
1
SCIENCE
PASSION

TECHNOLOGY

Data Management
08 Query Processing
Matthias Boehm

Graz University of Technology, Austria

Institute of Interactive Systems and Data Science
Computer Science and Biomedical Engineering

BMK endowed chair for Data Management

Last update: Nov 29, 2021

2

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Announcements/Org
 #1 Video Recording

 Link in TUbe & TeachCenter (lectures will be public)
 Optional attendance (independent of COVID)
 Virtual lectures (recorded) until end of the year

https://tugraz.webex.com/meet/m.boehm

 #2 Exercise Submissions
 Grading Exercise 1: upload tomorrow, Exercise 2: before Xmas
 Exercise 2 due Nov 30 + 7 late days;

Note: updated data/Q08 results (Q06 and Q07 result correction pending)
 5 extra points for every submission (30/25 possible, 8 “free”)

 Exercise 3: already published, discussed next lecture, due Dec 21

https://tugraz.webex.com/meet/m.boehm

3

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Query Optimization and Query Processing

 Goal: Basic Understanding of Internal Query Processing
 Query rewriting and query optimization
 Query processing and physical plan operators
 Performance debugging & reuse of concepts and techniques
 Overview, detailed techniques discussed in ADBS (WS 2020)

SELECT * FROM TopScorer
WHERE Count>=4

Name Count
James Rodríguez 6
Thomas Müller 5

Robin van Persie 4
Neymar 4

WHAT

Yes, but HOW to
we get there

efficiently

CREATE VIEW TopScorer AS
SELECT P.Name, Count(*)

FROM Players P, Goals G
WHERE P.Pid=G.Pid

AND G.GOwn=FALSE
GROUP BY P.Name
ORDER BY Count(*) DESC

2014

4

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Agenda
 Query Rewriting and Optimization
 Plan Execution Strategies
 Physical Plan Operators

5

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Query Rewriting and Optimization

6

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Overview Query Optimization
Query Rewriting and Optimization

Parsing

SELECT * FROM TopScorer
WHERE Count>=4

Semantic Analysis

Query Rewrites

Plan Optimization

Name Count
James Rodríguez 6
Thomas Müller 5

Robin van Persie 4
Neymar 4

Plan Execution

Plan CachingQEP

Compile Time Runtime

AST/IR

IR

IR

Presenter
Presentation Notes
Query Semantics: NFST -> normalization/binding subexpressions, factorization and semantic analysis (check schema, etc)

7

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Query Rewrites
 Query Rewriting

 Rewrite query into semantically equivalent form that may be
processed more efficiently or give the optimizer more freedom

 #1 Same query can be expressed differently, avoid hand-tuning
 #2 Complex queries may have redundancy

 A Simple Example
 Catalog meta data:

custkey is unique

 25+ years of experience
on query rewriting

Query Rewriting and Optimization

SELECT DISTINCT custkey, name
FROM TPCH.Customer

SELECT custkey, name
FROM TPCH.Customer

rewrite

[Hamid Pirahesh, T. Y. Cliff Leung, Waqar Hasan:
A Rule Engine for Query Transformation in

Starburst and IBM DB2 C/S DBMS. ICDE 1997]

8

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Standardization and Simplification
 Normal Forms of Boolean Expressions

 Conjunctive normal form (P11 OR ... OR P1n) AND ... AND (Pm1 OR ... OR Pmp)
 Disjunctive normal form (P11 AND ... AND P1q) OR ... OR (Pr1 AND ... AND Prs)

 Transformation Rules for Boolean Expressions

Query Rewriting and Optimization

Rule Name Examples
Commutativity rules A OR B ⇔ B OR A

A AND B ⇔ B AND A
Associativity rules (A OR B) OR C ⇔ A OR (B OR C)

(A AND B) AND C ⇔ A AND (B AND C)
Distributivity rules A OR (B AND C) ⇔ (A OR B) AND (A OR C)

A AND (B OR C) ⇔ (A AND B) OR (A AND C)
De Morgan’s rules NOT (A AND B) ⇔ NOT (A) OR NOT (B)

