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Announcements/Org
 #1 Video Recording 

 Link in TUbe & TeachCenter (lectures will be public)
 Optional attendance (independent of COVID)
 Hybrid, in-person but video-recorded lectures

 HS i5 + Webex: https://tugraz.webex.com/meet/m.boehm

 #2 COVID-19 Precautions (HS i5)
 Room capacity: 24/48 (green/yellow), 12/48 (orange/red)

 #3 Exercises / Programming Projects
 Project Selection by Nov 05, 11.59pm
 WS 20/21 DIA projects still valid

 #4 Exam Date
 Feb 04, 3pm-5pm in HS i13 (76 seats)

max 
24/116

41/116

https://tugraz.webex.com/meet/m.boehm
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Announcements/Org
 #4 Exercise Help

 How to even parse/convert the data in a distributed manner?

#index 1
#* Paper Title 1
#@ Author1, Author2
#t 2021
#% ref1
#% ref2

#index 2
#* Paper Title 2
#@ Author4
#t 2020

#index 3
#* Paper Title 3
#@ Author2, Author3
#t 2021
#% ref5

P1

P2

Option 1: Custom TextInputFormat w/ split at 
empty line or ‘#index’  one record per paper

lines = sc
.textfile(“./AMiner-Paper.txt”)
.zipWithIndex(); //Tuple2<String,Long>

pos = lines
.filter(r -> r._1().startsWith(“#index”))
.map(r -> r._2()).collect()

posArray[pos] = 1;
posArray = cumsum(posArray);
b = sc.broadcast(posArray);
papers = lines
.map(r -> (b[r._2()-1], r._1()))
.reduceByKey() //shuffling
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1
0
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0
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1
1
1
1
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2
2
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3
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Option 2: Default TextInputFormat and 
grouping via cumulative aggregates

Local
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Agenda
 Motivation and Terminology
 Entity Resolution Concepts
 Entity Resolution Tools
 Example Applications
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Motivation and Terminology
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Recap: Corrupted/Inconsistent Data
 #1 Heterogeneity of Data Sources

 Update anomalies on denormalized data / eventual consistency
 Changes of app/prep over time (US vs us)  inconsistencies

 #2 Human Error
 Errors in semi-manual data collection, laziness (see default values), bias
 Errors in data labeling (especially if large-scale: crowd workers / users)

 #3 Measurement/Processing Errors
 Unreliable HW/SW and measurement equipment (e.g., batteries)
 Harsh environments (temperature, movement)  aging

Motivation and Terminology

ID Name BDay Age Sex Phone Zip

3 Smith, Jane 05/06/1975 44 F 999-9999 98120

3 John Smith 38/12/1963 55 M 867-4511 11111

7 Jane Smith 05/06/1975 24 F 567-3211 98120

[Credit: Felix 
Naumann]

Zip City

98120 San Jose

90001 Lost Angeles

Typos

Missing 
Values Ref. Integrity

Contradictions & 
wrong values

Uniqueness & 
duplicates

No Global 
Keys
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Terminology
 Entity Linking

 “Entity linking is the problem of creating links among records 
representing real-world entities that are related in certain ways.”

 “As an important special case, it includes entity resolution, which is 
the problem of identifying or linking duplicate entities

 Other Terminology
 Entity Linking  Entity Linkage, Record Linkage
 Entity Resolution  Data Deduplication, Entity Matching

 Applications
 Named entity recognition and disambiguation
 Archiving, knowledge bases and graphs
 Recommenders / social networks
 Financial institutions (persons and legal entities)
 Travel agencies, transportation, health care

Motivation and Terminology

Barack Obama
Barack Hussein Obama II
The US president (2016)

[Douglas Burdick, Ronald Fagin, Phokion G. Kolaitis, 
Lucian Popa, Wang-Chiew Tan: Expressive power of 

entity-linking frameworks. J. Comput. Syst. Sci. 2019]

Barack and Michelle
are married ….


