
1
SCIENCE
PASSION

TECHNOLOGY

Data Management
10 NoSQL Systems
Matthias Boehm

Graz University of Technology, Austria

Institute of Interactive Systems and Data Science
Computer Science and Biomedical Engineering

BMK endowed chair for Data Management

Last update: Dec 13, 2021

2

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Announcements/Org
 #1 Video Recording

 Link in TUbe & TeachCenter (lectures will be public)
 Optional attendance (independent of COVID)
 Virtual lectures (recorded) until end of the year

https://tugraz.webex.com/meet/m.boehm

 #2 Exercise Submissions
 Exercise 2: in process of begin graded (before Xmas)
 Exercise 3: due Dec 21, 11.59pm, provided data
 Exercise 4: extra credit, published Dec 11

 #3 Course Evaluation and Exam
 Evaluation period: Jan 01 – Feb 15
 Exam dates: Feb 04, 12.30pm and Feb 04, 5.30pm

(90+min written exam, start 10 late)

Q&A
[https://mboehm7.github.io/

teaching/ws2122_dbs/T3_data.zip]

https://tugraz.webex.com/meet/m.boehm
https://mboehm7.github.io/teaching/ws2122_dbs/T3_data.zip

3

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

SQL vs NoSQL Motivation
 #1 Data Models/Schema

 Non-relational: key-value, graph, doc, time series
(logs, social media, documents/media, sensors)

 Impedance mismatch / complexity
 Pay-as-you-go/schema-free (flexible/implicit)

 #2 Scalability
 Scale-up vs simple scale-out
 Horizontal partitioning (sharding) and scaling
 Commodity hardware, network, disks ($)

 NoSQL Evolution
 Late 2000s: Non-relational, distributed, open source DBMSs
 Early 2010s: NewSQL: modern, distributed, relational DBMSs
 Not Only SQL: combination with relational techniques
 RDBMS and specialized systems (consistency/data models)

[Credit: http://nosql-
database.org/]

http://www.nosql-database.org/

4

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Agenda
 Consistency and Data Models
 Key-Value Stores
 Document Stores
 Graph Processing
 Time Series Databases
 Exercise 4: Large-Scale Data Analysis

[Wolfram Wingerath, Felix Gessert, Norbert Ritter:
NoSQL & Real-Time Data Management in Research
& Practice. BTW 2019]

Lack of
standards

and imprecise
classification

[http://geek-and-poke.com/]

http://geek-and-poke.com/

5

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Consistency and Data Models

6

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Recap: ACID Properties
 Atomicity

 A transaction is executed atomically (completely or not at all)
 If the transaction fails/aborts no changes are made to the database (UNDO)

 Consistency
 A successful transaction ensures that all consistency constraints are met

(referential integrity, semantic/domain constraints)

 Isolation
 Concurrent transactions are executed in isolation of each other
 Appearance of serial transaction execution

 Durability
 Guaranteed persistence of all changes made by a successful transaction
 In case of system failures, the database is recoverable (REDO)

Consistency and Data Models

7

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Two-Phase Commit (2PC) Protocol
 Distributed TX Processing

 N nodes with logically related but physically distributed data
(e.g., vertical data partitioning)

 Distributed TX processing to ensure consistent view (atomicity/durability)

 Two-Phase Commit (via 2N msgs)
 Phase 1 PREPARE: check for

successful completion, logging
 Phase 2 COMMIT: release locks,

and other cleanups
 Problem: Blocking protocol

 Excursus: Wedding Analogy
 Coordinator: marriage registrar
 Phase 1: Ask for willingness
 Phase 2: If all willing, declare marriage

Consistency and Data Models

DBS 1

DBS 4

DBS 2

DBS 3

coordinator

8

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

CAP Theorem
 Consistency

 Visibility of updates to distributed data (atomic or linearizable consistency)
 Different from ACIDs consistency in terms of integrity constraints

 Availability
 Responsiveness of a services (clients reach available service, read/write)

 Partition Tolerance
 Tolerance of temporarily unreachable network partitions
 System characteristics (e.g., latency) maintained

 CAP Theorem

 Proof

Consistency and Data Models

”You can have AT MOST TWO of
these properties for a networked
shared-data systems.”

