

SCIENCE PASSION TECHNOLOGY

# Data Management 02 Conceptual Design

#### **Matthias Boehm**

Last update: Oct 11, 2021

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMK endowed chair for Data Management







## Announcements/Org

- #1 Video Recording
  - Link in TeachCenter & TUbe (lectures will be public)
  - Currently via <u>https://tugraz.webex.com/meet/m.boehm</u>

#### #2 Course Registrations SS21

- Data Management (lectures/exercises): 166 (3)
- Databases (combined lectures/exercises): 142 (2)

#### #3 Exercise 1 Published

- Task description published last Friday (discussed today)
- Deadline: Nov 02 in TeachCenter

#### #4 CSS Programming Background

- Exchange w/ David Garcia and Elisabeth Lex
- Design your own app, Informatik I  $\rightarrow$  Python, Foundations of CSS  $\rightarrow$  R

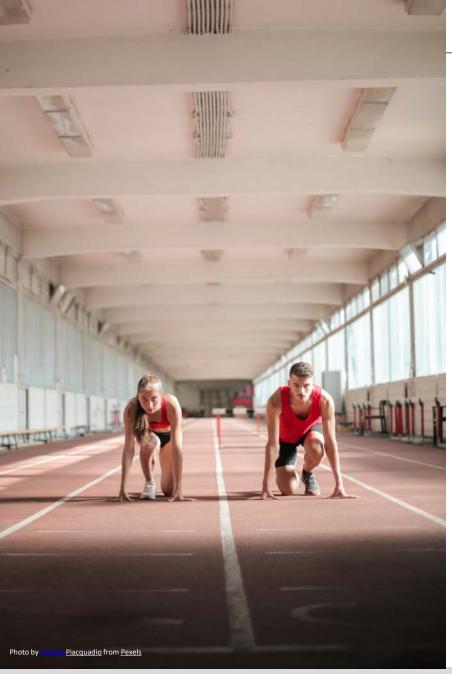


Total: **308** 





# Announcements/Org, cont.


- #5 Study Abroad Fair
  - International Days 2021
  - Oct 19 21, 2021
  - Virtual presentations, drop-in café
  - <u>https://tu4u.tugraz.at/studierende/</u> <u>mein-auslandsaufenthalt/</u> <u>informationsveranstaltungen/international-days-2021/</u>



#### #6 Learning Analytics – Students in Focus

- 5min-overview by Carla Souta Barreiros
- Learner's Corner (next 3 slides)





**TU** Graz

### Students achieve **better academic results** when they plan, monitor and reflect on their learning

Teilnehmer/innen

GruppenBewertungen

 Download der Kursunterlagen
 Ankündigungen

i Beschreibung

 Abschnitte
 Download der Studierenden-Aktivitäten
 Learner's Corner

2 Dashboard
 2 Malender

# You are the first to try the Learner's Corner!

Carla Barreiros | LA Students in Focus 11.10.2021





#### Learner's Corner is now available at TeachCenter

#### PLANNER

5

- Support time management and planning
- Provide progress and course situation at a glance

| 🗹 Vorlesung 🛛 🔽 Prüfur        | ng                            |                                                    |                       | Einstellungen             | Neuer Meilenstein |  |
|-------------------------------|-------------------------------|----------------------------------------------------|-----------------------|---------------------------|-------------------|--|
| Ŷ                             | Ŷ                             | φ                                                  | P                     |                           |                   |  |
| Sep 2021                      | Oct 2021                      | Nov 2021 Dec 2                                     | 2021 Jan 2022         | Feb 2022                  | Mar 2022          |  |
|                               |                               |                                                    |                       |                           |                   |  |
| V 3 Vorlesung P               | 1 Prüfung                     |                                                    |                       |                           |                   |  |
| $\bigcirc$                    |                               | ır, <b>benotete</b> Ereignisse sind mit * markiert |                       |                           |                   |  |
| verpflichtende Ereignisse hab |                               | ır, <b>benotete</b> Ereignisse sind mit * markiert |                       |                           |                   |  |
| verpflichtende Ereignisse hab |                               | ır, <b>benotete</b> Ereignisse sind mit * markiert | Lerntagebuch          |                           |                   |  |
| verpflichtende Ereignisse hab | en eine schwarze Kontu        | Ir, <b>benotete</b> Ereignisse sind mit * markiert |                       | Titel                     | Status            |  |
| $\bigcirc$                    | en eine schwarze Kontu<br>Fag | andere Studierende                                 | Lerntagebuch<br>Datum | Erstellen Sie neue Einträ |                   |  |

