
1
SCIENCE
PASSION

TECHNOLOGY

Architecture of DB Systems
11 Modern Concurrency Control
Matthias Boehm, Arnab Phani

Graz University of Technology, Austria

Institute of Interactive Systems and Data Science
Computer Science and Biomedical Engineering

BMK endowed chair for Data Management

Last update: Jan 18, 2022

2

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Announcements/Org
 #1 Video Recording

 Link in TUbe & TeachCenter (lectures will be public)
 Optional attendance (independent of COVID)
 Virtual lectures (recorded) until end of the year

https://tugraz.webex.com/meet/m.boehm

 #2 Programming Projects
 Deadline Reminder: Jan 21, 11.59pm, submission in TeachCenter
 Preliminary Perf Target: #pcores/2 (see 03 Data Layouts and Bufferpools)
 Team size has impact on quality/effort threshold but not on score
 https://mboehm7.github.io/teaching/ws2122_adbs/Project_Setup_v4.zip

 #3 Oral Exams
 Oral exams, 45min each, via

https://tugraz.webex.com/meet/m.boehm
 Exam Slots: Feb 7/8, Feb 24/25

https://doodle.com/poll/zqiat5svr4xng7g4

https://tugraz.webex.com/meet/m.boehm
https://mboehm7.github.io/teaching/ws2122_adbs/Project_Setup_v4.zip
https://tugraz.webex.com/meet/m.boehm
https://doodle.com/poll/zqiat5svr4xng7g4

3

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Agenda
 TX Processing Background
 Pessimistic and Optimistic Concurrency Control
 Multi-Version Concurrency Control
 Excursus: Coordination Avoidance

4

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

TX Processing Background

5

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Transaction (TX) Processing

 Goal: Transaction Processing
 #1 Locking and concurrency control to ensure #1 correctness
 #2 Logging and recovery to ensure #2 reliability

DBMS

DBs

DBS

User 1
User 2

User 3

#1 Multiple users
 Correctness?

#2 Various failures
(TX, system, media)
 Reliability?

read/write TXs

Disk failure
Crash/power

failure

Network
failure

Constraint
violations

Deadlocks

TX Processing Background

6

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Terminology of Transactions
 Database Transaction

 A transaction (TX) is a series of steps that brings a database from
a consistent state into another (not necessarily different) consistent state

 ACID properties (atomicity, consistency, isolation, durability)

 Terminology
by Example

TX Processing Background

START TRANSACTION ISOLATION LEVEL SERIALIZABLE;
UPDATE Account SET Balance=Balance-100

WHERE AID = 107;
UPDATE Account SET Balance=Balance+100

WHERE AID = 999;

SELECT Balance INTO lbalance
FROM Account WHERE AID=107;

IF lbalance < 0 THEN
ROLLBACK TRANSACTION;

END IF
COMMIT TRANSACTION;

#2 Start/begin of TX (BOT/BT)

#4 Abort/rollback TX
(unsuccessful end of
transaction, EOT/ET) #5 Commit TX

(successful end of
transaction, EOT/ET)

#1 Isolation level (defined
by addressed anomalies)

#3 Reads and writes of
data objects

#6 Savepoints
(checkpoint for
partial rollback)

7

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Database (Transaction) Log
 Database Architecture

 Page-oriented storage on disk and
in memory (DB buffer)

 Dedicated eviction algorithms
 Modified in-memory pages marked as

dirty, flushed by cleaner thread
 Log: append-only TX changes
 Data/log often placed on different devices

and periodically archived (backup + truncate)

 Write-Ahead Logging (WAL)
 The log records representing changes to some (dirty)

data page must be on stable storage before the data page (UNDO - atomicity)
 Force-log on commit or full buffer (REDO - durability)
 Recovery: forward (REDO) and

backward (UNDO) processing
 Log sequence number (LSN)

DBMS

DB Buffer Log
Buffer

User 1
User 2

User 3

P1

P7 P3’

Data Log

P7 P3

[C. Mohan, Donald J. Haderle, Bruce G. Lindsay,
Hamid Pirahesh, Peter M. Schwarz: ARIES: A

Transaction Recovery Method Supporting Fine-
Granularity Locking and Partial Rollbacks Using