[Eric A. Brewer: Towards
robust distributed systems

(abstract). PODC 2000]

[Seth Gilbert, Nancy A. Lynch: Brewer's conjecture
and the feasibility of consistent, available, partition-

tolerant web services. SIGACT News 2002]

9

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

CAP Theorem, cont.
 CA: Consistency & Availability (ACID single node)

 Network partitions cannot be tolerated
 Visibility of updates (consistency) in conflict

with availability no distributed systems

 CP: Consistency & Partition Tolerance (ACID distributed)
 Availability cannot be guaranteed
 On connection failure, unavailable

(wait for overall system to become consistent)

 AP: Availability & Partition Tolerance (BASE)
 Consistency cannot be guaranteed, use of optimistic strategies
 Simple to implement, main concern: availability to ensure revenue ($$$)
 BASE consistency model

Consistency and Data Models

1
2

3

7
4

6
5

read A

write A

10

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

BASE Properties
 Basically Available

 Major focus on availability, potentially with outdated data
 No guarantee on global data consistency across entire system

 Soft State
 Even without explicit state updates, the data might change due to

asynchronous propagation of updates and nodes that become available

 Eventual Consistency
 Updates eventually propagated, system would reach consistent state if no

further updates, and network partitions fixed
 No temporal guarantees on changes are propagated

Consistency and Data Models

Presenter
Presentation Notes
NOTE: ACID vs BASE

11

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Eventual Consistency
 Basic Concept

 Changes made to a copy eventually migrate to all
 If update activity stops, replicas will

converge to a logically equivalent state
 Metric: time to reach consistency

(probabilistic bounded staleness)

 #1 Monotonic Read Consistency
 After reading data object A, the client never reads an older version

 #2 Monotonic Write Consistency
 After writing data object A, it will never be replaced with an older version

 #3 Read Your Own Writes / Session Consistency
 After writing data object A, a client never reads an older version

 #4 Causal Consistency
 If client 1 communicated to client 2 that data object A has been updated,

subsequent reads on client 2 return the new value

Consistency and Data Models

Amazon SimpleDB 500ms
Cassandra 200ms
Amazon S3 12s

[Peter Bailis, Ali Ghodsi: Eventual
consistency today: limitations, extensions,

and beyond. Commun. ACM 2013]

12

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Key-Value Stores

13

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Motivation and Terminology
 Motivation

 Basic key-value mapping via simple API (more complex data models
can be mapped to key-value representations)

 Reliability at massive scale on commodity HW (cloud computing)

 System Architecture
 Key-value maps, where values

can be of a variety of data types
 APIs for CRUD operations

(create, read, update, delete)
 Scalability via sharding

(horizontal partitioning)

 Example Systems
 Dynamo (2007, AP) Amazon DynamoDB (2012)
 Redis (2009, CP/AP)

Key-Value Stores

[Giuseppe DeCandia et al:
Dynamo: amazon's highly
available key-value store.

SOSP 2007]

users:1:a “Inffeldgasse 13, Graz”

users:1:b “[12, 34, 45, 67, 89]”

users:2:a “Mandellstraße 12, Graz”

users:2:b “[12, 212, 3212, 43212]”

Presenter
Presentation Notes
Notes: * Dynamo (consistent hashing) + SimpleDB DynamoDB* Dynamo with consistent hashing

14

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Example Systems
 Redis Data Types

 Redis is not a plain KV-store, but “data structure server” with
persistent log (appendfsync no/everysec/always)

 Key: ASCII string (max 512MB, common key schemes: comment:1234:reply.to)
 Values: strings, lists, sets, sorted sets, hashes (map of string-string), etc

 Redis APIs
 SET/GET/DEL: insert a key-value pair, lookup value by key, or delete by key
 MSET/MGET: insert or lookup multiple keys at once
 INCRBY/DECBY: increment/decrement counters
 Others: EXISTS, LPUSH, LPOP, LRANGE, LTRIM, LLEN, etc

