

SCIENCE PASSION TECHNOLOGY

Data Management 01 Introduction and Overview

Matthias Boehm

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMK endowed chair for Data Management

- #1 Video Recording
 - Link in TUbe & TeachCenter (lectures will be public)
 - Optional attendance (independent of COVID)
 - Hybrid, in-person but video-recorded lectures
 - HS i13 + Webex: <u>https://tugraz.webex.com/meet/m.boehm</u>
- #2 Course Registration (as of Oct 02)
 - Data Management VO: 136 (2)
 - Data Management KU: 125 (0)
 - Databases VU: 130 (2), incl. CSS
- #3 Learning Analytics Students in Focus
 - 5min-overview by Carla Souta Barreiros next lecture
 - Learner's Corner

cisco Webex

TUbe

Total: **236**

Agenda

- Data Management Group
- Course Motivation, Goals, and Outline
- Course Organization and Logistics
- History of Data Management

Data Management Group

https://damslab.github.io/

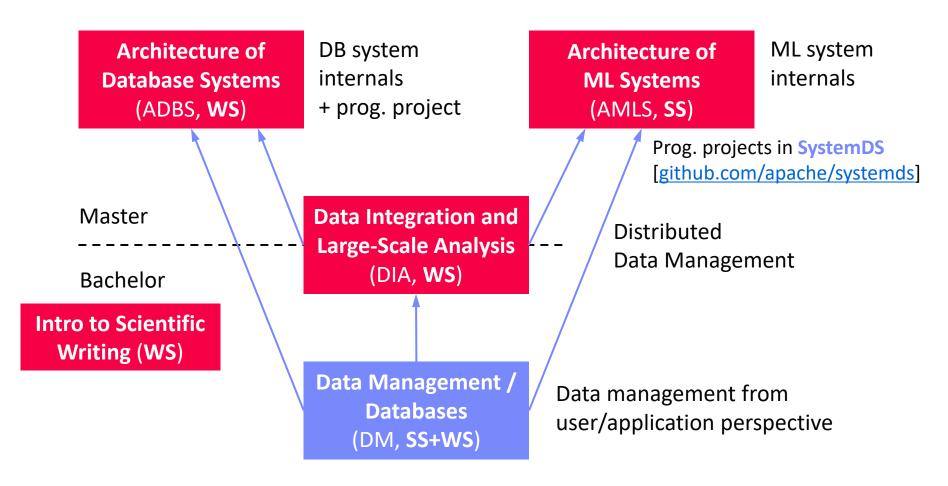
About Me

- **09/2018 TU Graz**, Austria
 - BMK endowed chair for data management
 - Data management for data science

(ML systems internals, end-to-end data science lifecycle)

Center

- 2012-2018 IBM Research Almaden, USA
 - Declarative large-scale machine learning
 - Optimizer and runtime of Apache SystemML
- 2011 PhD TU Dresden, Germany
 - Cost-based optimization of integration flows
 - Systems support for time series forecasting
 - In-memory indexing and query processing

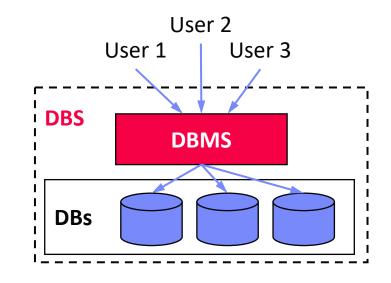

https://github.com/ apache/systemds

Data Management Courses

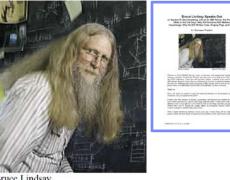
Course Motivation, Goals, and Outline

Database Systems and Modern Data Management

Definition and Impact


Def: Database System

- Overall system of DBMS + DBs
- DBMS: Database Management System (SW to handle DBs)
- DBs: Database (data/metadata collection of conceptual mini-world)
- Note: DB also a short for DBS/DBMS


Importance in Practice

- Market Volume: 10-100B \$US
- Foundation of many applications in various domains

"Relational databases are the foundation of western civilization"

[Marianne Winslett: Bruce Lindsay speaks out: [...]. SIGMOD Record 34(2), 2005]