Write-Ahead Logging. TODS 1992]

TX Processing Background

8

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Isolation Levels
 Different Isolation Levels

 Tradeoff Isolation vs performance per session/TX
 SQL standard requires guarantee against lost updates for all

 SQL Standard Isolation Levels

 Serializable w/ highest guarantees
(pseudo-serial execution)

 How can we enforce these isolation levels?
 User: set default/transaction isolation level (mixed TX workloads possible)
 System: dedicated concurrency control strategies + scheduler

TX Processing Background

Isolation Level Lost
Update

Dirty
Read (P1)

Unrepeatable
Read (P2)

Phantom
Read (P3)

READ UNCOMMITTED No* Yes Yes Yes

READ COMMITTED No* No Yes Yes

REPEATABLE READ No* No No Yes

[SERIALIZABLE] No* No No No

SET TRANSACTION
ISOLATION LEVEL
READ COMMITTED

* Lost update potentially w/
different semantics in standard

Presenter
Presentation Notes
SQL Standard (02 Foundations WD2011, page 134): The four transaction isolation levels guarantee that each SQL-transaction will be executed completely or not at all, and that no updates will be lost. The transaction isolation levels are different with respect to phenomena P1, P2, and P3. Table 8, “SQL-transaction isolation levels and the three phenomena” specifies the phenomena that are possible and not possible for a given transaction isolation level.

9

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Excursus: A Critique of SQL Isolation Levels
 Summary

 Criticism: SQL standard isolation levels are
ambiguous (strict/broad interpretations)

 Additional anomalies: dirty write, cursor lost update,
fuzzy read, read skew, write skew

 Additional isolation levels: cursor stability and snapshot isolation

 Snapshot Isolation (< Serializable)
 Type of optimistic concurrency control via multi-version concurrency control
 TXs reads data from a snapshot of committed data when TX started
 TXs never blocked on reads, other TXs data invisible
 TX T1 only commits if no other TX wrote the same data items

in the time interval of T1

 Current Status?
 “SQL standard that fails to accurately define database isolation levels and

database vendors that attach liberal and non-standard semantics”

TX Processing Background

[Hal Berenson, Philip A. Bernstein,
Jim Gray, Jim Melton, Elizabeth J.

O'Neil, Patrick E. O'Neil: A Critique
of ANSI SQL Isolation Levels.

SIGMOD 1995]

[http://dbmsmusings.blogspot.com/2019/05/
introduction-to-transaction-isolation.html]

Presenter
Presentation Notes
Problems SQL: only three anomalies considered, no precise definition of state to expect, no handling of snapshot isolation, different definitions of serializable (serial order, none of the three anomalies)

Examples:
Dirty writes: T1 and T2 write to objects that together  might violate constraints
Write skew: T1 reads x and y, T2 reads x and y and writes x, T1 writes y  again constraint violations

http://dbmsmusings.blogspot.com/2019/05/introduction-to-transaction-isolation.html

10

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Excursus: Isolation Levels in Practice
 Default and Maximum

Isolation Levels for “ACID”
and “NewSQL” DBs
[as of 2013]
 3/18 SERIALIZABLE

by default
 8/18 did not provide
SERIALIZABLE at all

TX Processing Background

Beware of defaults, even though
the SQL standard says

SERIALIZABLE is the default

[Peter Bailis, Alan Fekete, Ali Ghodsi,
Joseph M. Hellerstein, Ion Stoica: HAT,
Not CAP: Towards Highly Available
Transactions. HotOS 2013]

11

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Serializability Theory
 Operations of Transaction Tj

 Read and write operations of A by Tj: rj(A) wj(A)
 Abort of transaction Tj: aj (unsuccessful termination of Tj)
 Commit of transaction Tj: cj (successful termination of Tj)

 Schedule S
 Operations of a transaction Tj are executed in order
 Multiple transactions may be executed concurrently
 Schedule describes the total ordering of operations

 Equivalence of Schedules S1 and S2
 Read-write, write-read, and write-write dependencies on data object A

executed in same order:

TX Processing Background

𝑟𝑟𝑖𝑖 𝐴𝐴 <𝑆𝑆𝑆 𝑤𝑤𝑗𝑗(𝐴𝐴) ⇔ 𝑟𝑟𝑖𝑖 𝐴𝐴 <𝑆𝑆2 𝑤𝑤𝑗𝑗(𝐴𝐴)
𝑤𝑤𝑖𝑖 𝐴𝐴 <𝑆𝑆𝑆 𝑟𝑟𝑗𝑗(𝐴𝐴) ⇔ 𝑤𝑤𝑖𝑖 𝐴𝐴 <𝑆𝑆2 𝑟𝑟𝑗𝑗(𝐴𝐴)
𝑤𝑤𝑖𝑖 𝐴𝐴 <𝑆𝑆𝑆 𝑤𝑤𝑗𝑗(𝐴𝐴) ⇔ 𝑤𝑤𝑖𝑖 𝐴𝐴 <𝑆𝑆2 𝑤𝑤𝑗𝑗(𝐴𝐴)

Ti Tj

S

12

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Serializability Theory, cont.
 Example Serializable Schedules

 Input TXs

 Serial
execution

 Equivalent
schedules

 Wrong
schedule

 Serializability Graph (conflict graph)
 Operation dependencies (read-write, write-read, write-write) aggregated
 Nodes: transactions; edges: transaction dependencies
 Transactions are serializable (via topological sort) if the graph is acyclic
 Beware: Serializability Theory considers only successful transactions,

which disregards anomalies like dirty read that might happen in practice

TX Processing Background

T1: BOT r1(A) w1(A) r1(B) w1(B) c1
T2: BOT r2(C) w2(C) r2(A) w2(A) c2

r1(A) w1(A) r1(B) w1(B) c1 r2(C) w2(C) r2(A) w2(A) c2

r1(A) r2(C) w1(A) w2(C) r1(B) r2(A) w1(B) w2(A) c1 c2
r1(A) w1(A) r2(C) w2(C) r1(B) w1(B) r2(A) w2(A) c1 c2

r1(A) r2(C) w2(C) r2(A) w1(A) r1(B) w1(B) w2(A) c1 c2

13

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Pessimistic and Optimistic Concurrency
Control

14

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Overview Concurrency Control
 Terminology

 Lock: logical synchronization of TXs access to database objects (row, table, etc)
 Latch: physical synchronization of access to shared data structures

 #1 Pessimistic Concurrency Control
 Locking schemes (lock-based database scheduler)
 Full serialization of transactions

 #2 Optimistic Concurrency Control (OCC)
 Optimistic execution of operations, check of conflicts (validation)
 Optimistic and timestamp-based database schedulers

 #3 Mixed Concurrency Control (e.g., PostgreSQL)
 Combines locking and OCC
 Might return synchronization errors

Pessimistic and Optimistic Concurrency Control

ERROR: could not serialize access
due to concurrent update

ERROR: deadlock detected

15

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Locking Schemes
 Compatibility of Locks

 X-Lock (exclusive/write lock)
 S-Lock (shared/read lock)

 Multi-Granularity Locking
 Hierarchy of DB objects
 Additional intentional IX and IS locks

Pessimistic and Optimistic Concurrency Control

None S X

S Yes Yes No

X Yes No No

Existing Lock

Requested
Lock

IS

IS

IS

DB

Table

Page

Row

None S X IS IX

S Yes Yes No Yes No

X Yes No No No No

IS Yes Yes No Yes Yes

IX Yes No No Yes Yes

S

16

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Two-Phase Locking (2PL)
 Overview

 2PL is a concurrency protocol that guarantees SERIALIZABLE
 Expanding phase (growing): acquire locks needed by the TX
 Shrinking phase: release locks acquired by the TX

(can only start if all needed locks acquired)

Pessimistic and Optimistic Concurrency Control

of

 lo
ck

s

Time
BOT EOT

Phase 1
Expanding

Phase 2
Shrinking

lock R

lock R

lock S

TX1 TX2

update R
unlock R

abort
Dirty R

read R

Dirty Read Problem

17

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Two-Phase Locking, cont.
 Strict 2PL (S2PL) and Strong Strict 2PL (SS2PL)

 Problem: Transaction rollback can cause (Dirty Read)
 Release all X-locks (S2PL) or X/S-locks (SSPL) at end of transaction (EOT)