 Other systems
 Classic KV stores (AP): Riak, Aerospike, Voldemort,

LevelDB, RocksDB, FoundationDB, Memcached
 Wide-column stores: Google BigTable (CP),

Apache HBase (CP), Apache Cassandra (AP)

Key-Value Stores

15

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Log-structured Merge Trees
 LSM Overview

 Many KV-stores rely on LSM-trees as their storage engine
(e.g., BigTable, DynamoDB, LevelDB, Riak, RocksDB, Cassandra, HBase)

 Approach: Buffers writes in memory, flushes data as sorted runs to storage,
merges runs into larger runs of next level (compaction)

 System Architecture
 Writes in C0
 Reads against

C0 and C1 (w/
buffer for C1)

 Compaction
(rolling merge):
sort, merge,
including
deduplication

Key-Value Stores

[Patrick E. O'Neil, Edward Cheng,
Dieter Gawlick, Elizabeth J. O'Neil:

The Log-Structured Merge-Tree
(LSM-Tree). Acta Inf. 1996]

C0
writes

in-memory
buffer (C0)

max capacity T

on-disk
storage (C1)

C1t+1

reads

C1t

compaction

Presenter
Presentation Notes
Note: LSM write optimized by buffering writes, read-optimized by sort-merging on-disk runsC1 and Ci also trees similar to B-tree but nodes kept 100% full single node pages packed into multi-page blocks Better insert performance, worse lookup costs

16

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Log-structured Merge Trees, cont.
 LSM Tiering

 Keep up to T-1 runs per level L
 Merge all runs of Li into 1 run of Li+1

 L1
 L2
 L3

 LSM Leveling
 Keep 1 run per level L
 Merge run of Li with Li+1

 L1
 L2
 L3

Key-Value Stores

[Niv Dayan: Log-Structured-
Merge Trees, Comp115

guest lecture, 2017]

write-
optimized

read-
optimized

[Stratos Idreos, Mark Callaghan:
Key-Value Storage Engines
(Tutorial), SIGMOD 2020]

17

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Document Stores

18

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Recap: JSON (JavaScript Object Notation)
 JSON Data Model

 Data exchange format for
semi-structured data

 Not as verbose as XML
(especially for arrays)

 Popular format (e.g., Twitter)

 Query Languages
 Most common: libraries for

tree traversal and data extraction
 JSONig: XQuery-like query language
 JSONPath: XPath-like query language

Other Query Languages (XML, JSON)

{“students:”[
{“id”: 1, “courses”:[

{“id“:“INF.01017UF”, “name“:“DM”},
{“id“:“706.550”, “name“:“AMLS”}]},

{“id”: 5, “courses”:[
{“id“:“706.520”, “name“:“DIA”}]},

]}

JSONiq Example:
declare option jsoniq-version “…”;
for $x in collection(“students”)
where $x.id lt 10
let $c := count($x.courses)
return {“sid”:$x.id, “count”:$c}

[http://www.jsoniq.org/docs/JSONiq/html-single/index.html]

http://www.jsoniq.org/docs/JSONiq/html-single/index.html

19

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Motivation and Terminology
 Motivation

 Application-oriented management of structured, semi-structured, and
unstructured information (pay-as-you-go, schema evolution)

 Scalability via parallelization on commodity HW (cloud computing)

 System Architecture
 Collections of (key, document)
 Scalability via sharding

(horizontal partitioning)
 Custom SQL-like or

functional query languages

 Example Systems
 MongoDB (C++, 2007, CP) RethinkDB, Espresso,

Amazon DocumentDB (Jan 2019)
 CouchDB (Erlang, 2005, AP) CouchBase

Document Stores

1234 {customer:”Jane Smith”,
items:[{name:”P1”,price:49},

{name:”P2”,price:19}]}

1756 {customer:”John Smith”, ...}

989 {customer:”Jane Smith”, ...}

20

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Example MongoDB
 Creating

a Collection

 Inserting into
a Collection

 Querying
a Collection

Document Stores

import pymongo as m
conn = m.MongoClient(“mongodb://localhost:123/”)
db = conn[“dbs19”] # database dbs19
cust = db[“customers”] # collection customers

mdict = {
“name“: “Jane Smith”,
“address”: “Inffeldgasse 13, Graz”