NOT (A OR B) ⇔ NOT (A) AND NOT (B)
Double-negation rules NOT(NOT(A)) ⇔ A
Idempotence rules A OR A ⇔ A A AND A ⇔ A

A OR NOT(A) ⇔ TRUE A AND NOT (A) ⇔ FALSE
A AND (A OR B) ⇔ A A OR (A AND B) ⇔ A
A OR FALSE ⇔ A A OR TRUE ⇔ TRUE
A AND FALSE ⇔ FALSE

9

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Standardization and Simplification, cont.
 Elimination of Common Subexpressions

 (A1=a11 OR A1=a12) AND (A1=a12 OR A1=a11)  A1=a11 OR A1=a12

 Propagation of Constants
 A ≥ B AND B = 7  A ≥ 7 AND B = 7

 Detection of Contradictions
 A ≥ B AND B > C AND C ≥ A  A > A → FALSE

 Use of Constraints
 A is primary key/unique: πA → no duplicate elimination necessary
 Rule MAR_STATUS = ‘married’  TAX_CLASS ≥ 3:
(MAR_STATUS = ‘married’ AND TAX_CLASS = 1)  FALSE

 Elimination of Redundancy (set semantics)
 R⋈R  R, R∪R  R, R−R  Ø
 R⋈(σpR)  σpR, R∪(σpR)  R, R−(σpR)  σ⌐pR
 (σp1R)⋈(σp2R)  σp1ᴧp2R, (σp1R)∪(σp2R)  σp1vp2R

Query Rewriting and Optimization

R⋈a=b(σb>0(S)) 
(σa>0(R))⋈a=b(σb>0(S))

Presenter
Presentation Notes
Additional redundancy example: (σp1R)−(σp2R)  σp1ᴧ⌐p2R

10

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Query Unnesting
 Case 1: Type-A Nesting

 Inner block is not correlated and computes an aggregate
 Solution: Compute the aggregate once and insert into outer query

 Case 2: Type-N Nesting
 Inner block is not correlated and returns a set of tuples
 Solution: Transform into a symmetric form (via join)

Query Rewriting and Optimization

SELECT OrderNo FROM Order
WHERE ProdNo =
(SELECT MAX(ProdNo)

FROM Product WHERE Price<100)

$X = SELECT MAX(ProdNo)
FROM Product WHERE Price<100

SELECT OrderNo FROM Order
WHERE ProdNo = $X

SELECT OrderNo
FROM Order O, Product P
WHERE O.ProdNo = P.ProdNo
AND P.Price < 100

SELECT OrderNo FROM Order
WHERE ProdNo IN
(SELECT ProdNo

FROM Product WHERE Price<100)

[Won Kim: On Optimizing an
SQL-like Nested Query. ACM
Trans. Database Syst. 1982]

11

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Query Unnesting, cont.
 Case 3: Type-J Nesting

 Un-nesting of correlated sub-queries w/o aggregation

 Case 4: Type-JA Nesting
 Un-nesting of correlated sub-queries w/ aggregation

 Further un-nesting via case 3 and 2

Query Rewriting and Optimization

SELECT OrderNo FROM Order O
WHERE ProdNo IN
(SELECT ProdNo FROM
(SELECT ProjNo, MAX(ProdNo)
FROM Project
WHERE Budget > 100.000
GROUP BY ProjNo) P

WHERE P.ProjNo = O.OrderNo)

SELECT OrderNo FROM Order O
WHERE ProdNo IN
(SELECT MAX(ProdNo)
FROM Project P
WHERE P.ProjNo = O.OrderNo
AND P.Budget > 100,000)

SELECT OrderNo
FROM Order O, Project P
WHERE O.ProdNo = P.ProdNo
AND P.ProjNo = O.OrderNo
AND P.Budget > 100,000

SELECT OrderNo FROM Order O
WHERE ProdNo IN
(SELECT ProdNo FROM Project P
WHERE P.ProjNo = O.OrderNo
AND P.Budget > 100,000)