 Strict 2PL w/ pre-claiming (aka conservative 2PL)
 Problem: incremental expanding can cause deadlocks for interleaved TXs
 Pre-claim all necessary locks (only possible if entire TX known + latches)

Pessimistic and Optimistic Concurrency Control

of
locks

Time
BOT EOT

Strict 2PL prevents
dirty reads and thus

cascading abort

of
locks

Time
BOT EOT

Strict 2PL w/ preclaiming
prevents deadlocks

18

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

2PL – Deadlocks
 Deadlock Scenario

 Deadlocks of concurrent transactions
 Deadlocks happen due to cyclic

dependencies without pre-claiming
(wait for exclusive locks)

 #1 Deadlock Prevention
 Pre-claiming (guarantee if TX known upfront)

 #2 Deadlock Avoidance
 Preemptive vs non-preemptive strategies
 NO_WAIT (if deadlock suspected wrt timestamp TS, abort lock-requesting TX)
 WOUND-WAIT (T1 locks something held by T2  if T1<T2, restart T2)
 WAIT-DIE (T1 locks something held by T2  if T1>T2, abort T1 but keep TS)

 #3 Deadlock Detection (DL_DETECT)
 Maintain a wait-for graph (WFG) of blocked TX (similar to serializability graph)
 Detection of cycles in graph (on timeout)  abort one or many TXs

Pessimistic and Optimistic Concurrency Control

Time

lock R lock S

TX1 TX2

lock R lock S
blocks until TX2

releases S
blocks until TX1

releases R

DEADLOCK, as this
will never happen

[Philip A. Bernstein, Nathan Goodman:
Concurrency Control in Distributed Database

Systems. ACM Comput. Surv. 1981]

Presenter
Presentation Notes
Wound-wait: If older txn locks R held by younger txn -> restart younger
	 if younger txn locks R held by older txn -> younger waits until older finishes

Wait-die: If older txn locks R held by younger txn -> older waits
	 if younger txn locks R held by older txn -> abort & restart younger with same TS

19

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

 Deadlock Scenario
 Transmission delay
 Distributed cyclic dependencies

without pre-claiming
(wait for exclusive locks)

 #1 Deadlock Prevention
 Pre-claiming via a gatekeeper

 #2 Deadlock Avoidance
 WOUND-DIE and WOUND-WAIT with broadcasting states

 #3 Deadlock Detection
 Centralized: Build a global WFG from

all local WFGs
 Hierarchical: Cascade merge the local WFGs
 Distributed: Detect deadlocks locally

and transmit

Excursus: Deadlocks in Distributed TXs
Pessimistic and Optimistic Concurrency Control

TX1 locks R

Node1 Node2

TX2 locks R

blocks until TX1
releases R

blocks until TX2
releases R

TX2 locks R TX1 locks R

TX1

TX2
Node1

[C. Mohan, B. Lindsay, R. Obermarck:
Transaction Management in the R*

Distribute Database Management System.
ACM Trans. Database Syst. 1986]

[Elmagarmid A.K.: A Survey of Distributed
Deadlock Detection Algorithms.

ACM SIGMOD Record 1986]

Presenter
Presentation Notes
Hierarchical deadlock detection algorithms incur less communication overheads compared to centralized.

20

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Basic Timestamp Ordering (BTO)
 Synchronization Scheme

 Transactions get timestamp (or version) TS(Tj) at BOT
 Each data object A has readTS(A) and writeTS(A)
 Use timestamp comparison to validate access  serialized schedule

 Read Protocol Tj(A)
 If TS(Tj) >= writeTS(A): allow read, set readTS(A) = max(TS(Tj), readTS(A))
 If TS(Tj) < writeTS(A): abort Tj (older than last modifying TX)

 Write Protocol Tj(A)
 If TS(Tj) >= readTS(A) & TS(Tj) >= writeTS(A): allow write, set writeTS(A)=TS(Tj)
 If TS(Tj) < readTS(A): abort Tj (older than last reading TX)
 If TS(Tj) < writeTS(A): abort Tj (older than last modifying TX)

 BEWARE: BTO requires handling of dirty reads, recoverability in general
(e.g., via abort or versions)
 Strict Timestamp Ordering (dirty bit)

w/ deadlock avoidance techniques

Pessimistic and Optimistic Concurrency Control

[Philip A. Bernstein, Nathan
Goodman: Concurrency Control

in Distributed Database Systems.
ACM Comput. Surv. 1981]

[Stephan Wolf et al: An Evaluation of Strict
Timestamp Ordering Concurrency Control for

Main-Memory Database Systems. IMDM@
VLDB 2013 (Revised Selected Papers)]

Presenter
Presentation Notes
“It generates serializable schedules, but does not guarantee recoverability. In fact, aborted transactions can cause inconsistency, as another transaction which accessed dirty data could have already committed.”