#### ACTIVITY GRAPH

- Monitor course online activity

Carla Barreiros | LA Students in Focus 11.10.2021



# Learner's Corner Study

6

- Study **GOal**: evaluate the Learner's Corner and (re)design these learning analytics tools and other tools
- To participate access the study course https://tc.tugraz.at/main/course/view.php?id=4066
  - Step 1: Fill the consent form
  - Step 2: Answer the questionnaire
  - Step 3: Use the Learner's Corner tools regularly
- Give us feedback
  - Forum: <u>https://tc.tugraz.at/main/mod/forum/view.php?id=197530</u>
  - Carla Barreiros: carla.soutabarreiros@tugraz.at





## Agenda

- DB Design Lifecycle
- ER Model and Diagrams
- Exercise 01 Data Modeling



[**Credit:** Alfons Kemper, André Eickler: Datenbanksysteme - Eine Einführung, 10. Auflage. De Gruyter Studium, de Gruyter Oldenbourg 2015, ISBN 978-3-11-044375-2, pp. 1-879]





# **DB** Design Lifecycle

INF.01017UF Data Management / 706.010 Databases – 02 Conceptual Design Matthias Boehm, Graz University of Technology, WS 2021/22





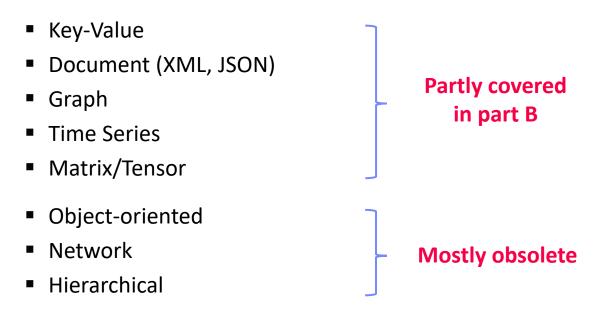
# Data Modeling

- Data Model
  - Concepts for describing data objects and their relationships (meta model)
  - Schema: Description (structure, semantics) of specific data collection








# Data Models

#### Conceptual Data Models

- Entity-Relationship Model (ERM), focus on data, ~1975
- Unified Modeling Language (UML), focus on data and behavior, ~1990

#### Logical Data Models

Relational (Object/Relational)





- #1 Requirements engineering
  - Collect and analyze data and application requirements
  - Specification documents
- #2 Conceptual Design (lecture 02, exercise 1)
  - Model data semantics and structure, independent of logical data model
     > ER model / diagram
- **#3 Logical Design** (lecture 03, exercise 1)
  - Model data with implementation primitives of concrete data model
  - → e.g., relational schema + integrity constraints, views, permissions, etc
- #4 Physical Design (lecture 07, exercise 3)
  - Model user-level data organization in a specific DBMS (and data model)
  - Account for deployment environment and performance requirements





11



### Relevance in Practice

- Analogy ERM-UML
  - Model-driven development (self-documenting, but quickly outdated)
  - But: Once data is loaded, data model and schema harder to change
- Observation: Full-fledged ER modeling rarely used in practice
  - Often the logical schema (relational schema) is directly created, maintained and used for documentation
  - Reasons: redundancy, indirection, single target (relational)
  - Simplified ER modeling used for brainstorming and early ideas

#### Goals

- Understanding of proper database design from conceptual to physical schema
- ER modeling as a helpful tool in database design
- Schema transformation and normalization as blueprint for good designs





# Tool Support

- #1 Visual Design Tools
  - Draw ER diagrams in any presentation software (e.g., MS PowerPoint, LibreOffice)
  - Many desktop or web-based tools support ER diagrams directly (e.g., MS Visio, creately.com)
- #2 Design Tools w/ Code Generation
  - Draw and validate ER diagrams
  - Generate relational schemas as SQL DDL scripts
  - Examples: SAP (Sybase) PowerDesigner, MS Visual Studio plugins (SQL server), etc.

Note: For the exercises, please use basic drawing tools (existing tools use slightly diverging notations)





# Entity-Relationship (ER) Model and Diagrams



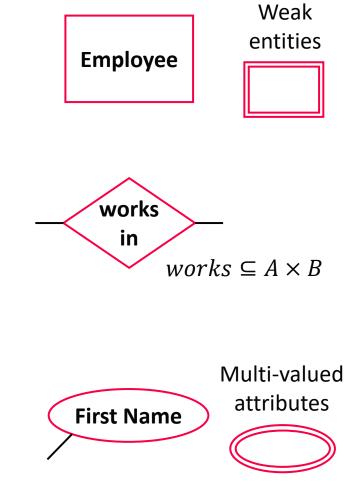
[Peter P. Chen: The Entity-Relationship Model - Toward a Unified View of Data. **ACM Trans. Database Syst. 1(1) 1976**]

[Peter P. Chen: The Entity-Relationship Model: Toward a Unified View of Data. **VLDB 1975**]