[Won Kim: On Optimizing an
SQL-like Nested Query. ACM
Trans. Database Syst. 1982]

Presenter
Presentation Notes
Note JA: max ProdNo only #distinct ProjNo solutions
Note Unnesting Arbitrary Queries Neumann (via cross-product, #distinct)

12

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Selections and Projections
 Example Transformation Rules

 Restructuring Algorithm
 #1 Split n-ary joins into binary joins
 #2 Split multi-term selections
 #3 Push-down selections as far as possible
 #4 Group adjacent selections again
 #5 Push-down projections as far as possible

Query Rewriting and Optimization

1) Grouping of
Selections

4) Pushdown of
Projections

R

σp=q

σx>y

R

σx>yᴧp=q

R

πA,B

πA

R

πA

Input: Standardized,
simplified, and un-nested

query graph

Output: Restructured
query graph

R

⋈A=B

σp(R)

S

⋈A=B

Sσp(R)

R R

⋈A=B

πC

S

⋈A=B

πA,C

R

πB

S

πC

2) Grouping of
Projections

3) Pushdown of
Selections

13

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Example Query Restructuring
Query Rewriting and Optimization

SELECT * FROM TopScorer
WHERE count>=4
AND Pos=‘FW’

CREATE VIEW TopScorer AS
SELECT P.Name, P.Pos, count(*)

FROM Players P, Goals G
WHERE P.Pid=G.Pid

AND G.GOwn=FALSE
GROUP BY P.Name, P.Pos
ORDER BY count(*) DESC

Players

⋈Pid

σGown=F

Goals

γName,Pos,count(*)

τcount DESC

σcount>=4ᴧPos=FW

⋈Pid

πName

γName,count(*)

σcount>=4

τcount DESC

πPid,Name πPid

σPos=FW σGown=F

Players Goals

πPid,Name,Pos πPid,Gown

Additional metadata:
P.Name is unique

14

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Plan Optimization Overview
 Plan Generation

 Selection of physical access path and plan operators
 Selection of execution order of plan operators
 Input: logical query plan  Output: optimal physical query plan
 Costs of query optimization should not exceed yielded improvements

 Different Cost Models
 Relies on statistics (cardinalities, selectivities via histograms + estimators)
 Operator-specific and general-purpose cost models

 I/O costs (number of read pages, tuples)
 Computation costs (CPU costs, path lengths)
 Memory (temporary memory requirements)
 Beware assumptions of optimizers

(no skew, independence, no correlation)

Query Rewriting and Optimization

Cars

σModel= ‘Golf‘

σMake=‘VW‘

10,000

1,000

10

10,000

5,000

590

(estimated) (real)

15

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Query and Plan Types
 Query Types

 Nodes: Tables
 Edges: Join conditions
 Determine hardness

of query optimization (w/o cross products)

 Join Tree Types / Plan Types
 Data flow graph of tables and joins (logical/physical query trees)
 Edges: data dependencies (fixed execution order: bottom-up)

Query Rewriting and Optimization

Chains

Stars

Cliques

[Guido Moerkotte, Building Query Compilers
(Under Construction), 2020,

http://pi3.informatik.uni-mannheim.de/
~moer/querycompiler.pdf]

Left-Deep Tree Right-Deep Tree Zig-Zag Tree Bushy Tree

http://pi3.informatik.uni-mannheim.de/%7Emoer/querycompiler.pdf

16

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Join Ordering Problem
 Join Ordering

 Given a join query graph, find the optimal join ordering
 In general, NP-hard; but polynomial algorithms exist for special cases

 Search Space
 Dependent on query and plan types
 Note: if we allow cross products similar to cliques (fully connected)

Query Rewriting and Optimization

Chain (no CP) Star (no CP)

left-
deep

zig-zag bushy left-
deep

zig-zag/
bushy

n 2n-1 22n-3 2n-1C(n-1) 2(n-1)! 2n-1(n-1)!