21

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Excursus: BTO in Project WS20/21 Ref Impl
 Overview TX Processing

 Implements variant of basic timestamp ordering (w/ handling of dirty reads)
 TX log for UNDO of aborted transactions
 TIDs: __sync_fetch_and_add(&VAR,1)

 #1 Basic TO
 isReadable: TID >= WTS
 IsWriteable: TID >= max(WTS, RTS)

 #2 Basic TO w/ Read Committed
 Basic TO w/ isReadable: TID >= WTS

&& !(TID != WTS && scanTXTable(ix, WTS))

 #3 Basic TO w/ Serializable
 Basic TO w/ read committed
 Deleted bit, forced cleanup in epochs (∄ TS < max(RTS,WTS))

Pessimistic and Optimistic Concurrency Control

NUM_TXN_FAIL: 0
NUM_TXN_COMP: 16,000,000
Time to run: 15.394s.

NUM_TXN_FAIL: 0
NUM_TXN_COMP: 16,000,000
Time to run: 15.223s.

./speed_test 1468 0 0 0 0 \
4000 160000 100

NotImplementedException

22

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Optimistic Concurrency Control (OCC)
 #1 Read Phase

 Initial reads from DB, repeated reads and writes into TX-local buffer
 Maintain ReadSet(Tj) and WriteSet(Tj) per transaction Tj

 TX seen as read-only transaction on database

 #2 Validation Phase
 Check read/write and write/write conflicts, abort on conflicts
 BOCC (Backward-oriented concurrency control) – check all older TXs Ti

that finished (EOT) while Tj was running (𝐸𝐸𝐸𝐸𝐸𝐸 𝑇𝑇𝑖𝑖 ≥ 𝐵𝐵𝐵𝐵𝐵𝐵(𝑇𝑇𝑗𝑗))

 Serializable: if 𝐸𝐸𝐸𝐸𝐸𝐸 𝑇𝑇𝑖𝑖 < 𝐵𝐵𝐵𝐵𝐵𝐵(𝑇𝑇𝑗𝑗) or 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑇𝑇𝑖𝑖 ∩ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑇𝑇𝑗𝑗 = ∅
 Snapshot isolation: 𝐸𝐸𝑂𝑂𝑂𝑂 𝑇𝑇𝑖𝑖 < 𝐵𝐵𝑂𝑂𝑂𝑂(𝑇𝑇𝑗𝑗) or 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑇𝑇𝑖𝑖 ∩𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆 𝑇𝑇𝑗𝑗 = ∅

 FOCC (Forward-oriented concurrency control) – check running TXs

 #3 Write Phase
 Successful TXs with write operations propagate their local buffer

into the database and log

Pessimistic and Optimistic Concurrency Control

Presenter
Presentation Notes
Write Phase: unsuccessful TXs -> simply discard the TX-local buffer

23

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Timestamp Allocation
 #1 Mutex
 #2 Atomic add / Batched Atomics
 #3 Decentralized / CPU Clock
 #4 Hardware (CPU HW counter)

Pessimistic and Optimistic Concurrency Control

[Xiangyao Yu, George Bezerra, Andrew Pavlo,
Srinivas Devadas, Michael Stonebraker: Staring into

the Abyss: An Evaluation of Concurrency Control
with One Thousand Cores. PVLDB 8(3) 2014]

[Stephen Tu, Wenting Zheng, Eddie Kohler,
Barbara Liskov, Samuel Madden: Speedy

transactions in multicore in-memory
databases. SOSP 2013]

Presenter
Presentation Notes
#4 Decentralized / Clock
Worker-local on validate
Worker-local time + threadID

