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Announcements/Org
 #1 Video Recording 

 Link in TUbe & TeachCenter (lectures will be public)
 Optional attendance (independent of COVID)
 Virtual lectures (recorded) until end of the year

https://tugraz.webex.com/meet/m.boehm

 #2 Exercise Submissions 
 Grading Exercise 1: upload tomorrow, Exercise 2: before Xmas
 Exercise 2 due Nov 30 + 7 late days;

Note: updated data/Q08 results (Q06 and Q07 result correction pending) 
 5 extra points for every submission (30/25 possible, 8 “free”)

 Exercise 3: already published, discussed next lecture, due Dec 21

https://tugraz.webex.com/meet/m.boehm
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Query Optimization and Query Processing

 Goal: Basic Understanding of Internal Query Processing
 Query rewriting and query optimization
 Query processing and physical plan operators
 Performance debugging & reuse of concepts and techniques
 Overview, detailed techniques discussed in ADBS (WS 2020)

SELECT * FROM TopScorer
WHERE Count>=4

Name Count
James Rodríguez 6
Thomas Müller 5

Robin van Persie 4
Neymar 4

WHAT

Yes, but HOW to 
we get there 

efficiently

CREATE VIEW TopScorer AS
SELECT P.Name, Count(*) 

FROM Players P, Goals G 
WHERE P.Pid=G.Pid

AND G.GOwn=FALSE
GROUP BY P.Name
ORDER BY Count(*) DESC

2014
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Agenda
 Query Rewriting and Optimization
 Plan Execution Strategies
 Physical Plan Operators 
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Query Rewriting and Optimization
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Overview Query Optimization
Query Rewriting and Optimization

Parsing

SELECT * FROM TopScorer
WHERE Count>=4

Semantic Analysis

Query Rewrites

Plan Optimization

Name Count
James Rodríguez 6
Thomas Müller 5

Robin van Persie 4
Neymar 4

Plan Execution

Plan CachingQEP

Compile Time Runtime

AST/IR

IR

IR

Presenter
Presentation Notes
Query Semantics: NFST -> normalization/binding subexpressions, factorization and semantic analysis (check schema, etc)
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Query Rewrites
 Query Rewriting

 Rewrite query into semantically equivalent form that may be 
processed more efficiently or give the optimizer more freedom

 #1 Same query can be expressed differently, avoid hand-tuning
 #2 Complex queries may have redundancy

 A Simple Example
 Catalog meta data:

custkey is unique

 25+ years of experience 
on query rewriting 

Query Rewriting and Optimization

SELECT DISTINCT custkey, name   
FROM TPCH.Customer

SELECT custkey, name   
FROM TPCH.Customer

rewrite

[Hamid Pirahesh, T. Y. Cliff Leung, Waqar Hasan: 
A Rule Engine for Query Transformation in 

Starburst and IBM DB2 C/S DBMS. ICDE 1997]
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Standardization and Simplification
 Normal Forms of Boolean Expressions

 Conjunctive normal form (P11 OR ... OR P1n) AND ... AND (Pm1 OR ... OR Pmp)
 Disjunctive normal form (P11 AND ... AND P1q) OR ... OR (Pr1 AND ... AND Prs)

 Transformation Rules for Boolean Expressions

Query Rewriting and Optimization

Rule Name Examples
Commutativity rules A OR B ⇔ B OR A                             

A AND B ⇔ B AND A
Associativity rules (A OR B) OR C ⇔ A OR (B OR C)

(A AND B) AND C ⇔ A AND (B AND C)
Distributivity rules A OR (B AND C) ⇔ (A OR B) AND (A OR C)

A AND (B OR C) ⇔ (A AND B) OR (A AND C)
De Morgan’s rules NOT (A AND B) ⇔ NOT (A) OR NOT (B)

NOT (A OR B) ⇔ NOT (A) AND NOT (B)
Double-negation rules NOT(NOT(A)) ⇔ A
Idempotence rules A OR A ⇔ A A AND A ⇔ A

A OR NOT(A) ⇔ TRUE A AND NOT (A) ⇔ FALSE
A AND (A OR B) ⇔ A   A OR (A AND B) ⇔ A
A OR FALSE ⇔ A A OR TRUE ⇔ TRUE
A AND FALSE ⇔ FALSE
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Standardization and Simplification, cont.
 Elimination of Common Subexpressions