}
id = cust.insert_one(mdict).inserted_id
ids = cust.insert_many(mlist).inserted_ids

[Credit: https://api.mongodb.com/
python/current]

print(cust.find_one({"_id": id}))

ret = cust.find({"name": "Jane Smith"})
for x in ret:
print(x)

https://api.mongodb.com/python/current

21

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

BREAK (and Test Yourself)
 NoSQL Systems (10/100 points)

 Describe the concept and system architecture of a key-value store, including
techniques for achieving high write throughput, and scale-out in distributed
environments. […]

 Solution
 Key-value store

system architecture [4]

 Write-throughput via LSM
(log-structured merge tree) [3]

 Horizontal partitioning [3]
(see 07 Physical Design)

k v
1 Blob1
2 Blob2
4 Blob4
7 Blob7

15 Blob15
9 Blob9

14 Blob14
8 Blob8

R

R1 = σk<=5(R)
R2 = σk>5Λk<=10(R)
R3 = σk>10Λk<=15(R)

R = (R1 ∪ R2) ∪ R3)

22

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Graph Processing

23

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Motivation and Terminology
 Ubiquitous Graphs

 Domains: social networks, open/linked data, knowledge bases, bioinformatics
 Applications: influencer analysis, ranking, topology analysis

 Terminology
 Graph G = (V, E) of vertices V (set of nodes)

and edges E (set of links between nodes)
 Different types of graphs

Graph Processing

Undirected
Graph

Directed
Graph

Multi
Graph

Labeled
Graph

Data/Property
Graph

Gene inter-
acts

k2=v3

k1=v1
k2=v2

24

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Terminology and Graph Characteristics
 Terminology, cont.

 Path: Sequence of edges and vertices (walk: allows repeated edges/vertices)
 Cycle: Closed walk, i.e., a walk that starts and ends at the same vertex
 Clique: Subgraph of vertices where every two distinct vertices are adjacent

 Metrics
 Degree (in/out-degree): number of

incoming/outgoing edges of that vertex
 Diameter: Maximum distance of pairs of vertices

(longest shortest-path)

 Power Law Distribution
 Degree of most real graphs follows

a power law distribution

Graph Processing

Tall
head

Long tail

e.g., 80-20
rule

in-
degree 3

out-
degree 2

25

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Vertex-Centric Processing
 Google Pregel

 Name: Seven Bridges of Koenigsberg (Euler 1736)
 “Think-like-a-vertex” computation model
 Iterative processing in super steps, comm.: message passing

 Programming Model
 Represent graph as collection of

vertices w/ edge (adjacency) lists
 Implement algorithms via Vertex API
 Terminate if all vertices halted / no more msgs

Graph Processing

[Grzegorz Malewicz et al: Pregel:
a system for large-scale graph

processing. SIGMOD 2010
SIGMOD 2020 Test of Time Award]

public abstract class Vertex {
public String getID();
public long superstep();
public VertexValue getValue();

public compute(Iterator<Message> msgs);
public sendMsgTo(String v, Message msg);
public void voteToHalt();

}

1
2

4
3

5

7 6

Worker
1

Worker
2

[1, 3, 4]2
7
4
1
5
3
6

[5, 6]
[1, 2]
[1, 2, 4]

[6, 7]
[2]
[5, 7]

Presenter
Presentation Notes
Note: Euler showed 1736 that there cannot be a route that crosses every bridge just once (Seven Bridges of Koenigsberg) because there can be at most 2 nodes (begin, end) that have an uneven number of bridges (enter,exit).