5 16 128 224 48 384

10 512 ~131K ~2.4M ~726K ~186M

Clique / CP (cross product)

left-
deep

zig-zag bushy

n! 2n-2n! n! C(n-1)

120 960 1,680

~3.6M ~929M ~17.6G

C(n) … Catalan Numbers

17

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Join Order Search Strategies
 Tradeoff: Optimal (or good) plan vs compilation time

 #1 Naïve Full Enumeration
 Infeasible for reasonably large queries (long tail up to 1000s of joins)

 #2 Exact Dynamic Programming
 Guarantees optimal plan, often too expensive (beyond 20 relations)
 Bottom-up vs top-down approaches

 #3 Greedy / Heuristic Algorithms
 #4 Approximate Algorithms

 E.g., Genetic algorithms,
simulated annealing

 Example PostgreSQL
 Exact optimization (DPSize) if < 12

relations (geqo_threshold)
 Genetic algorithm for larger queries
 Join methods: NLJ, SMJ, HJ

Query Rewriting and Optimization

All
(unknown)

Actual

Explored

DP Enum

Heuristics

[Nicolas Bruno, César A. Galindo-Legaria,
Milind Joshi: Polynomial heuristics for

query optimization. ICDE 2010]

18

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Greedy Join Ordering
 Example

 Part ⋈ Lineorder ⋈ Supplier ⋈ σ(Customer) ⋈ σ(Date), left-deep plans

Query Rewriting and Optimization

Star Schema
Benchmark

Plan Costs

1 Lineorder ⋈ Part 30M

Lineorder ⋈ Supplier 20M

Lineorder ⋈ σ(Customer) 90K

Lineorder ⋈ σ(Date) 40K

Part ⋈ Customer N/A

… …

2 (Lineorder ⋈ σ(Date)) ⋈ Part 150K

(Lineorder ⋈ σ(Date)) ⋈ Supplier 100K

(Lineorder ⋈ σ(Date)) ⋈ σ(Customer) 75K

Plan Costs

3 ((Lineorder ⋈ σ(Date)) ⋈
σ(Customer)) ⋈ Part

120M

((Lineorder ⋈ σ(Date)) ⋈
σ(Customer)) ⋈ Supplier

105M

4 (((Lineorder ⋈ σ(Date)) ⋈
σ(Customer)) ⋈ Supplier) ⋈ Part

135M

Note: Simple O(n2) algorithm
for left-deep trees;

O(n3) algorithms for bushy trees
existing (e.g., GOO)

Presenter
Presentation Notes
GOO .. Greedy operator ordering

19

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Dynamic Programming Join Ordering
 Exact Enumeration via Dynamic Programming

 #1: Optimal substructure (Bellman’s Principle of Optimality)
 #2: Overlapping subproblems allow for memoization
 Approach DPSize: Split in independent subproblems (optimal plan per set of

quantifiers and interesting properties), solve subproblems, combine solutions
 Example

Query Rewriting and Optimization

Q1 Plan

{C} Tbl, IX

{D} Tbl, IX

{L} …

{P} …

{S} …

Q2 Plan

{C,L} L⋈C, C⋈L

{D,L} L⋈D, D⋈L

{L,P} L⋈P, P⋈L

{L,S} L⋈S, S⋈L

{C,D} N/A

… …

Q3 Plan

{C,D,L} (L⋈C)⋈D, D⋈(L⋈C),
(L⋈D)⋈C, C⋈(L⋈D)

{C,L,P} (L⋈C)⋈P, P⋈(L⋈C),
(P⋈L)⋈C, C⋈(P⋈L)

{C,L,S} …

{D,L,P} …

{D,L,S} …

{L,P,S} …

Q4 Plan

{C,D,L,P} ((L⋈C)⋈D)⋈P,
P⋈((L⋈C)⋈D)

