scaling
 Interactive analytics on cold data

(e.g., Hydrology, HE Physics)

 Lambada Query Processing
 Driver on client machine

w/ batched, two-level invocation
 Data-parallel execution solely

with serverless workers (lambda funs)
 Parquet scan operator (sel/proj pushdown)
 Exchange operators for join/sort/group-by

(communication through shared storage)

FaaS: Serverless Database Systems

~220 calls/s
(batched)

[Ingo Müller et al: Lambada:
Interactive Data Analytics on Cold

Data Using Serverless Cloud
Infrastructure. SIGMOD 2020]

Presenter
Presentation Notes
Note: two-level invocation: sqrt(P) driver-1st, sqrt(P) each 1st – 2nd level

28

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

FaaS Query Processing – Lambada (ETH), cont.
 Function-to-function TCP Networking

 Problem: FaaS functions behind NAT
 NAT Hole Punching (e.g., P2P research, exchange network addresses)
 Setup and communication processes

 TPC-H
Performance

FaaS: Serverless Database Systems

λ λ

NAT

TCP

Boxer lib intercepts connect(),
exchanges IP info, and established

normal TCP connection

λ
λ

λEC2

Name
service

[Michal Wawrzoniak et al: Boxer:
Data Analytics on Network-enabled

Serverless Platforms, CIDR 2021]

Presenter
Presentation Notes
NAT (network address translation)

29

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

FaaS Query Processing – Cloudburst (UC Berkeley)
 Motivation

 Autoscaling serverless computing,
with low-latency mutable state broader class of apps

 State sharing and mutable caches co-located w/ functions (data locality)

 Architecture
 VM orchestration via

Kubernetes
 Logical disaggregation

with physical co-location
 Functions interact w/

the cache not KV-Store
 Anna periodically

propagates key updates
 Coordination-free consistency

(via lattice data types: MapLattice)

FaaS: Serverless Database Systems

[Vikram Sreekanti et al: Cloudburst:
Stateful Functions-as-a-Service.

PVLDB 13(11) 2020]

Prototype not compatible w/
Public Cloud Lambda Functions

Presenter
Presentation Notes
MapLattice: a convergent and commutative replicated data-types (CRDT), bounded join semilattice -> least upper bound operator is commutative, associative, idempotent

30

706.543 Architecture of Database Systems – 10 Cloud DBMS
Matthias Boehm, Graz University of Technology, WS 2021/22

Summary and Q&A
 Cloud Computing Background
 PaaS: SQL on Hadoop
 SaaS: Cloud DBs and Cloud DWHs
 FaaS: Serverless Database Systems

 Next Lectures (Part C)
 11 Modern Concurrency Control [Jan 19]

 12 Modern Storage and HW Accelerators [Jan 26]

Is FaaS/serverless the right underlying
abstraction for query processing?
(general-purpose, startup time,

price model, elasticity)

	Architecture of DB Systems�10 Cloud DBMSs
	Announcements/Org
	Agenda
	Cloud Computing Background
	Motivation Cloud Computing
	Motivation Cloud Computing, cont.
	Anatomy of a Data Center
	Infrastructure as a Service (IaaS)
	PaaS: SQL on Hadoop
	Data-parallel Computation
	Recap: MapReduce – Execution Model
	A History on “SQL on Hadoop”
	A History on “SQL on Hadoop” – Systems
	A History on “SQL on Hadoop” – SparkSQL
	Example Delta Lake (and Lakehouse Architecture)
	SaaS: Cloud DBs and Cloud DWHs
	Cloud Databases (DBaaS)
	Example Snowflake
	Example Google BigQuery
	Example Amazon Redshift
	Example Microsoft Hyperscale (OLTP)
	Example Dynamo (KV Store)
	FaaS: Serverless Database Systems
	Serverless Computing
	Applications
	FaaS Query Processing – Starling (MIT)
	FaaS Query Processing – Lambada (ETH)
	FaaS Query Processing – Lambada (ETH), cont.
	FaaS Query Processing – Cloudburst (UC Berkeley)
	Summary and Q&A