# ER Diagram Components (Chen Notation)

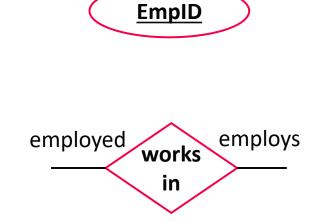

Entity Type (noun)

15

- Entities are objects of the real world
- An entity type (or entity set) represents a collection of entities
- Relationship Type (verb)
  - Relationships are concrete associations of entities
  - Relationship type (or relationship set) or relationship of entity types

#### Attribute

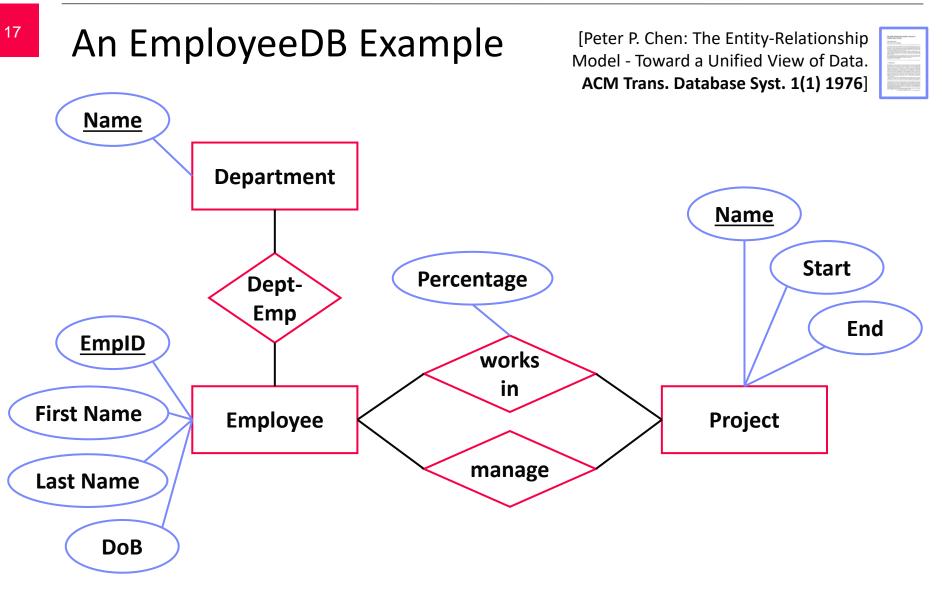
- Entities or relationships are characterized by attribute-value pairs
- Attribute types (or value sets) describe entity and relationship types
- Extended attributes: composite, multi-valued, derived




# ER Diagram Components (Chen Notation), cont.

- Keys
  - Attributes that uniquely identify an entity
  - Every entity type must have such a key
  - Natural or surrogate (artificial) keys

#### Role


- Optional description of relationship types
- Useful for recursive relationships





Entity-Relationship (ER) Model and Diagrams







#### **TU** Graz

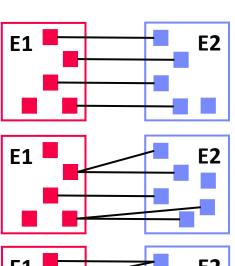
1...[0,1]

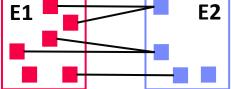
N ... [0,1,N]

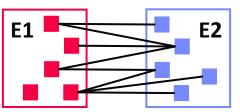
# Multiplicity/Cardinality in Chen Notation



1:1 (one-to-one)


. . .


**E1** 

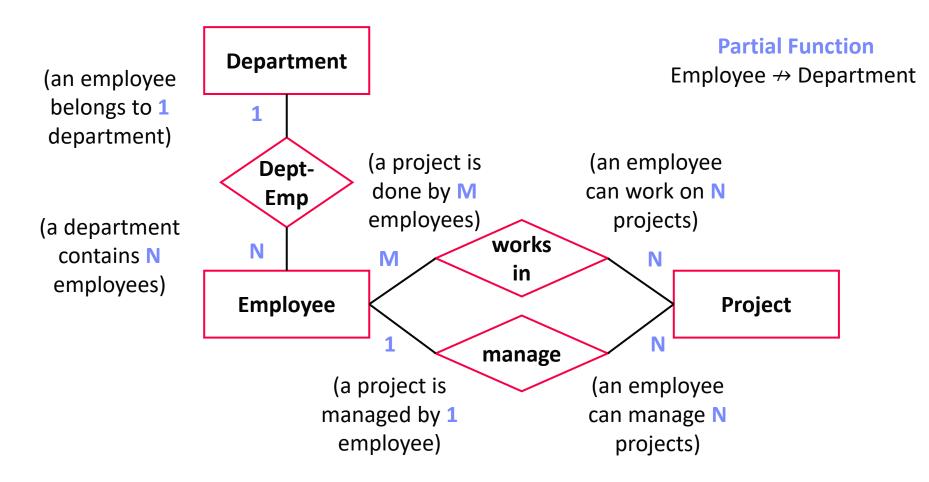

Each e1 relates to at most one e2

R

- Each e2 relates to at most one e1
- 1:N (one-to-many)
  - Each e1 relates to many e2 (0,1,...N)
  - Each e2 relates to at most one e1
- N:1 (many-to-one)
  - Symmetric to 1:N
- N:M (many-to-many)
  - Each e1 relates to many e2 (0,1,...M)
  - Each e2 related to many e1 (0,1,...N)