 (A1=a11 OR A1=a12) AND (A1=a12 OR A1=a11)  A1=a11 OR A1=a12

 Propagation of Constants
 A ≥ B AND B = 7  A ≥ 7 AND B = 7

 Detection of Contradictions
 A ≥ B AND B > C AND C ≥ A  A > A → FALSE

 Use of Constraints  
 A is primary key/unique: πA → no duplicate elimination necessary
 Rule MAR_STATUS = ‘married’  TAX_CLASS ≥ 3:
(MAR_STATUS = ‘married’ AND TAX_CLASS = 1)  FALSE

 Elimination of Redundancy (set semantics)
 R⋈R  R,  R∪R  R,  R−R  Ø
 R⋈(σpR)  σpR,  R∪(σpR)  R,  R−(σpR)  σ⌐pR
 (σp1R)⋈(σp2R)  σp1ᴧp2R,  (σp1R)∪(σp2R)  σp1vp2R

Query Rewriting and Optimization

R⋈a=b(σb>0(S)) 
(σa>0(R))⋈a=b(σb>0(S))

Presenter
Presentation Notes
Additional redundancy example: (σp1R)−(σp2R)  σp1ᴧ⌐p2R
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Query Unnesting
 Case 1: Type-A Nesting

 Inner block is not correlated and computes an aggregate
 Solution: Compute the aggregate once and insert into outer query

 Case 2: Type-N Nesting
 Inner block is not correlated and returns a set of tuples
 Solution: Transform into a symmetric form (via join)

Query Rewriting and Optimization

SELECT OrderNo FROM Order
WHERE ProdNo = 
(SELECT MAX(ProdNo) 

FROM Product WHERE Price<100)

$X = SELECT MAX(ProdNo) 
FROM Product WHERE Price<100

SELECT OrderNo FROM Order
WHERE ProdNo = $X

SELECT OrderNo
FROM Order O, Product P
WHERE O.ProdNo = P.ProdNo
AND P.Price < 100

SELECT OrderNo FROM Order
WHERE ProdNo IN 
(SELECT ProdNo

FROM Product WHERE Price<100)

[Won Kim: On Optimizing an 
SQL-like Nested Query. ACM 
Trans. Database Syst. 1982]
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Query Unnesting, cont.
 Case 3: Type-J Nesting

 Un-nesting of correlated sub-queries w/o aggregation

 Case 4: Type-JA Nesting
 Un-nesting of correlated sub-queries w/ aggregation

 Further un-nesting via case 3 and 2

Query Rewriting and Optimization

SELECT OrderNo FROM Order O
WHERE ProdNo IN
(SELECT ProdNo FROM
(SELECT ProjNo, MAX(ProdNo)
FROM Project 
WHERE Budget > 100.000
GROUP BY ProjNo) P

WHERE P.ProjNo = O.OrderNo)

SELECT OrderNo FROM Order O
WHERE ProdNo IN
(SELECT MAX(ProdNo) 
FROM Project P
WHERE P.ProjNo = O.OrderNo
AND P.Budget > 100,000)

SELECT OrderNo
FROM Order O, Project P
WHERE O.ProdNo = P.ProdNo
AND P.ProjNo = O.OrderNo
AND P.Budget > 100,000

SELECT OrderNo FROM Order O
WHERE ProdNo IN
(SELECT ProdNo FROM Project P
WHERE P.ProjNo = O.OrderNo
AND P.Budget > 100,000)

[Won Kim: On Optimizing an 
SQL-like Nested Query. ACM 
Trans. Database Syst. 1982]

Presenter
Presentation Notes
Note JA: max ProdNo only #distinct ProjNo solutions 
Note Unnesting Arbitrary Queries Neumann (via cross-product, #distinct)
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Selections and Projections
 Example Transformation Rules

 Restructuring Algorithm
 #1 Split n-ary joins into binary joins 
 #2 Split multi-term selections 
 #3 Push-down selections as far as possible
 #4 Group adjacent selections again
 #5 Push-down projections as far as possible

Query Rewriting and Optimization

1) Grouping of 
Selections

4) Pushdown of 
Projections

R

σp=q

σx>y

R

σx>yᴧp=q

R

πA,B

πA

R

πA

Input: Standardized, 
simplified, and un-nested 

query graph

Output: Restructured 
query graph

R

⋈A=B

σp(R)

S

⋈A=B

Sσp(R)

R R

⋈A=B

πC

S

⋈A=B

πA,C

R

πB

S

πC

2) Grouping of 
Projections

3) Pushdown of 
Selections
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Example Query Restructuring 
Query Rewriting and Optimization