{C,D,L,S} …

{C,L,P,S} …

{D,L,P,S} …

Q1+Q1
Q1+Q2, Q2+Q1

Q1+Q3, Q2+Q2, Q3+Q1

Q5 Plan

{C,D,L,P,S} …

Q1+Q4, Q2+Q3,
Q3+Q2, Q4+Q1

Presenter
Presentation Notes
NOTE: The plan generation algorithm also includes the selection of physical operators (NLJ, SMJ, HJ)

20

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

BREAK (and Test Yourself)
 Rewrite the following RA expressions – assuming two relations R(a, b, c)

and S(d, e, f) – into equivalent expressions with lower costs. (5 points)

 σb=7(R ⋈ S)

 (σe>3(S)) ∩ (σf<7(S))

 πa,b(R ⋈a=d S)

 R ∪ (σd<e ᴧ e<f ᴧ f<d(S))

 σb=3(γb,max(c)(R))

Query Rewriting and Optimization

 σb=7(R) ⋈ S

 R ∪ Ø  R

 γ3,max(c)(σb=3(R))

 πa,b(R) ⋉a=d S

 σe>3 ᴧ f<7(S)

21

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

BREAK (and Test Yourself), cont.
 Assume relations R(a,b,c) and S(d,e), and indicate in the table below

whether or not the two RA expressions per row are equivalent in bag
semantics. For non-equivalent expressions briefly explain why. (5 points)

Query Rewriting and Optimization

Equivalent?

22

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Plan Execution Strategies

23

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Overview Query Processing
Plan Execution Strategies

Parsing

Semantic Analysis

Query Rewrites

Plan Optimization

Name Count
James Rodríguez 6
Thomas Müller 5

Robin van Persie 4
Neymar 4

Plan Execution

Plan CachingQEP

Compile Time Runtime

AST/IR

IR

IR

SELECT * FROM TopScorer
WHERE Count>=4

24

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Overview Execution Strategies
 Different execution strategies (processing models) with different

pros/cons (e.g., memory requirements, DAGs, efficiency, reuse)

 #1 Iterator Model (mostly row stores)

 #2 Materialized Intermediates (mostly column stores)

 #3 Vectorized (Batched) Execution (row/column stores)

 #4 Query Compilation (row/column stores)

Plan Execution Strategies

High-level
overview,
details in

ADBS

25

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Iterator Model
 Volcano Iterator Model

 Pipelined & no global knowledge
 Open-Next-Close (ONC) interface
 Query execution from root node (pull-based)

 Example σA=7(R)

 Blocking Operators
 Sorting, grouping/aggregation,

build-phase of (simple) hash joins

Plan Execution Strategies

[Goetz Graefe: Volcano - An Extensible
and Parallel Query Evaluation System.

IEEE Trans. Knowl. Data Eng. 1994]

Scalable (small memory)
High CPI measures

R

σA=7

open()

open()

next()
next()

next()
next()

close()
open()
next()
next()

close()

next()
next()

close()
 EOF

 EOF

 EOF

void open() { R.open(); }

void close() { R.close(); }

Record next() {
while((r = R.next()) != EOF)
if(p(r)) //A==7
return r;

return EOF;
}

PostgreSQL: Init(),
GetNext(), ReScan(), MarkPos(),

RestorePos(), End()

26

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Iterator Model – Predicate Evaluation
 Operator Predicates

 Examples: arbitrary selection predicates and join conditions
 Operators parameterized with in-memory expression trees/DAGs
 Expression evaluation engine (interpretation)

 Example Selection σ
 𝐴𝐴 = 7 ∧ 𝐵𝐵 ≠ 8 ∨ 𝐷𝐷 = 9

Plan Execution Strategies

B 8

!=
D 9

==&

|

A 7

==

A B C D
7 8 Product 1 10

14 8 Product 3 11
7 3 Product 7 7
3 3 Product 2 1

27

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Materialized Intermediates (column-at-a-time)

Plan Execution Strategies

SELECT count(DISTINCT o_orderkey)
FROM orders, lineitem
WHERE l_orderkey = o_orderkey
AND o_orderdate >= date ’1996-07-01’
AND o_orderdate < date ’1996-07-01’
+ interval ’3’ month