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Entity Resolution Concepts

[Xin Luna Dong, Theodoros Rekatsinas: Data Integration and Machine Learning: 
A Natural Synergy. Tutorials, SIGMOD 2018, PVLDB 2018, KDD 2019]

[Felix Naumann, Ahmad Samiei, John Koumarelas: Master project seminar 
for Distributed Duplicate Detection. Seminar, HPI WS 2016]

[Sairam Gurajada, Lucian Popa, Kun Qian, Prithviraj Sen: Learning-Based 
Methods with Human in the Loop for Entity Resolution, Tutorial, CIKM 2019]
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Problem Formulation
 Entity Resolution

 “Recognizing those records in two files which 
represent identical persons, objects, or events”

 Given two data sets A and B 
 Decide for all pairs of records ai – bj in A x B 

if match (link), no match (non-link), or not enough evidence (possible-link)

 Naïve Deduplication
 UNION DISTINCT via hash 

group-by or sort group-by
 Problem: only exact matches

 Similarity Measures
 Token-based: e.g., Jaccard J(A,B) = (A ∩ B) / (A ∪ B)
 Edit-based: e.g., Levenshtein lev(A,B) min(replace, insert, delete)
 Phonetic similarity (e.g., soundex, metaphone), Python lib Jellyfish

Entity Resolution Concepts

[Ivan Fellegi, Alan Sunter: A 
Theory for Record Linkage, J. 
American. Statistical Assoc., 

pp. 1183-1210, 1969]

Name Position Affiliation Research

Matthias 
Boehm

RSM IBM Research –
Almaden

Apache 
SystemML

Matthias 
Böhm

Prof TU Graz Apache 
SystemDS



10

706.520 Data Integration and Large-Scale Analysis – 05 Entity Linking and Deduplication
Matthias Boehm, Graz University of Technology, WS 2021/22 

Entity Resolution Pipeline
Entity Resolution Concepts

Prepare 
Data

Blocking/
Sorting Matching Clustering

A1

A2

C1 D1

B1 B2

C2 B3

A1
A2

C1
D1

B1 B2

C2

B3

A1
A2

C1
D1

B1 B2

C2

B3

A

C

D

B

r1, r4

r2, r7

r3

r5, r6, r8
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Entity Linking Approaches
Entity Resolution Concepts

[Xin Luna Dong, Theodoros Rekatsinas: 
Data Integration and Machine Learning: 

A Natural Synergy. PVLDB 2018]
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Step 1: Data Preparation
 #1 Schema Matching and Mapping

 See lecture 04 Schema Matching and Mapping
 Create homogeneous schema for comparison
 Split composite attributes

 #2 Normalization
 Removal of special characters and white spaces
 Stemming
 Capitalization (to upper/lower)
 Remove redundant works, resolve abbreviations

 #3 Data Cleaning
 See lecture 06 Data Cleaning and Data Fusion
 Correct data corruption and inconsistencies

Entity Resolution Concepts

likes/liked/likely/liking 
 like

Autonomous, 
heterogeneous 

systems
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Step 2: Blocking and Sorting
 #1 Naïve All-Pairs

 Brute-force, naïve approach 
 n*(n-1)/2 pairs O(n2) complexity

 #2 Blocking / Partitioning
 Efficiently create small blocks of similar records for pair-wise matching
 Basic: equivalent values on selected attributes (name)
 Predicates: whole field, token field, common integer, same x char start, n-grams
 Hybrid: disjunctions/conjunctions 
 Blocking Keys:

 Learned: Minimal rule set via greedy algorithms 
 Significant reduction: 1M records  1T pairs 

 1K partitions w/ 1K records  1G pairs (1000x)

Entity Resolution Concepts

John Roberts 20 Main St Plainville MA 01111

 JR01111 

[Nicholas Chammas, Eddie Pantrige: 
Building a Scalable Record Linkage 

System, Spark+AI Summit 2018]
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Step 2: Blocking, cont.
 #3 Sorted Neighborhood