SELECT * FROM TopScorer
WHERE count>=4 
AND Pos=‘FW’ 

CREATE VIEW TopScorer AS
SELECT P.Name, P.Pos, count(*) 

FROM Players P, Goals G 
WHERE P.Pid=G.Pid

AND G.GOwn=FALSE
GROUP BY P.Name, P.Pos
ORDER BY count(*) DESC

Players

⋈Pid

σGown=F

Goals

γName,Pos,count(*)

τcount DESC

σcount>=4ᴧPos=FW

⋈Pid

πName

γName,count(*)

σcount>=4

τcount DESC

πPid,Name πPid

σPos=FW σGown=F

Players Goals

πPid,Name,Pos πPid,Gown

Additional metadata: 
P.Name is unique
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Plan Optimization Overview
 Plan Generation

 Selection of physical access path and plan operators
 Selection of execution order of plan operators
 Input: logical query plan  Output: optimal physical query plan
 Costs of query optimization should not exceed yielded improvements 

 Different Cost Models
 Relies on statistics (cardinalities, selectivities via histograms + estimators)
 Operator-specific and general-purpose cost models

 I/O costs (number of read pages, tuples)
 Computation costs (CPU costs, path lengths)
 Memory (temporary memory requirements)
 Beware assumptions of optimizers 

(no skew, independence, no correlation)

Query Rewriting and Optimization

Cars

σModel= ‘Golf‘

σMake=‘VW‘

10,000

1,000

10

10,000

5,000

590

(estimated) (real)
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Query and Plan Types
 Query Types

 Nodes: Tables
 Edges: Join conditions
 Determine hardness 

of query optimization (w/o cross products)

 Join Tree Types / Plan Types
 Data flow graph of tables and joins (logical/physical query trees)
 Edges: data dependencies (fixed execution order: bottom-up) 

Query Rewriting and Optimization

Chains

Stars

Cliques

[Guido Moerkotte, Building Query Compilers 
(Under Construction), 2020, 

http://pi3.informatik.uni-mannheim.de/
~moer/querycompiler.pdf]

Left-Deep Tree Right-Deep Tree Zig-Zag Tree Bushy Tree

http://pi3.informatik.uni-mannheim.de/%7Emoer/querycompiler.pdf
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Join Ordering Problem
 Join Ordering

 Given a join query graph, find the optimal join ordering
 In general, NP-hard; but polynomial algorithms exist for special cases

 Search Space
 Dependent on query and plan types
 Note: if we allow cross products similar to cliques (fully connected) 

Query Rewriting and Optimization

Chain (no CP) Star (no CP)

left-
deep

zig-zag bushy left-
deep

zig-zag/
bushy

n 2n-1 22n-3 2n-1C(n-1) 2(n-1)! 2n-1(n-1)!

5 16 128 224 48 384

10 512 ~131K ~2.4M ~726K ~186M

Clique / CP (cross product)

left-
deep

zig-zag bushy

n! 2n-2n! n! C(n-1)

120 960 1,680

~3.6M ~929M ~17.6G

C(n) … Catalan Numbers
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Join Order Search Strategies
 Tradeoff: Optimal (or good) plan vs compilation time

 #1 Naïve Full Enumeration
 Infeasible for reasonably large queries (long tail up to 1000s of joins)

 #2 Exact Dynamic Programming
 Guarantees optimal plan, often too expensive (beyond 20 relations)
 Bottom-up vs top-down approaches

 #3 Greedy / Heuristic Algorithms
 #4 Approximate Algorithms

 E.g., Genetic algorithms, 
simulated annealing

 Example PostgreSQL
 Exact optimization (DPSize) if < 12 

relations (geqo_threshold)
 Genetic algorithm for larger queries
 Join methods: NLJ, SMJ, HJ

Query Rewriting and Optimization

All
(unknown)

Actual

Explored

DP Enum

Heuristics

[Nicolas Bruno, César A. Galindo-Legaria, 
Milind Joshi: Polynomial heuristics for 

query optimization. ICDE 2010]
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Greedy Join Ordering
 Example