# An EmployeeDB Example, cont.

[Peter P. Chen: The Entity-Relationship Model - Toward a Unified View of Data. ACM Trans. Database Syst. 1(1) 1976]









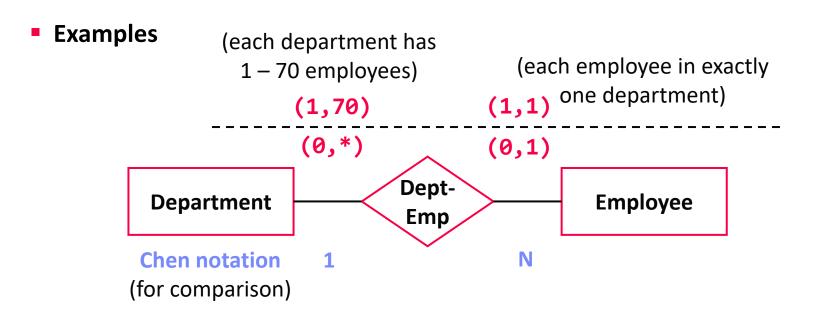
# Multiplicity in Modified Chen Notation

- Extension: C ("choice"/"can") to model 0 or 1, while 1 means exactly 1 and M means at least 1.
- **1:1** [1] to [1]
- **1:C** [1] to [0 or 1]
- 1:M [1] to [at least 1]
- **1:MC** [1] to [arbitrary many]
- C:C [0 or 1] to [0 or 1] → see 1:1 in Chen
- C:M [0 or 1] to [at least 1]
- C:MC [0 or 1] to [arbitrary many] → see 1:N in Chen
- M:M [at least 1] to [at least 1]
- M:MC [at least 1] to [arbitrary many]
- MC:MC [arbitrary many] to [arbitrary many] → see M:N in Chen

INF.01017UF Data Management / 706.010 Databases – 02 Conceptual Design Matthias Boehm, Graz University of Technology, WS 2021/22

4 alternatives (1, C, M, MC)

 $\rightarrow$  4\*4 = 16 combinations


(symmetric combinations omitted)

| 1 1 1 1<br>0 1 1 1 | $n \cdot (n+1)$ |
|--------------------|-----------------|
| 0011               | 2               |
| 0001               |                 |

# (min,max)-Notation

- Alternative Cardinality Notation
  - Indicate concrete min/max constraints

     (each entity is part of at least/at most x relationships)
  - Chen and (min,max) notation generally incomparable
  - Wildcard \* indicates arbitrary many (i.e., N)





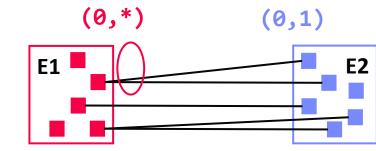
**E2** 

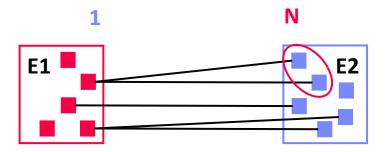
 $(\min_1, \max_1)$   $(\min_2, \max_2)$ 

R

**E1** 

#### TU Graz


# (min,max)-Notation, cont.

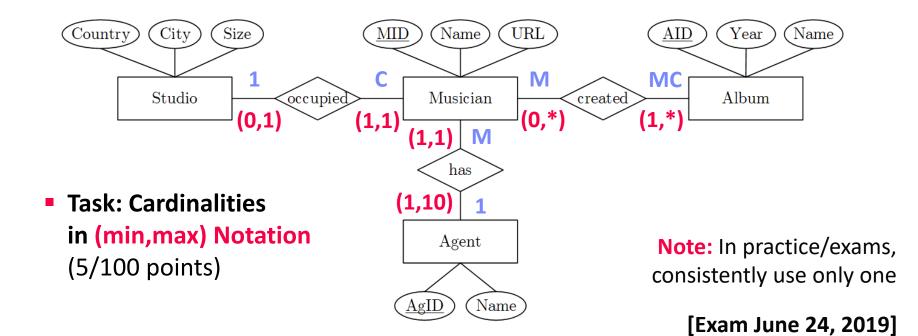

- Problem: Where do these conflicting notations come from?
- Understanding (min, max)-Notation
  - Focus on relationships!
  - Describes number of outgoing relationships for each entity

