
Univ.-Prof. Dr.-Ing. Matthias Boehm
Graz University of Technology
Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMK endowed chair for Data Management

2. Data Management WS21/22: Exercise 02 – Queries and APIs

Published: November 06, 2021
Deadline: November 30, 2021, 11.59pm

This exercise on query languages and APIs aims to provide practical experience with the open-
source database management system (DBMS) PostgreSQL, the Structured Query Language
(SQL), and call-level APIs such as ODBC and JDBC (or their Python equivalents). The expected
result is a zip archive named DBExercise02 <studentID>.zip, submitted in TeachCenter.

2.1. Database and Schema Creation via SQL (3/25 points)

As a preparation step, setup the DBMS PostgreSQL (free, pre-built packages are available for
Windows, Linux, Solaris, BSD, macOS) or use the provided Docker container. The task is to cre-
ate a new database named db<student ID> and setup the provided schema1. You may partially
customize this schema but it should be in third-normal form; include all primary keys, foreign
keys, as well as NOT NULL and UNIQUE constraints; and be robust in case of partially existing
tables and drop them before attempting to create the schema.

Partial Results: SQL script CreateSchema.sql.

2.2. Data Ingestion via ODBC/JDBC and SQL (10/25 points)

Write a program IngestData.* in a programming language of your choosing (but we recommend
Python, Java, C#, or C++) that loads the data from the provided data files 2, and ingests them
into the schema created in Task 2.1. Please, further provide a script runIngestData.sh that
sets up prerequisites, compiles and runs your program, and can be invoked as follows3:

./runIngestData.sh ./Locations.csv ./Parties.csv ./Votes.csv ./Elections.csv \

<host> <port> <database> <user> <password>

It is up to you if you perform necessary transformations of the denormalized input files via (1)
program-local data structures (e.g., lookup tables like PartyShort-PKey), or (2) ingestion into
temporary tables and transformations in SQL. However, all inserts should be performed via
call-level interfaces like ODBC, JDBC, or Python’s DB-API.

Partial Results: Source code IngestData.* and script runIngestData.sh.

1https://mboehm7.github.io/teaching/ws2122_dbs/CreateSchema.sql (available by November 09)
2https://github.com/tugraz-isds/datasets/tree/master/elections_at
3The concrete paths are irrelevant. In this example, the ./ just refers to a relative path from the current working
directory and the backslash is a Linux line continuation.

1

https://mboehm7.github.io/teaching/ws2122_dbs/CreateSchema.sql
https://github.com/tugraz-isds/datasets/tree/master/elections_at


2.3. SQL Query Processing (10/25 points)

Having populated the created database in Task 2.2, it is now ready for query processing. Create
SQL queries to answer the following questions and tasks (Q01-O06: 1 point, Q07/Q08: 2 points).
The expected results per query will be provided on the course website. For any queries requiring
you to return a real number, you should round the number to two decimal places.

• Q01: What is the ID of location Graz(Stadt)? (return LocationID)

• Q02: Select all parties of the election NR2017. (return ShortName, LongName, Ballot
Position, sorted ascending by Ballot Position with NULLs last)

• Q03: Compute the voter turnout rate (total-votes/eligible) for all districts of Graz(Stadt)
in election NR2019. (return location name, turnout rate, sorted descending by turnout)

• Q04: Compute the top 10 locations of election NR2019 by voter turnout rate.
(return name, turnout, sorted descending by turnout)

• Q05: Which parties from the election NR2019 did not participate in NR2017?
(return ShortName, LongName, sorted ascending by ShortName)

• Q06: Compute the support (fraction of received votes) in NR2019 of all parties that received
more than 4% of votes. (return ShortName, support; sorted descending by support)

• Q07: Find the parties that won (with highest support rate) at least one location in NR2019.
(return ShortName, count of won locations, total Austrian support rate; sorted descending
by won locations)

• Q08: Compare for each state of Österreich (e.g., Steiermark) the total number of votes
with the sum of votes in all last-level child locations. (return the state name, total votes,
sum of votes in child locations, difference in votes, sorted ascending by state name)

Partial Results: SQL script for each query Q01.sql, Q02.sql, ..., Q08.sql.

2.4. Query Plans and Relational Algebra (2/25 points)

Obtain a detailed explanation of the physical execution plan of Q06 using EXPLAIN. Then an-
notate how the operators of this plan correspond to operations of extended relational algebra.

Partial Results: SQL script ExplainQ06.sql with output and annotations in comments.

A. Recommended Schema and Examples

Please include—even if unmodified—the schema (see Task 2.2) into your submission. Further-
more, we also provide an additional example Python script that demonstrates how to access
PostgreSQL through a call-level interface from an application program. This script assumes
that Python 3 and pip are already installed. Note that the schema, Docker container, Python
scripts, and expected results are made available on the course website.

2


	2 Data Management WS21/22: Exercise 02 – Queries and APIs
	2.1 Database and Schema Creation via SQL (3/25 points)
	2.2 Data Ingestion via ODBC/JDBC and SQL (10/25 points)
	2.3 SQL Query Processing (10/25 points)
	2.4 Query Plans and Relational Algebra (2/25 points)

	A Recommended Schema and Examples