 Part ⋈ Lineorder ⋈ Supplier ⋈ σ(Customer) ⋈ σ(Date), left-deep plans

Query Rewriting and Optimization

Star Schema 
Benchmark

# Plan Costs

1 Lineorder ⋈ Part 30M

Lineorder ⋈ Supplier 20M

Lineorder ⋈ σ(Customer) 90K

Lineorder ⋈ σ(Date) 40K

Part ⋈ Customer N/A

… …

2 (Lineorder ⋈ σ(Date)) ⋈ Part 150K 

(Lineorder ⋈ σ(Date)) ⋈ Supplier 100K

(Lineorder ⋈ σ(Date)) ⋈ σ(Customer) 75K

# Plan Costs

3 ((Lineorder ⋈ σ(Date)) ⋈
σ(Customer)) ⋈ Part

120M

((Lineorder ⋈ σ(Date)) ⋈
σ(Customer)) ⋈ Supplier

105M

4 (((Lineorder ⋈ σ(Date)) ⋈
σ(Customer)) ⋈ Supplier) ⋈ Part

135M

Note: Simple O(n2) algorithm 
for left-deep trees; 

O(n3) algorithms for bushy trees 
existing (e.g., GOO)

Presenter
Presentation Notes
GOO .. Greedy operator ordering
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Dynamic Programming Join Ordering
 Exact Enumeration via Dynamic Programming

 #1: Optimal substructure (Bellman’s Principle of Optimality)
 #2: Overlapping subproblems allow for memoization
 Approach DPSize: Split in independent subproblems (optimal plan per set of 

quantifiers and interesting properties), solve subproblems, combine solutions
 Example

Query Rewriting and Optimization

Q1 Plan

{C} Tbl, IX

{D} Tbl, IX

{L} …

{P} …

{S} …

Q2 Plan

{C,L} L⋈C, C⋈L

{D,L} L⋈D, D⋈L

{L,P} L⋈P, P⋈L

{L,S} L⋈S, S⋈L

{C,D} N/A

… …

Q3 Plan

{C,D,L} (L⋈C)⋈D, D⋈(L⋈C), 
(L⋈D)⋈C, C⋈(L⋈D)

{C,L,P} (L⋈C)⋈P, P⋈(L⋈C), 
(P⋈L)⋈C, C⋈(P⋈L)

{C,L,S} …

{D,L,P} …

{D,L,S} …

{L,P,S} …

Q4 Plan

{C,D,L,P} ((L⋈C)⋈D)⋈P,
P⋈((L⋈C)⋈D)

{C,D,L,S} …

{C,L,P,S} …

{D,L,P,S} …

Q1+Q1
Q1+Q2, Q2+Q1

Q1+Q3, Q2+Q2, Q3+Q1

Q5 Plan

{C,D,L,P,S} …

Q1+Q4, Q2+Q3, 
Q3+Q2, Q4+Q1

Presenter
Presentation Notes
NOTE: The plan generation algorithm also includes the selection of physical operators (NLJ, SMJ, HJ)
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BREAK (and Test Yourself)
 Rewrite the following RA expressions – assuming two relations R(a, b, c) 

and S(d, e, f) – into equivalent expressions with lower costs. (5 points)

 σb=7(R ⋈ S)

 (σe>3(S)) ∩ (σf<7(S))

 πa,b(R ⋈a=d S)

 R ∪ (σd<e ᴧ e<f ᴧ f<d(S))

 σb=3(γb,max(c)(R))

Query Rewriting and Optimization

 σb=7(R) ⋈ S

 R ∪ Ø  R

 γ3,max(c)(σb=3(R))

 πa,b(R) ⋉a=d S

 σe>3 ᴧ f<7(S)
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BREAK (and Test Yourself), cont.
 Assume relations R(a,b,c) and S(d,e), and indicate in the table below 

whether or not the two RA expressions per row are equivalent in bag 
semantics. For non-equivalent expressions briefly explain why. (5 points)

Query Rewriting and Optimization

Equivalent?



22

INF.01017UF Data Management / 706.010 Databases – 08 Query Processing
Matthias Boehm, Graz University of Technology, WS 2021/22

Plan Execution Strategies
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Overview Query Processing
Plan Execution Strategies

Parsing

Semantic Analysis

Query Rewrites

Plan Optimization

Name Count
James Rodríguez 6
Thomas Müller 5

Robin van Persie 4
Neymar 4

Plan Execution

Plan CachingQEP

Compile Time Runtime

AST/IR

IR

IR

SELECT * FROM TopScorer
WHERE Count>=4
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Overview Execution Strategies
 Different execution strategies (processing models) with different 

pros/cons (e.g., memory requirements, DAGs, efficiency, reuse)

 #1 Iterator Model (mostly row stores)

 #2 Materialized Intermediates (mostly column stores)

 #3 Vectorized (Batched) Execution (row/column stores)

 #4 Query Compilation (row/column stores)

Plan Execution Strategies

High-level 
overview, 
details in 

ADBS
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Iterator Model
 Volcano Iterator Model

 Pipelined & no global knowledge 
 Open-Next-Close (ONC) interface
 Query execution from root node (pull-based)

 Example σA=7(R)

 Blocking Operators
 Sorting, grouping/aggregation, 

build-phase of (simple) hash joins

Plan Execution Strategies

[Goetz Graefe: Volcano - An Extensible 
and Parallel Query Evaluation System. 