24

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Multi-Version Concurrency Control
(MVCC)

25

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Snapshot Isolation w/ Snapshots
 #1 Shadow Storage
 #2 Snapshots via Fork

 Partitioned, single-threaded OLTP ops
 Snapshots via fork()

+ copy-on-write

 Excursus: Query Processing
on Prefix Trees (via fork)

Multi-Version Concurrency Control

[Alfons Kemper, Thomas Neumann:
HyPer: A hybrid OLTP&OLAP main

memory database system based on
virtual memory snapshots. ICDE 2011]

[Matthias Boehm Patrick Lehmann
Peter Benjamin Volk Wolfgang Lehner:
Query Processing on Prefix Trees,
HPI Future SOC Lab 2011]

26

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

MVCC Overview
 MVCC Motivation

 Read TXs without need for locks, read sets, or copies
(fine-grained management of individual versions)

 Copy-on-write (readers never block writers), garbage collection when safe
 Additional benefits: time travel, clear semantics, snapshot isolation
 Mixed HTAP workloads  focus of many recent systems

 Design Decisions
 #1 Concurrency Control Protocol
 #2 Version Storage

 Append-only, time-travel, delta
 Oldest-to-newest/newest-to-oldest

 #3 Garbage Collection
 Tuple (background, coop), TX-level

 #4 Index Management
 Logical, physical pointers

Multi-Version Concurrency Control

[Andy Pavlo: Advanced Database
Systems – Multi-Version Concurrency

Control (Design Decisions), CMU 2020]

[Yingjun Wu, Joy Arulraj, Jiexi Lin,
Ran Xian, Andrew Pavlo: An

Empirical Evaluation of In-Memory
Multi-Version Concurrency Control.

PVLDB 10(7) 2017]

27

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Version Storage
 Example Hyper

 In-place update, backward delta in UNDO buffer
 Almost no storage overhead (VersionVector), TX-local commit processing
 Newest-to-oldest (preference for fast analytical queries)

Multi-Version Concurrency Control

Recently
Committed

Active TX

 Transfers
of 1 unit

[Thomas Neumann, Tobias Mühlbauer, Alfons Kemper:
Fast Serializable Multi-Version Concurrency Control for

Main-Memory Database Systems. SIGMOD 2015]

Abort TX write-write conflicts on uncommitted changes

28

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Serializability Validation
 (Extended) Precision Locking

 Predicate logging: Instead of maintaining read-set, store read predicates of
index and table scan of validated Ti in predicate tree (PT)

 Recap: Serializable: if 𝐸𝐸𝐸𝐸𝐸𝐸 𝑇𝑇𝑖𝑖 < 𝐵𝐵𝐵𝐵𝐵𝐵(𝑇𝑇𝑗𝑗) or 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑇𝑇𝑖𝑖 ∩ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑇𝑇𝑗𝑗 = ∅
 Probe UNDO buffers (write set) of all Tj against predicate tree

Multi-Version Concurrency Control

[Thomas Neumann, Tobias Mühlbauer, Alfons
Kemper: Fast Serializable Multi-Version
Concurrency Control for Main-Memory

Database Systems. SIGMOD 2015]

AND

OR

Predicate Tree of Ti

Abort Ti if a single UNDO buffer’s
data point matches

29

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Excursus: Load Isolation in Teradata DB
 Overview

 Single loader/writer, multiple readers
 Writer session can select MVCC or Serializability
 Append only version storage in the main table

 Read condition (compiled as selection predicates)

Multi-Version Concurrency Control

RLId Cols

1,0 1,2,3

3,0 2,2,3

1,3 1,2,3

Reader w/ ReadLoadID = 2

ins_loaded <= ReadLoadID and del_loaded > ReadLoadID

ins,del

[https://docs.teradata.com/r/
w4DJnG9u9GdDlXzsTXyItA/
S~gx1XKjg4ROKw2~8c01jQ]

Presenter
Presentation Notes
Designed for read-heavy analytical query processing with periodic data loading.

https://docs.teradata.com/r/w4DJnG9u9GdDlXzsTXyItA/S%7Egx1XKjg4ROKw2%7E8c01jQ

30

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Garbage Collection

 #1 Tuple-level
Garbage Collection
 Background vacuuming
 Cooperative cleaning

on traversal)