- Understanding Chen- / Modified-Chen-Notation
  - Focus on entities!
  - Describes number of target entities (over relationships) for each entity





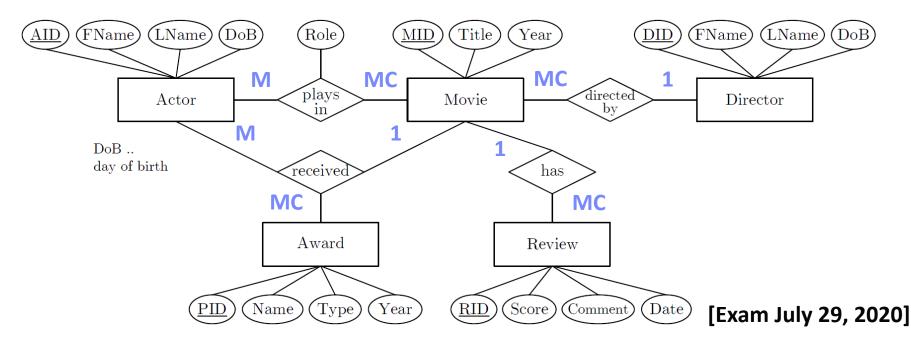





23



# BREAK (and Test Yourself)


- Task: Cardinalities in Modified-Chen Notation (prev. exam 6/100 points)
  - A musician might have created none or arbitrary many albums, and any album is created by at least one musician.
  - Every musician has exactly one agent, and an agent might be responsible for one to ten musicians.
  - Every musician occupies exactly one studio, and musicians never share a studio.





# BREAK (and Test Yourself), cont.

- Task: Cardinalities in Modified-Chen Notation (prev. exam 9/100 points)
  - An actor may play roles in an arbitrary number of movies (incl. none), every movie has a cast of at least one but potentially many actors
  - A movie is directed by 1 director, directors produce arbitrary many movies
  - A movie review refers to 1 movie, but there can be 0-many reviews per movie
  - Actors (incl a single actor) may receive multiple awards for a single movie. An actor can receive only 1 per movie. Awards to 1-many actors are possible.





# Weak Entity Types

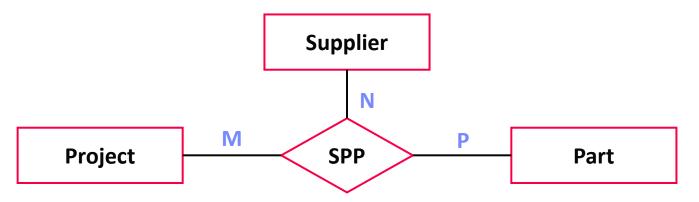
#### Existence Dependencies

- Entities E2 whose existence depends on the other entities E1
- Visualized as a special rectangle with double border
- Primary key of E2 contains primary key of E1
- Relationship between strong and weak entity types 1:N (sometimes 1:1)

#### Examples

- Dependents of an employee (spouse, children)
- Rooms of a building









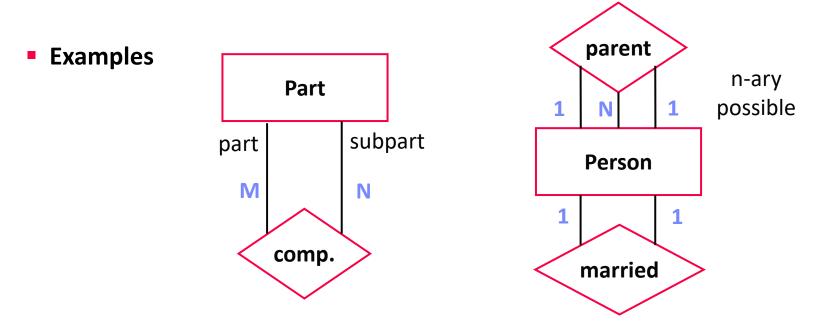

# N-ary Relationships

- Use of n-ary relationships
  - Relationship type among multiple entity types
  - N-ary relationship can be converted to binary relationships
  - Design choice: simplicity and consistency constraints



#### Multiplicity

- 1 Project and 1 Supplier  $\rightarrow$  supply P parts
- I Project and 1 Part → supplied by N suppliers (1 instead of N?)
- 1 Supplier and 1 Part → supply for M projects