IEEE Trans. Knowl. Data Eng. 1994]

Scalable (small memory)
High CPI measures

R

σA=7

open()

open()

next()
next()

next()
next()

close()
open()
next()
next()

close()

next()
next()

close()
 EOF

 EOF

 EOF

void open() { R.open(); }

void close() { R.close(); }

Record next() {
while( (r = R.next()) != EOF )
if( p(r) ) //A==7
return r;

return EOF;
} 

PostgreSQL: Init(), 
GetNext(), ReScan(), MarkPos(), 

RestorePos(), End()
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Iterator Model – Predicate Evaluation
 Operator Predicates

 Examples: arbitrary selection predicates and join conditions
 Operators parameterized with in-memory expression trees/DAGs
 Expression evaluation engine (interpretation)

 Example Selection σ
 𝐴𝐴 = 7 ∧ 𝐵𝐵 ≠ 8 ∨ 𝐷𝐷 = 9

Plan Execution Strategies

B 8

!=
D 9

==&

|

A 7

==

A B C D
7 8 Product 1 10

14 8 Product 3 11
7 3 Product 7 7
3 3 Product 2 1
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Materialized Intermediates (column-at-a-time)

Plan Execution Strategies

SELECT count(DISTINCT o_orderkey) 
FROM orders, lineitem
WHERE l_orderkey = o_orderkey
AND o_orderdate >= date ’1996-07-01’
AND o_orderdate < date ’1996-07-01’
+ interval ’3’ month

AND l_returnflag = ’R’;

Binary 
Association 

Tables 
(BATs:=OID/Val)

Column-oriented storage
Efficient array operations

DAG processing
Reuse of intermediates
Memory requirements

Unnecessary read/write 
from and to memory

[Milena Ivanova, Martin L. Kersten, Niels 
J. Nes, Romulo Goncalves: An 

architecture for recycling intermediates 
in a column-store. SIGMOD 2009]
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Vectorized Execution (vector-at-a-time)

 Idea: Pipelining of vectors (sub columns) s.t. vectors fit in CPU cache

Plan Execution Strategies

Vector Size (# Tuples)

Workload: TPCH Q1

[Peter A. Boncz, Marcin Zukowski, 
Niels Nes: MonetDB/X100: Hyper-

Pipelining Query Execution. 
CIDR 2005]

Column-oriented storage
Efficient array operations
Memory/cache efficiency

DAG processing
Reuse of intermediates
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Query Compilation
 Idea: Data-centric, not op-centric processing + LLVM code generation

Plan Execution Strategies

Operator Trees 
(w/o and w/ pipeline boundaries)

Compiled Query
(conceptual, not LLVM)

[Thomas Neumann: Efficiently Compiling Efficient 
Query Plans for Modern Hardware. PVLDB 2011]
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Physical Plan Operators
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Overview Plan Operators
 Multiple Physical Operators

 Different physical operators for different data and query characteristics
 Physical operators can have vastly different costs  

 Examples (supported in most DBMS)

 Logical Plan 
Operators

 Physical Plan
Operators

Physical Plan Operators

Selection
𝜎𝜎𝑝𝑝(𝑅𝑅)

Projection
𝜋𝜋𝐴𝐴(𝑅𝑅)

Grouping
𝛾𝛾𝐺𝐺:𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴)(𝑅𝑅)

Join
𝑅𝑅 ⋈𝑅𝑅.𝑎𝑎=𝑆𝑆.𝑏𝑏 𝑆𝑆

TableScan
IndexScan

ALL

ALL SortGB
HashGB

NestedLoopJN
SortMergeJN

HashJN

Lecture 07 This Lecture
Exercise 3
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Nested Loop Join
 Overview

 Most general join operator (no order, no indexes, arbitrary predicates θ)
 Poor asymptotic behavior (very slow)

 Algorithm (pseudo code)

 Complexity
 Complexity: Time: O(N * M), Space: O(1)
 Pick smaller table as inner if it fits entirely in memory (buffer pool)

Physical Plan Operators

for each s in S
for each r in R
if( r.RID θ s.SID )
emit concat(r, s)

How to implement next()?