Bruce Lindsav

INF.01017UF Data Management / 706.010 Databases – 01 Introduction and Overview Matthias Boehm, Graz University of Technology, WS 2021/22

Motivation Database Systems

- Application development and maintenance costs
 - Declarative queries (what not how) and data independence
 - Efficient, correct, and independent data organization, size, access
- Multi-user operations and access control
 - Synchronization of concurrent user queries and updates
 - Enforce access control (e.g., permissions on tables, views)
- Consistency and data integrity
 - Eliminates redundancy and thus, enforces consistency
 - Enforces integrity constraints (e.g., semantic rules)
- Logging and Recovery
 - Recovery of consistent state after HW or SW failure
- Performance and Scalability
 - High performance for large datasets or high transaction throughput
 - Scale to large datasets with low memory requirements

10

Goals

Course Goals

- A: Understanding of database systems (from user perspective)
- B: Understanding of modern data management (from user perspective)

	INF.01017UF (VO) Data Mgmt.	INF.02018UF (KU) Data Mgmt.
706.010 (VU) Databases	Part A 9 Lectures	Part A 3 Exercises
3(2) ECTS	Part B 3 Lectures	Part B 1 Exercise
	3 ECTS	1 ECTS

Meta Goals

- Understand, use, debug, and evaluate data management systems
- Awareness of system alternatives and their tradeoffs
- Fundamental concepts as basis for advanced courses and other areas

11

Part A: Database System Fundamentals

- **01 Introduction and Overview** [Oct 04]
- 02 Conceptual Architecture and Design [Oct 11]
- 03 Data Models and Normalization [Oct 18]
- 04 Relational Algebra and Tuple Calculus [Oct 25]
- 05 Query Languages (SQL, XML, JSON) [Nov 08]
- 06 APIs (ODBC, JDBC, OR frameworks) [Nov 15]
- 07 Physical Design and Tuning [Nov 22]
- 08 Query Processing [Nov 29]
- 09 Transaction Processing and Concurrency [Dec 06]

For course Databases:

part of Exercise 3 is extra credit

Exercise 1: Data Modeling [Nov 02]

Exercise 2: Queries [Nov 30]

Exercise 3:

Tuning

[Dec 21]

Part B: Modern Data Management

- 10 NoSQL (key-value, document, graph, time series) [Dec 13]
- 11 Distributed Storage and Data Analysis [Jan 10]
- 12 Data Stream Processing Systems [Jan 17]

Exercise 4: Spark (<mark>extra credit</mark>) [Jan 18]

- 13 Q&A and exam preparation [Jan 17]
- Final written exam [TBD, Jan 24 / Jan 31?]

WS2021/22: Automated Grading System for Exercises 2, 3, 4 (grading time, and consistent grading)

Course Organization

¹⁴ Basic Course Organization

Staff

- Lecturer: Univ.-Prof. Dr.-Ing. Matthias Boehm, ISDS
 Assistant Lecturer: M.Tech. Arnab Phani, ISDS
- Teaching Assistants:

Nives Križanec, Artem Kroviakov, TBD Thomas Mühlbacher, Ema Salkić, TBD

Language

- Lectures and slides: English
- Communication and exams: English/German

Course Format

- DM VO + KU 2/1 (3+1 ECTS), DB VU 1/1 (3(2) ECTS)
- Weekly lectures (start 6.10pm, including Q&A), attendance optional
- **3+1 exercises** (introduced in lecture) as individual assignments

Course Logistics

- Communication
 - Informal language (first name is fine)
 - Please, immediate feedback (unclear content, missing background)
 - Newsgroup: <u>news://news.tugraz.at/tu-graz.lv.dbase</u> (email for private issues)
 - Office hour: Mo 12.30pm (via <u>https://tugraz.webex.com/meet/m.boehm</u>), or after lecture
- Website
 - https://mboehm7.github.io/teaching/ws2122_dbs/index.htm
 - All course material (lecture slides, exercises) and dates
- Exam
 - Completed mandatory exercises (May 30, Apr 27, May 25, [Jun 22])
 - Final written exam (TBD, doodle for oral exams)
 - DB Grading (30% exercises, 70% final), DM Grading (separate courses)

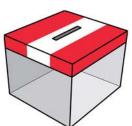
Course Logistics, cont.