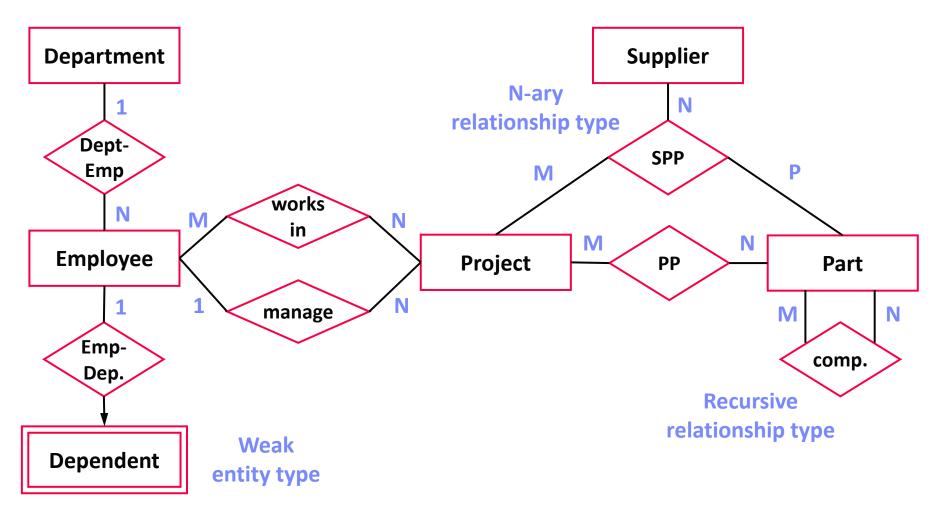





# Recursive Relationships

- Definition
  - Recursive relationships are relations between entities of the same type
  - Use roles to differentiate cardinalities




 Beware of [at least 1] constraints in recursive relationships (e.g., (min,max)-notation, or MC notation)

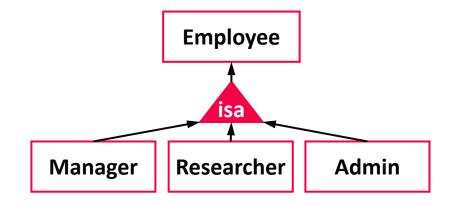


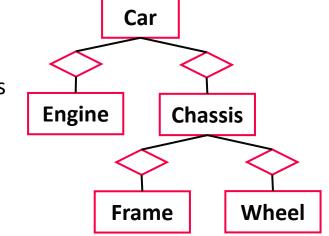


An EmployeeDB Example, cont.

[Peter P. Chen: The Entity-Relationship Model - Toward a Unified View of Data. ACM Trans. Database Syst. 1(1) 1976]






# Specialization and Aggregation

#### Specialization via Subclasses

- Tree of specialized entity types (no multi-inheritance)
- Graphical symbol: triangle (or hexagon, or subset)
- Each entity of subclass is entity of superclass, but not vice versa
- Aggregation (composition, not specialization)
  - #1: Recursive relationship types, or
  - #2: Explicit tree of entity and relationship types
  - Design choice: number of types known and finite, and heterogeneous attributes
- Beware: Simplicity is key









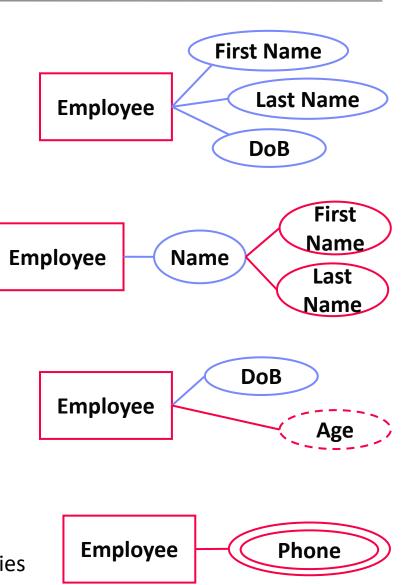
# **Types of Attributes**

Atomic Attributes

30

Basic, single-valued attributes

#### Composite Attributes

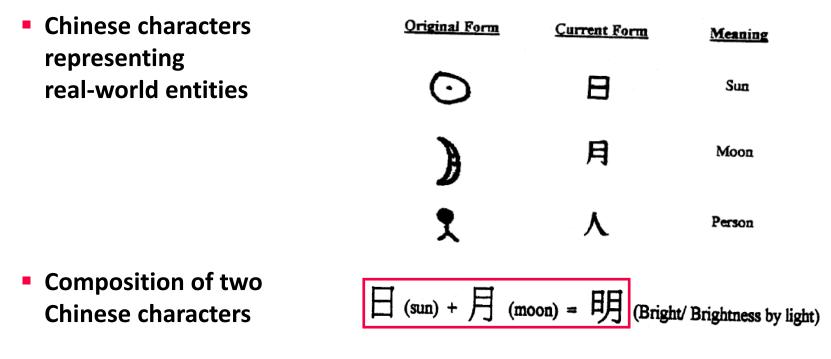

- Attributes as structured data types
- Can be represented as a hierarchy

#### Derived Attributes

- Attributes derived from other data
- Examples: Number of employees in dep, employee age, employee yearly salary

#### Multi-valued Attributes

Attributes with list of homogeneous entries




ISDS

# **Excursus: Influence of Chinese Characters?**

"What does the Chinese character construction principles have to do with ER modeling? The answer is: both Chinese characters and the ER model are trying to model the world – trying to use graphics to represent the entities in the real world. [...]"