26

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Vertex-Centric Processing, cont.
 Example1: Connected Components

 Determine connected components of a graph (subgraphs of connected nodes)
 Propagate max(current, msgs) if != current to neighbors, terminate if no msgs

 Example 2: Page Rank
 Ranking of webpages by importance / impact
 #1: Initialize vertices to 1/numVertices()
 #2: In each super step

 Compute current vertex value:
value = 0.15/numVertices()+0.85*sum(msg)

 Send to all neighbors:
value/numOutgoingEdges()

Graph Processing

1
2

4
3

5

7 6

Step 0 4
4

4
3

7

7 7

Step 1 4
4

4
4

7

7 7

Step 2 Step 3
converged

[Credit: https://en.
wikipedia.org/wiki/PageRank]

https://en.wikipedia.org/wiki/PageRank
https://en.wikipedia.org/wiki/PageRank

27

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Graph-Centric Processing
 Motivation

 Exploit graph structure for algorithm-specific optimizations
(number of network messages, scheduling overhead for super steps)

 Large diameter / average vertex degree

 Programming Model
 Partition graph into subgraphs (block/graph)
 Implement algorithm directly against

subgraphs (internal and boundary nodes)
 Exchange messages in super steps only

between boundary nodes faster convergence

Graph Processing

1
2

4
3

5

7 6

Worker
2

Worker
3

Worker
1

5

7 6

1 2
4

3

[Da Yan, James Cheng, Yi Lu, Wilfred Ng: Blogel: A Block-
Centric Framework for Distributed Computation on Real-
World Graphs. PVLDB 2014]

[Yuanyuan Tian, Andrey Balmin, Severin Andreas
Corsten, Shirish Tatikonda, John McPherson: From "Think
Like a Vertex" to "Think Like a Graph". PVLDB 2013]

28

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Resource Description Framework (RDF)
 RDF Data

 Data and meta data description via triples
 Triple: (subject, predicate, object)
 Triple components can be URIs or literals
 Formats: e.g., RDF/XML, RDF/JSON, Turtle
 RDF graph is a directed, labeled multigraph

 Querying RDF Data
 SPARQL (SPARQL

Protocol And RDF
Query Language)

 Subgraph matching

 Selected
Example Systems

Graph Processing

uri2:T.Mueller

uri1:Bayern
Munich

uri3:Player 29

uri4#age

uri4#worksFor

rdf#type

SELECT ?person
WHERE {
?person rdf:type uri3:Player ;

uri4:worksFor uri1:”Bayern Munich” .
}

29

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Excursus: Example Systems
 Understanding Use in Practice

 Types of graphs user have
 Graph computations run
 Types of graph systems used

 Summary of State of the Art
Runtime Techniques

Graph Processing

[Siddhartha Sahu, Amine Mhedhbi,
Semih Salihoglu, Jimmy Lin, M.
Tamer Özsu: The Ubiquity of Large
Graphs and Surprising Challenges of
Graph Processing. PVLDB 2017] Graph X

[Da Yan, Yingyi Bu, Yuanyuan Tian, Amol
Deshpande, James Cheng: Big Graph

Analytics Systems. SIGMOD 2016]

Presenter
Presentation Notes
•Variety: Graphs in practice represent a very wide variety of entities, many of which are not naturally thought of as vertices and edges. Most surprisingly, traditional enterprise data comprised of products, orders, and transactions, which are typically seen as the perfect fit for relational systems, appear to be a very common form of data represented in participants’ graphs.•Ubiquity of Very Large Graphs: Many graphs in practice are very large, often containing over a billion edges. These large graphs represent a very wide range of entities and belong to organizations at all scales from very small enterprises to very large ones. This refutes the sometimes heard assumption that large graphs are a problem for only a few large organizations such as Google, Facebook, and Twitter.•Challenge of Scalability: Scalability is unequivocally the most pressing challenge faced by participants. The ability to process very large graphs efficiently seems to be the biggest limitation of existing software.•Visualization: Visualization is a very popular and central task in participants’ graph processing pipelines. After scalability, participants indicated visualization as their second most pressing challenge, tied with challenges in graph query languages.•Prevalence of RDBMSes: Relational databases still play an important role in managing and processing graphs