AND l_returnflag = ’R’;

Binary
Association

Tables
(BATs:=OID/Val)

Column-oriented storage
Efficient array operations

DAG processing
Reuse of intermediates
Memory requirements

Unnecessary read/write
from and to memory

[Milena Ivanova, Martin L. Kersten, Niels
J. Nes, Romulo Goncalves: An

architecture for recycling intermediates
in a column-store. SIGMOD 2009]

28

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Vectorized Execution (vector-at-a-time)

 Idea: Pipelining of vectors (sub columns) s.t. vectors fit in CPU cache

Plan Execution Strategies

Vector Size (# Tuples)

Workload: TPCH Q1

[Peter A. Boncz, Marcin Zukowski,
Niels Nes: MonetDB/X100: Hyper-

Pipelining Query Execution.
CIDR 2005]

Column-oriented storage
Efficient array operations
Memory/cache efficiency

DAG processing
Reuse of intermediates

29

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Query Compilation
 Idea: Data-centric, not op-centric processing + LLVM code generation

Plan Execution Strategies

Operator Trees
(w/o and w/ pipeline boundaries)

Compiled Query
(conceptual, not LLVM)

[Thomas Neumann: Efficiently Compiling Efficient
Query Plans for Modern Hardware. PVLDB 2011]

30

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Physical Plan Operators

31

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Overview Plan Operators
 Multiple Physical Operators

 Different physical operators for different data and query characteristics
 Physical operators can have vastly different costs

 Examples (supported in most DBMS)

 Logical Plan
Operators

 Physical Plan
Operators

Physical Plan Operators

Selection
𝜎𝜎𝑝𝑝(𝑅𝑅)

Projection
𝜋𝜋𝐴𝐴(𝑅𝑅)

Grouping
𝛾𝛾𝐺𝐺:𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴)(𝑅𝑅)

Join
𝑅𝑅 ⋈𝑅𝑅.𝑎𝑎=𝑆𝑆.𝑏𝑏 𝑆𝑆

TableScan
IndexScan

ALL

ALL SortGB
HashGB

NestedLoopJN
SortMergeJN

HashJN

Lecture 07 This Lecture
Exercise 3

32

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Nested Loop Join
 Overview

 Most general join operator (no order, no indexes, arbitrary predicates θ)
 Poor asymptotic behavior (very slow)

 Algorithm (pseudo code)

 Complexity
 Complexity: Time: O(N * M), Space: O(1)
 Pick smaller table as inner if it fits entirely in memory (buffer pool)

Physical Plan Operators

for each s in S
for each r in R
if(r.RID θ s.SID)
emit concat(r, s)

How to implement next()?

R RID

9

1

7

SID S

7

3

1

9

7

⋈RID=SID

N = |R|
M = |S|

33

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Block Nested Loop / Index Nested Loop Joins
 Block Nested Loop Join

 Avoid I/O by blocked data access
 Read blocks of bR and bS R and S pages
 Complexity unchanged but

potentially much fewer scans

 Index Nested Loop Join
 Use index to locate qualifying tuples

(==, >=, >, <=, <)
 Complexity (for equivalence predicates):

Time: O(N * log M), Space: O(1)

Physical Plan Operators

for each block bR in R
for each block bS in S
for each r in bR
for each s in bS
if(r.RID θ s.SID)
emit concat(r, s)

for each r in R
for each s in S.IX(θ,r.RID)
emit concat(r,s)

ix

S

34

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Sort-Merge Join
 Overview

 Sort Phase: sort the input tables R and S (w/ external sort algorithm)
 Merge Phase: step-wise merge with lineage scan

 Algorithm (Merge, PK-FK)

 Complexity
 Time (unsorted vs sorted): O(N log N + M log M) vs O(N + M)
 Space (unsorted vs sorted): O(N + M) vs O(1)

Physical Plan Operators

Record next() {
while(curR!=EOF && curS!=EOF) {

if(curR.RID < curS.SID)
curR = R.next();

else if(curR.RID > curS.SID)
curS = S.next();

else if(curR.RID == curS.SID) {
t = concat(curR, curS);
curS = S.next(); //FK side
return t;