[Peter Pin-Shan Chen: Entity-Relationship Modeling: Historical Events, Future Trends, and Lessons Learned. Software Pioneers 2002]







# Design Decisions

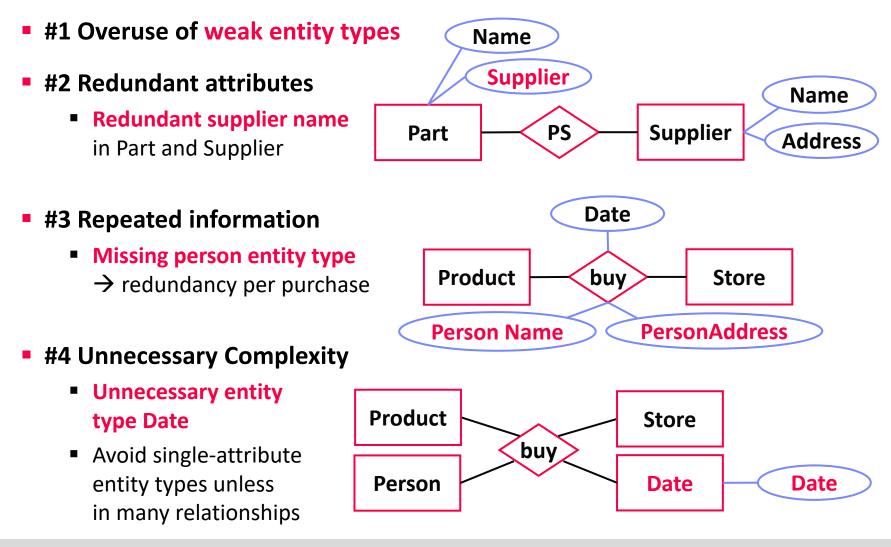
Avoid redundancy Avoid unnecessary complexity

- Meta-Level:
  - Which notations to use (Chen, Modified Chen, (min,max)-notation)?

#### Entities

- What are the entity types (entity vs relationship vs attribute)?
- What are the attributes of each entity type?
- What are key attributes (one or many)?
- What are weak entities (with partial keys)?

#### Relationships


- What are the relationship types between entities (binary, n-ary)?
- What are the attributes of each relationship type?
- What are the cardinalities?

#### Attributes

What are composite, multi-valued, or derived attributes?



# Design Decisions – Examples of Poor Choices



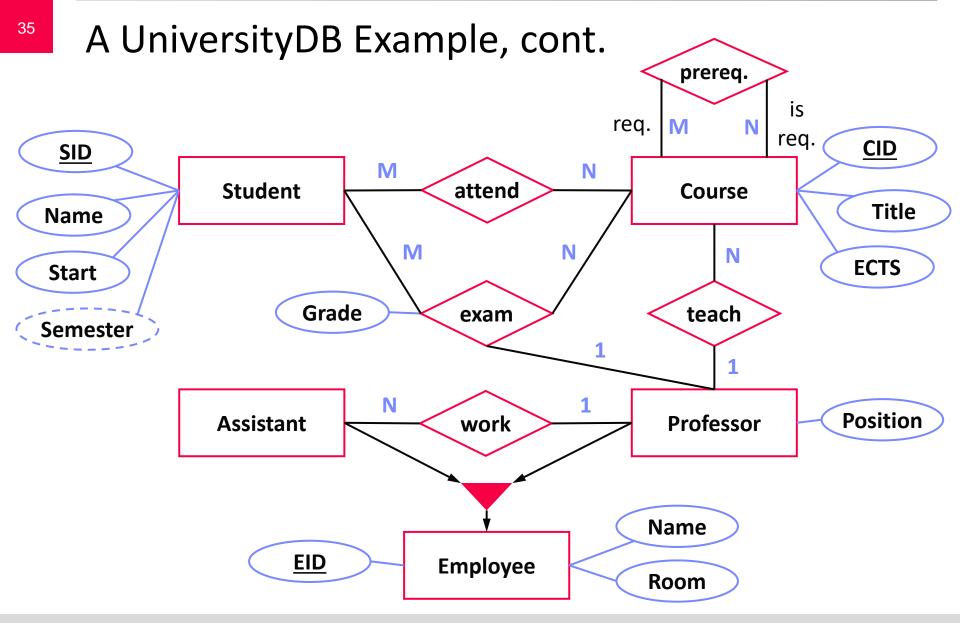




# A UniversityDB Example

#### Discourse of Real Mini World

- Students (with SID, name, and semester) attend courses (CID, title, ECTS), and take graded exams per course
- Professors teach courses and have positions, assistants work for professors
- A course may have another course as prerequisites
- Both professors and assistants are university employees (EID, name, and room number); professors also have a position