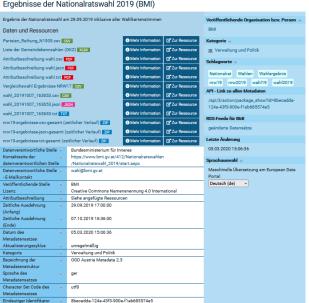
- Exercises
 - Written and programming assignments, submitted through TeachCenter
 - Assignments completed if >50% points in total (but all submitted)
 - Deadlines are important (at most 7 late days in total)
 - Individual assignments (academic honesty / no plagiarism)

SW Tools and Languages

- Open Source PostgreSQL DBMS (setup on your own)
- Distributed FS/object storage and Apache Spark for distributed computation
- Languages for local/distributed programs (of your choice):
 e.g., Python, Java, Scala, C, C++, C#, Rust, Go, etc.

Dataset


- Austrian National Elections 2017 / 2019 with results over time and Graz districts (to be cleaned and prepared \rightarrow Ex 02)
- Clone or download your copy from https://github.com/tugraz-isds/datasets.git
- Find CSV files in <datasets>/elections at


Exercises

- 01 Data modeling (relational schema)
- **02** Data ingestion and SQL query processing
- **03** Physical design tuning, query processing, and transaction processing
- 04 Large-scale data analysis (distributed

www.offenewahlen.at/ www.data.gv.at

Kataloc

Literature

- Not needed for lectures / exercises (course is self-contained), but second perspective on covered topics of first part
- Raghu Ramakrishnan, Johannes Gehrke: Database Management Systems (3. ed.). McGraw-Hill 2003, ISBN 978-0-07-115110-8, pp. I-XXXII, 1-1065
- Jeffrey D. Ullman, Jennifer Widom: A first course in database systems (2. ed.). Prentice Hall 2002, ISBN 978-0-13-035300-9, pp. I-XVI, 1-511
- Ramez Elmasri, Shamkant B. Navathe: Fundamentals of Database Systems, 3rd Edition. Addison-Wesley-Longman 2000, ISBN 978-0-8053-1755-8, pp. I-XXVII, 1-955
- Alfons Kemper, André Eickler: Datenbanksysteme Eine Einführung, 10. Auflage. De Gruyter Studium, de Gruyter Oldenbourg 2015, ISBN 978-3-11-044375-2, pp. 1-879

Additional Perspective:

[Zachary G. Ives, Rachel Pottinger, Arun Kumar, Johannes Gehrke, Jana Giceva: The future of data(base) education: Is the "cow book" dead?, VLDB 2021]

History of Data Management

Cust

Ordr

Parts

History 1960/70s (pre-relational)

Parts

Cust

Ordr

Parts

Dep

Mgr

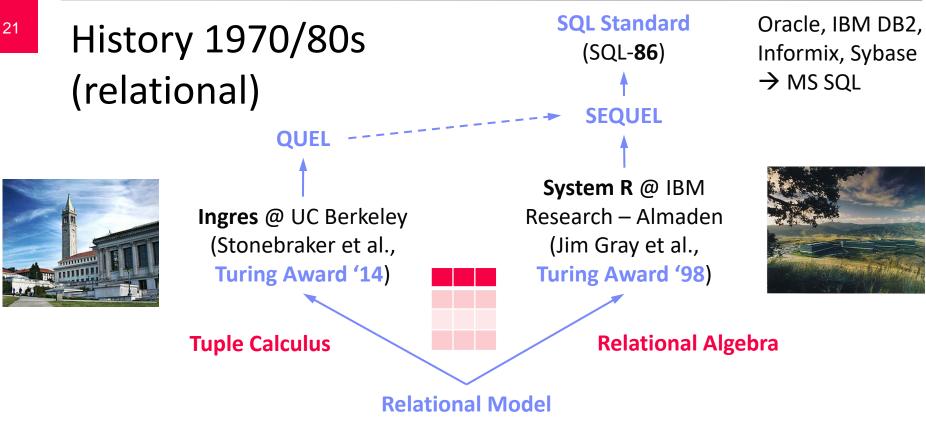
Dep

Emp

Emp

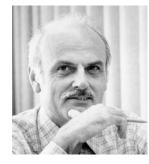
Mgr

- Hierarchical Model
 - Tree of records
 - E.g., IBM Information Management System (IMS) – IMS 15 (Oct 2017)