} }
return EOF;

}

… R_ID
9
1
7

S_ID …
7
3
1
9
7

⋈RID=SID

SID S

1

3

7

7

9

R RID

1

7

9

produced sorted
output

N = |R|
M = |S|

35

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Hash Join
 Overview

 Build Phase: read table S and build a hash table HS over join key
 Probe Phase: read table R and probe HS with the join key

 Algorithm (Build+Probe, PK-FK)

 Complexity
 Time: O(N + M), Space: O(N)
 Classic hashing: p in-memory partitions of Hr w/ p scans of R and S

Physical Plan Operators

Record next() {
// build phase (first call)
while((r = R.next()) != EOF)
Hr.put(r.RID, r);

// probe phase
while((s = S.next()) != EOF)
if(Hr.containsKey(s.SID))
return concat(Hr.get(s.SID), s);

return EOF;
}

… R_ID
9
1
7

SID S

7

3

1

9

7

⋈RID=SID

HR,RID

9

1

7

h(x)

N = |R|
M = |S|

Presenter
Presentation Notes
Note: example hash functions: crc (cyclic redundancy check), MurmurHash, CityHash, FarmHash, XXHash

36

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Sort-GroupBy and Hash-GroupBy
 Recap: Classification of Aggregates (04 Relational Algebra)

 Additive, semi-additive, additively-computable, others

 Sort Group-By
 Similar to sort-merge join

(Sort, GroupAggregate)
 Sorted group output

 Hash Group-By
 Similar to hash join (HashAggregate)
 Higher temporary memory consumption
 Unsorted group output
 #1 w/ tuple grouping
 #2 w/ direct aggregation (e.g., count)
 Beware: cache-unfriendly if many groups (size(H) > L2/L3 cache)

Physical Plan Operators

γA,count(*)(R)

X X X X X X Y Y Y Y Y Y Y Z Z Z Z Z
sort

O(N log N)
aggregate

O(N) X,6 Y,7 Z,5

HA,Agg

Y

X

Z

γA,count(*)

R

build & agg
O(N)

Presenter
Presentation Notes
Note: quantile/median requires sort per partition -> sort group-by
Postgres: GroupAggregate, HashAggregate

37

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Summary and Q&A
 Query Rewriting and Optimization
 Plan Execution Strategies
 Physical Plan Operators

 Next Lectures
 09 Transaction Processing and Concurrency [Dec 06]

 10 NoSQL (key-value, document, graph) [Dec 13]
 Holidays (Exercise 3 due Dec 21, and Exercise 4 published Dec 28)
 11 Distributed Storage and Data Analysis [Jan 10]
 12 Data Stream Processing Systems and Q&A [Jan 17]

	Data Management�08 Query Processing
	Announcements/Org
	Query Optimization and Query Processing
	Agenda
	Query Rewriting and Optimization
	Overview Query Optimization
	Query Rewrites
	Standardization and Simplification
	Standardization and Simplification, cont.
	Query Unnesting
	Query Unnesting, cont.
	Selections and Projections
	Example Query Restructuring
	Plan Optimization Overview
	Query and Plan Types
	Join Ordering Problem
	Join Order Search Strategies
	Greedy Join Ordering
	Dynamic Programming Join Ordering
	BREAK (and Test Yourself)
	BREAK (and Test Yourself), cont.
	Plan Execution Strategies
	Overview Query Processing
	Overview Execution Strategies
	Iterator Model
	Iterator Model – Predicate Evaluation
	Materialized Intermediates (column-at-a-time)
	Vectorized Execution (vector-at-a-time)
	Query Compilation
	Physical Plan Operators
	Overview Plan Operators
	Nested Loop Join
	Block Nested Loop / Index Nested Loop Joins
	Sort-Merge Join
	Hash Join
	Sort-GroupBy and Hash-GroupBy
	Summary and Q&A