#### Task: Create an ER diagram in Chen notation

- Include entity types, relationship types, attributes, and generalizations
- Mark primary keys, roles for recursive relationships, and derived attributes



Entity-Relationship (ER) Model and Diagrams





INF.01017UF Data Management / 706.010 Databases – 02 Conceptual Design Matthias Boehm, Graz University of Technology, WS 2021/22



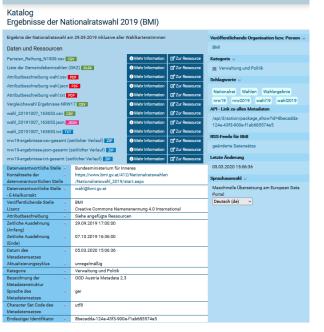


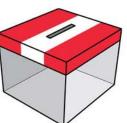
# Exercise 01 – Data Modeling

Published: Oct 08, 2021 Deadline: Nov 02, 2021



# **Exercises: Austrian National Elections**


#### Dataset


- Austrian National Elections 2017 / 2019 with results over time and Graz districts (still being cleaned/prepared → Ex 02)
- Clone or download your copy from <u>https://github.com/tugraz-isds/datasets.git</u>
- Find CSV files in <datasets>/elections\_at

#### Exercises

- 01 Data modeling (relational schema)
- **02** Data ingestion and SQL query processing
- O3 Physical design tuning, query processing, and transaction processing
- 04 Large-scale data analysis (distributed query processing and ML model training)







ISDS





# **Overview Exercise 1 Tasks**

[https://mboehm7.github.io/ teaching/ws2122\_dbs/ 01\_ExerciseModeling.pdf]

- Task 1.1: ER Modeling (15/25)
  - Austrian national elections: elections, persons (voters, candidates), locations, hierarchies of electoral authorities, parties (w/ ranked list of candidates),
  - Create an ER diagram in Modified Chen (MC) notation
  - Partial Result: ERDiagram.pdf

#### Task 1.2: Mapping ER Diagram into Relational Model (10/25)

- Create a relational schema in 3NF for the ER diagram from Task 1.1
- a) text-based schema, OR b) SQL DDL script
- Partial Result: Schema.txt or CreateSchema.sql
- Additional Background:

https://www.bmi.gv.at/412/Nationalratswahlen/Nationalratswahl\_2019/

- Expected result (for all three subtasks)
  - DBExercise01\_<studentID>.zip





39



# Overview Exercise 1 – Discourse

- The Austrian National Council is elected every 5 years (previously 4 years), or earlier if needed. A single *election* is described by a unique short name (e.g., NRW 2019), a unique sequence number (e.g., 27 for NRW 2019), and an election date.
- A *person* can be a voter, a candidate, or both. Each person is described by a unique person identifier (PID), a first name, a last name, a date of birth, a gender (female, male, diverse), and exactly one living *location*. A location is in turn described by a street name and number, a postal code, a city, and a country.
- Multiple political *parties* compete in the elections. Each party has a short name (e.g., ÖVP), a long name (e.g., Österreichische Volkspartei), and a head quarters location (e.g., Lichtenfelsgasse 7, 1010 Vienna). Each party nominates a ranked list of candidates (i.e., persons) for each election (e.g., ÖVP top-4 at NRW 2019: 1 Kurz, 2 Köstinger, 3 Blümel, 4 Schramböck). A person cannot be a candidate for multiple parties at a single election.
- Persons can vote at most once at a specific election—either in person (in an assigned polling place) or via ballot-by-mail—and are registered accordingly. Both polling places and ballot-by-mail belong to a hierarchy of *electoral authorities* (each with a name, and location), that count and aggregate votes per election and party.





## Summary and Q&A

- Summary
  - DB Design lifecycle from requirements to physical design
  - Entity-Relationship (ER) Model and Diagrams

#### Importance of Good Database Design

- Poor database design development and maintenance costs, as well as performance problems
- Once data is loaded, schema changes very difficult (data model, or conceptual and logical schema)

#### Exercise 1: Data Modeling

- Published Oct 08, 2021; deadline: Nov 02, 2021
- Recommendation: start with task 1.1 this week; ask questions in upcoming lectures or on news group
- Next lecture: 03 Data Models and Normalization [Oct 18]