Network Model

- CODASYL (COBOL, DB interfaces)
- Graph of records
- Charles Bachman (Turing Award '73)
- E.g., Integrated Data Store (IDS)
- Pros and Cons (see NoSQL Doc-Stores)
 - Performance by directly traversing static links
 - Duplicates → inconsistencies on updates, data dependence

History of Data Management



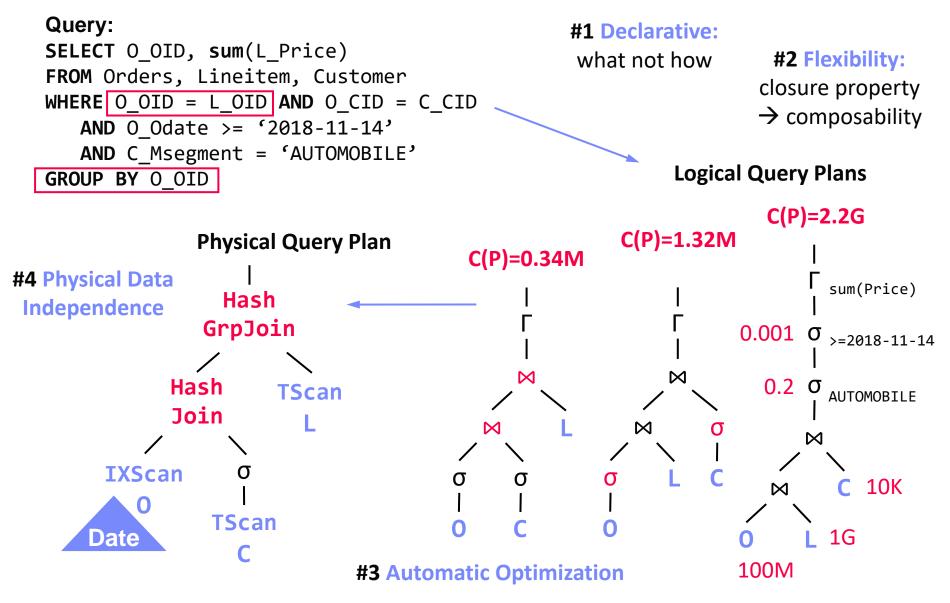
Goal: Data Independence

(physical data independence)

- **Ordering Dependence**
- Indexing Dependence
- Access Path Depend.

Edgar F. "Ted" Codd @ IBM Research (Turing Award '81)

> [E. F. Codd: A Relational Model of Data for Large Shared Data Banks. Comm. ACM 13(6), 1970]



22

Success of SQL / Relational Model

Excursus: PostgreSQL

- History of PostgreSQL (used in the exercises)
 - Postgres is the successor project of commercialized Ingres
 - Focus on abstract data types, commercialized as Illustra
 - Prototype w/ SQL open sourced as Postgres95 → PostgreSQL
 - Heavily used as basis for research projects / startups

Recommended Reading

- Michael Stonebraker: The land sharks are on the squawk box. Commun. ACM 59(2): 74-83 (2016), Turing Award Lecture, <u>https://dl.acm.org/citation.cfm?doid=2886013.2869958</u>
- Video: <u>http://www.youtube.com/watch?v=sEPTZVGk3WY</u>
- Slides: <u>http://vldb.org/2015/wp-content/uploads/2015/09/stonebraker.pdf</u>

History 1980/90/2000s

OLTP ... Online Transaction Processing OLAP ... Online Analytical Processing ETL ... Extract, Transform, Load

- Enterprise DBMS
 - Heavy investment in research and development

 adoption
 - Oracle, IBM DB2, Informix, Sybase, MS SQL, PostgreSQL, MySQL
 - Other technologies: OODBMS, Multimedia, Spatiotemporal, Web, XML
- Information/Data Warehousing (DWH)
 - Workload separation into OLTP and OLAP
 - Classical DWH architecture: operational, staging, DWH, data marts + mining
 - ETL Process (Extract, Transform, Load)
- Different Personas
 - Domain Experts (e.g., BI Tools, SAP R/3)
 - DB Application Developers (e.g., ABAP)
 - DB Developers and DB Admins