 #2 Transaction-level
 E.g., by epoch

 Deferred Action Framework (DAF)
 Maintenance tasks for GC, plan cache

invalidation, data transformation

Multi-Version Concurrency Control

[Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, Andrew
Pavlo: An Empirical Evaluation of In-Memory Multi-

Version Concurrency Control. PVLDB 10(7) 2017]

[Ling Zhang et al: Everything is a Transaction:
Unifying Logical Concurrency Control and

Physical Data Structure Maintenance in
Database Management Systems, CIDR 2021]

R/W: 80/20

R/W: 80/20

R/W: 20/80

R/W: 20/80

31

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Comparison (simulated)

 Read-only
Workload

 Write-intensive
Workload
(medium contention)

Multi-Version Concurrency Control

[Xiangyao Yu, George Bezerra, Andrew Pavlo,
Srinivas Devadas, Michael Stonebraker: Staring into

the Abyss: An Evaluation of Concurrency Control
with One Thousand Cores. PVLDB 8(3) 2014]

Timestamp
Allocation

Lock
Thrashing

Abort
Rates

Presenter
Presentation Notes
Workload: YCSB (key-value store)

32

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Excursus: Coordination Avoidance

33

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Overview Coordination Avoidance
 Overview

 Ensure application-level invariants and convergence instead of (serializability
vs weaker) with as little coordination as possible (different approaches)

Excursus: Coordination Avoidance

[Peter Bailis, Ali Ghodsi, Joseph M.
Hellerstein, Ion Stoica: Bolt-on causal
consistency. SIGMOD 2013]

With Transactions Without Transactions

[Chenggang Wu, Jose M. Faleiro, Yihan Lin,
Joseph M. Hellerstein: Anna: A KVS for Any
Scale. ICDE 2018]

[Chenggang Wu, Vikram Sreekanti, Joseph
M. Hellerstein: Autoscaling Tiered Cloud
Storage in Anna. PVLDB 12(6) 2019]

[Peter Alvaro, Neil Conway, Joseph M.
Hellerstein, William R. Marczak:
Consistency Analysis in Bloom: a CALM and
Collected Approach. CIDR 2011]

[Peter Alvaro: Data-centric Programming for
Distributed Systems. PHD UC Berkeley 2015]

[Peter Bailis et al.: Coordination
Avoidance in Database Systems.
PVLDB 8(3) 2014]

[Peter Bailis: Coordination
Avoidance in Distributed Databases.
PhD UC Berkeley 2015]

Presenter
Presentation Notes
Peter Bailis 2017 SIGMOD Jim Gray Doctoral Dissertation Award
CALM: Consistency and Logical Monotonicity

34

706.543 Architecture of Database Systems – 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2021/22

Summary and Q&A
 TX Processing Background
 Pessimistic and Optimistic Concurrency Control
 Multi-Version Concurrency Control
 Excursus: Coordination Avoidance

 Next Lectures (Part C)
 12 Modern Storage and HW Accelerators [Jan 26]

	Architecture of DB Systems�11 Modern Concurrency Control
	Announcements/Org
	Agenda
	TX Processing Background
	Transaction (TX) Processing
	Terminology of Transactions
	Database (Transaction) Log
	Isolation Levels
	Excursus: A Critique of SQL Isolation Levels
	Excursus: Isolation Levels in Practice
	Serializability Theory
	Serializability Theory, cont.
	Pessimistic and Optimistic Concurrency Control
	Overview Concurrency Control
	Locking Schemes
	Two-Phase Locking (2PL)
	Two-Phase Locking, cont.
	2PL – Deadlocks
	Excursus: Deadlocks in Distributed TXs
	Basic Timestamp Ordering (BTO)
	Excursus: BTO in Project WS20/21 Ref Impl
	Optimistic Concurrency Control (OCC)
	Timestamp Allocation
	Multi-Version Concurrency Control�(MVCC)
	Snapshot Isolation w/ Snapshots
	MVCC Overview
	Version Storage
	Serializability Validation
	Excursus: Load Isolation in Teradata DB
	Garbage Collection
	Comparison (simulated)
	Excursus: Coordination Avoidance
	Overview Coordination Avoidance
	Summary and Q&A