30

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Excursus: Future Graph Processing Systems
 Community Perspective

 2019 Dagstuhl Seminar on Big Graph Processing Systems
 Opportunities and challenges:

Abstractions, Ecosystems, and Performance

Graph Processing

[Credit:
https://commons.wikimedia.org/
wiki/File:Dagstuhl_DSC02285.jpg]

[Sherif Sakr et al: The future is big graphs:
a community view on graph processing
systems. CACM 64(9), 2021]

https://commons.wikimedia.org/wiki/File:Dagstuhl_DSC02285.jpg

31

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Time Series Databases

32

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Motivation and Terminology
 Ubiquitous Time Series

 Domains: Internet-of-Things (IoT), sensor networks, smart production/planet,
telemetry, stock trading, server/application metrics, event/log streams

 Applications: monitoring, anomaly detection, time series forecasting
 Dedicated storage and analysis techniques Specialized systems

 Terminology
 Time series X is a sequence of data

points xi for a specific measurement
identity (e.g., sensor) and time granularity

 Regular (equidistant) time series (xi)
vs irregular time series (ti, xi)

Time Series Databases

1s 1s

regular

irregular

33

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Example InfluxDB
 Input Data

 System Architecture
 Written in Go, originally key-value store, now dedicated storage engine
 Time Structured Merge Tree (TSM), similar to LSM
 Organized in shards, TSM indexes and inverted index for reads

Time Series Databases

WAL

In-Mem
Index

Write

TSM
Indexes

append-only
fsync

periodic
flushes

cpu,region=west,host=A
user=85,sys=2,idle=10 1443782126

[Paul Dix: InfluxDB
Storage Engine Internals,
CMU Seminar, 09/2017]

compaction &
compression periodic drop of shards

(files) according to
retention policy

Index per TSM file:
Header | Blocks | Index | Footer

KeyLen | Key | Type | Min T | Max T| Off | …

TimeFields (values)

Measurement
Tags

34

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Example InfluxDB, cont.
 Compression (of blocks)

 Compress up to 1000 values per block (Type | Len | Timestamps | Values)
 Timestamps: Delta + Run-length encoding for regular time series;

Simple8B or uncompressed for irregular
 Values: double delta for FP64, bits for Bool, double delta + zig zag for INT64,

Snappy for strings

 Query Processing
 SQL-like and functional APIs for

filtering (e.g., range) and aggregation
 Inverted indexes

Time Series Databases

SELECT percentile(90, user)
FROM cpu WHERE time>now()-12h
AND “region”=‘west’
GROUP BY time(10m), host

Measurement to fields:
cpu [user,sys,idle]

host [A, B]
Region [west, east]

Posting lists:
cpu [1,2,3,4,5,6]

host=A [1,2,3]
host=B [4,5,6]

region=west [1,2,3]

35

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Other Systems
 Prometheus

 Metrics, high-dim data model, sharding and federation
custom storage and query engine, implemented in Go

 OpenTSDB
 TSDB on top of HBase or Google BigTable, Hadoop

 TimescaleDB
 TSDB on top of PostgreSQL, standard SQL and reliability

 Druid
 Column-oriented storage for time series, OLAP, and search

 IBM Event Store
 HTAP system for high data ingest rates,

and data-parallel analytics via Spark
 Shard-local logs groomed data

Time Series Databases

[Ronald Barber et al: Evolving
Databases for New-Gen Big

Data Applications. CIDR 2017]

[Christian Garcia-Arellano et al:
Db2 Event Store: A Purpose-Built IoT

Database Engine. PVLDB 13(12) 2020]

36

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Exercise 4:
Large-Scale Data Analysis

Published: Dec 11
Deadline: Jan 18

Entire Exercise is Extra Credit

37

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Task 4.1 Apache Spark Setup
 #1 Pick your Spark Language Binding

 Java, Scala, Python

 #2 Install Dependencies
 Java: Maven

spark-core, spark-sql
 Python:

pip install pyspark

 (#3 Win Environment)
 Download https://github.com/steveloughran/winutils/tree/master/hadoop-