R RID

9

1

7

SID S

7

3

1

9

7

⋈RID=SID

N = |R|
M = |S| 
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Block Nested Loop / Index Nested Loop Joins
 Block Nested Loop Join

 Avoid I/O by blocked data access
 Read blocks of bR and bS R and S pages
 Complexity unchanged but 

potentially much fewer scans

 Index Nested Loop Join
 Use index to locate qualifying tuples 

(==, >=, >, <=, <)
 Complexity (for equivalence predicates): 

Time: O(N * log M), Space: O(1)

Physical Plan Operators

for each block bR in R
for each block bS in S
for each r in bR
for each s in bS
if( r.RID θ s.SID )
emit concat(r, s)

for each r in R
for each s in S.IX(θ,r.RID)  
emit concat(r,s)

ix

S
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Sort-Merge Join
 Overview

 Sort Phase: sort the input tables R and S (w/ external sort algorithm)
 Merge Phase: step-wise merge with lineage scan 

 Algorithm (Merge, PK-FK)

 Complexity
 Time (unsorted vs sorted):  O(N log N + M log M) vs O(N + M)
 Space (unsorted vs sorted): O(N + M) vs O(1)

Physical Plan Operators

Record next() {
while( curR!=EOF && curS!=EOF ) {

if( curR.RID < curS.SID )
curR = R.next();

else if( curR.RID > curS.SID )
curS = S.next();

else if( curR.RID == curS.SID ) {
t = concat(curR, curS);
curS = S.next(); //FK side
return t; 

} }
return EOF; 

} 

… R_ID
9
1
7

S_ID …
7
3
1
9
7

⋈RID=SID

SID S

1

3

7

7

9

R RID

1

7

9

produced sorted 
output

N = |R|
M = |S| 
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Hash Join
 Overview

 Build Phase: read table S and build a hash table HS over join key
 Probe Phase: read table R and probe HS with the join key 

 Algorithm (Build+Probe, PK-FK)

 Complexity
 Time: O(N + M), Space: O(N)
 Classic hashing: p in-memory partitions of Hr w/ p scans of R and S

Physical Plan Operators

Record next() {
// build phase (first call)
while( (r = R.next()) != EOF )
Hr.put(r.RID, r);

// probe phase
while( (s = S.next()) != EOF )
if( Hr.containsKey(s.SID) )
return concat(Hr.get(s.SID), s);

return EOF; 
} 

… R_ID
9
1
7

SID S

7

3

1

9

7

⋈RID=SID

HR,RID

9

1

7

h(x)

N = |R|
M = |S| 

Presenter
Presentation Notes
Note: example hash functions: crc (cyclic redundancy check), MurmurHash, CityHash, FarmHash, XXHash 
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Sort-GroupBy and Hash-GroupBy
 Recap: Classification of Aggregates (04 Relational Algebra)

 Additive, semi-additive, additively-computable, others

 Sort Group-By
 Similar to sort-merge join 

(Sort, GroupAggregate)
 Sorted group output 

 Hash Group-By
 Similar to hash join (HashAggregate)
 Higher temporary memory consumption 
 Unsorted group output
 #1 w/ tuple grouping
 #2 w/ direct aggregation (e.g., count)
 Beware: cache-unfriendly if many groups (size(H) > L2/L3 cache)

Physical Plan Operators

γA,count(*)(R)

X X X X X X Y Y Y Y Y Y Y Z Z Z Z Z
sort

O(N log N)
aggregate

O(N) X,6 Y,7 Z,5

HA,Agg

Y

X

Z

γA,count(*)

R

build & agg
O(N)

Presenter
Presentation Notes
Note: quantile/median requires sort per partition -> sort group-by
Postgres: GroupAggregate, HashAggregate
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Summary and Q&A
 Query Rewriting and Optimization
 Plan Execution Strategies
 Physical Plan Operators 

 Next Lectures
 09 Transaction Processing and Concurrency [Dec 06]

 10 NoSQL (key-value, document, graph) [Dec 13]
 Holidays (Exercise 3 due Dec 21, and Exercise 4 published Dec 28)
 11 Distributed Storage and Data Analysis [Jan 10]
 12 Data Stream Processing Systems and Q&A [Jan 17]
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