ETL DSS analytica	зl
DWH	
SCM, MM, ERP, CRM	

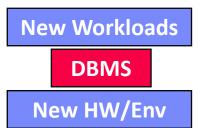
transactional

SOL

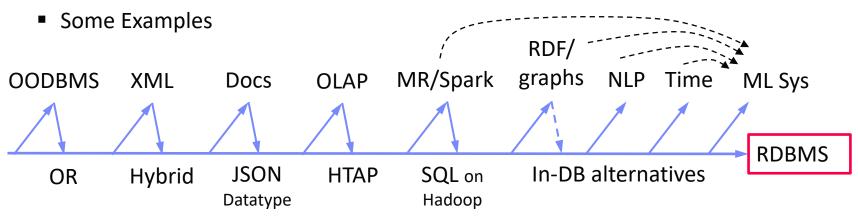
History 2000s / Early 2010s

- Specialized Systems
 - Column stores + compression for OLAP
 - Main memory systems for OLTP and OLAP
 - Data streaming, scientific and graph databases
 - Information extraction / retrieval, and XML
- Other Research Trends
 - Approximate QP / Adaptive QP / tuning tools
 - Large-scale data management (DFS, MR) / cloud computing
- Toward Flexible, Large-Scale
 Data Management (DWH ... a bygone era)
 - MAD Skills (magnetic, agile, deep), MADlib
 - Integration of R, Python in data analysis
 - Open data and its integration
 - Query processing over raw data files

[M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, P. Helland: The End of an Architectural Era (It's Time for a Complete Rewrite). VLDB 2007]



History 2010s – Present


Two Key Drivers of DB Research

- New analysis workloads (NLP, key/value, RDF/graphs, documents, time series, ML) and applications
- New HW/infrastructure (multi-/many-core, cloud, scale-up/ scale-out, NUMA/HBM, RDMA, SSD/NVM, FPGA/GPU/ASIC)

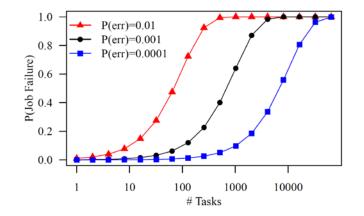
Excursus: A retrospective view of specialized systems

- Goal #1: Avoid boundary crossing → General-purpose
- Goal #2: New workload + Performance → Specialized systems

History 2010s – Present (2)

Motivation NoSQL Systems

- Flexible schema (no upfront costs), scalability, or specific data types
- Relaxed ACID (atomicity, consistency, isolation, durability) requirements
 BASE (basically available, soft state, eventual consistency)
- Example NoSQL Systems (local and distributed):
 - Key/Value-Stores: simple put/get/delete, massive scalability
 - Document-Stores: store nested documents (tree)
 - RDF Stores: store subject-predicate-object triples
 - Graph DBs: store nodes/edges/attributes, vertex-centric
 - Time Series DBs: store sequences of observations


History 2010s – Present (3)

Motivation Large-Scale Data Management

- Massive scalability (data/compute) on demand, fault tolerance, flexibility
- Example Facebook 2014:
 300PB DWH, 600TB daily ingest
- Cost-effective commodity hardware
- Error rate increases with increasing scale

- Distributed file systems w/ replication (e.g., GPFS, HDFS)
- Cloud object storage (e.g., Amazon s3, OpenStack Swift)
- Data-parallel data analysis with Spark/Flink, incl streaming
- Automatic cloud resource elasticity (pay as you go)

Summary and Q&A

- #1 Database Systems
 - Mature and established technology → broadly applicable & eco system
 - General concepts: abstraction, data modeling, query optimization & processing, transaction processing and recovery, physical design and tuning

#2 Modern Data Management

- Multiple specialized systems for specific scale / data types
- General trend toward less upfront cost, flexibility, and higher scalability

→ Variety of data management tools → Course meta goals

- Understand, use, debug, and evaluate data management systems
- Fundamental concepts as basis for advanced courses and other areas

Next Lectures

- 02 Conceptual Architecture and Design [Oct 11] (ER Diagrams)
- **03** Data Models and Normalization [Oct 18] (ERD → Relational Model)