2.7.1/bin/winutils.exe (or https://github.com/cdarlint/winutils)
 Create environment variable HADOOP_HOME=“<some-path>/hadoop”

Exercise 4: Large-Scale Data Analysis

<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.4.7</version>

</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.4.7</version>

</dependency>

3/25
points

https://github.com/steveloughran/winutils/tree/master/hadoop-2.7.1/bin/winutils.exe
https://github.com/cdarlint/winutils

38

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Task 4.2 Query Processing via Spark RDDs
 #1 Spark Context Creation

 Create a spark context sc w/ local master (local[*])

 #2 Implement Q09 via RDD Operations
 Implement Q09 in self-contained executeQ09RDD()
 All reads should use sc.textFile(fname)
 RDD operations only stdout

 Note: Query will be shared by Dec 28

Exercise 4: Large-Scale Data Analysis

11/25
points

https://spark.apache.org/
docs/latest/rdd-

programming-guide.html

https://spark.apache.org/docs/latest/rdd-programming-guide.html

39

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Task 4.3 Query Processing via Spark SQL
 #1 Spark Session Creation

 Create a spark session via a spark session builder
and w/ local master (local[*])

 #2 Implement Q09 via Dataset Operations
 Implement Q09 self-contained in executeQ09Dataset()
 All reads should use sc.read().format("csv")
 SQL or Dataset operations only out07.json

 WebUI

Exercise 4: Large-Scale Data Analysis

 SQL processing of high
importance in modern

data management

5/25
points

INFO Utils: Successfully started service 'SparkUI' on port 4040.
INFO SparkUI: Bound SparkUI to […] http://192.168.108.220:4040

40

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Task 4.4 Graph Processing
 Input Co-author graph

 AuthPapersCOO.csv
(coordinate format)
AuthPapersCSR.csv
(compressed sparse row)

 #1 Compute Connected Components
 Leverage Spark to compute assignment

of vertices to components
 Write output to text file, print #components to stdout
 APIs up to you (e.g., Spark RDDs, Spark SQL, Spark GraphX)

 Example
Apache
SystemDS

Exercise 4: Large-Scale Data Analysis

1
2

4
3

5

7 6

6/25
points

41

INF.01017UF Data Management / 706.010 Databases – 10 NoSQL Systems
Matthias Boehm, Graz University of Technology, WS 2021/22

Conclusions and Q&A
 Summary 10 NoSQL Systems

 Consistency and Data Models
 Key-Value and Document Stores
 Graph and Time Series Databases

 Next Lectures (Part B: Modern Data Management)
 11 Distributed Storage and Data Analysis [Jan 10]
 12 Data stream processing systems, Q&A [Jan 17]

	Data Management�10 NoSQL Systems
	Announcements/Org
	SQL vs NoSQL Motivation
	Agenda
	Consistency and Data Models
	Recap: ACID Properties
	Two-Phase Commit (2PC) Protocol
	CAP Theorem
	CAP Theorem, cont.
	BASE Properties
	Eventual Consistency
	Key-Value Stores
	Motivation and Terminology
	Example Systems
	Log-structured Merge Trees
	Log-structured Merge Trees, cont.
	Document Stores
	Recap: JSON (JavaScript Object Notation)
	Motivation and Terminology
	Example MongoDB
	BREAK (and Test Yourself)
	Graph Processing
	Motivation and Terminology
	Terminology and Graph Characteristics
	Vertex-Centric Processing
	Vertex-Centric Processing, cont.
	Graph-Centric Processing
	Resource Description Framework (RDF)
	Excursus: Example Systems
	Excursus: Future Graph Processing Systems
	Time Series Databases
	Motivation and Terminology
	Example InfluxDB
	Example InfluxDB, cont.
	Other Systems
	Exercise 4:�Large-Scale Data Analysis
	Task 4.1 Apache Spark Setup
	Task 4.2 Query Processing via Spark RDDs
	Task 4.3 Query Processing via Spark SQL
	Task 4.4 Graph Processing
	Conclusions and Q&A