 Define sorting keys (similar to blocking keys)
 Sort records by sorting keys
 Define sliding window of size m (e.g., 100) and compute all-pair 

matching within sliding window

 #4 Blocking via Word Embeddings and LSH/DL
 Compute word/attribute embeddings + tuple embeddings
 Locality-Sensitive Hashing (LSH) for blocking
 K hash functions h(t)  k-dim hash-code
 L hash tables, each k hash functions 

Entity Resolution Concepts

Distributed Tuple 
Representation

v[t1]=[0.45,0.8,0.85]
v[t2]=[0.4,0.85,0.75] 

h1=[-1, 1,1], h2=[ 1,1, 1], 
h3=[-1,-1,1], h4=[-1,1,-1],

[1.2,2.1,-0.4,-0.5]
[1.2,2.0,-0.5,-0.3] 

[1,1,-1,-1]
[1,1,-1,-1] 

V %*% H

[Muhammad Ebraheem et al: 
Distributed Representations of Tuples 

for Entity Resolution. PVLDB 2018]

[12]
[12]

Hash 
bucket

[Saravanan Thirumuruganathan et al. 
Deep Learning for Blocking in Entity 

Matching […]. PVLDB 2021]

Presenter
Presentation Notes
V = matrix(c(0.45,0.8,0.85,0.4,0.85,0.75),2,3,byrow=TRUE)
H = matrix(c(-1,1,1,1,1,1,-1,-1,1,-1,1,-1), 3, 4)
V %*% H
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Step 3: Matching
 #1 Basic Similarity Measures 

 Pick similarity measure sim(r, r’) and thresholds: high θh (and low θl)
 Record similarity: avg attribute similarity
 Match: sim(r, r’) > θh Non-match: sim(r, r’) < θl

possible match: θl < sim(r, r’) < θh

 #2 Learned Matchers (Traditional ML)
 Phase 1: Learned string similarity 

measures for selected attributes
 Phase 2: Training matching decisions 

from similarity metrics 
 Selection of samples for labeling

(sufficient, suitable, balanced)
 SVM and decision trees, logistic 

regression, random forest, XGBoost

Entity Resolution Concepts

[Mikhail Bilenko, Raymond J. 
Mooney: Adaptive duplicate 

detection using learnable string 
similarity measures. KDD 2003]

[Hanna Köpcke, Andreas Thor, Erhard 
Rahm: Evaluation of entity resolution 

approaches on real-world match 
problems. PVLDB 2010]

[Xin Luna Dong: Building a Broad 
Knowledge Graph for 
Products. ICDE 2019]
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Step 3: Matching, cont. 
 Deep Learning for ER

 Automatic representation learning from text (avoid feature engineering)
 Leverage pre-trained word embeddings for semantics (no syntactic limitations)

 Example DeepER

 Example Magellan
 DL for text and dirty data

Entity Resolution Concepts

[Muhammad Ebraheem et al: 
Distributed Representations 
of Tuples for Entity 
Resolution. PVLDB 2018]

Distributed Tuple 
Representation

Abs Difference / 
Hadamard Prod.

[Sidharth Mudgal et al: Deep 
Learning for Entity Matching: 
A Design Space Exploration. 
SIGMOD 2018]
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Step 3: Matching, cont.
 Labeled Data

 Scarce (experts)
 Class skew

 Transfer Learning
 Learn model from high-resource ER scenario (w/ regularization)
 Fine-tune using low-resource examples

 Active Learning
 Select instances for tuning to min labeling

Entity Resolution Concepts

[Sairam Gurajada, Lucian Popa, Kun Qian, Prithviraj 
Sen: Learning-Based Methods with Human in the 

Loop for Entity Resolution, Tutorial, CIKM 2019]

DBLP-ACM

[Jungo Kasai et al: Low-resource 
Deep Entity Resolution with Transfer 

and Active Learning. ACL 2019]

𝐹𝐹1 = 2 ⋅
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⋅ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
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Step 4: Clustering
 Recap: Connected Components

 Determine connected components of a graph (subgraphs of connected nodes)
 Propagate max(current, msgs) if != current to neighbors, terminate if no msgs

 Clustering Approaches
 Basic: connected components 

(transitive closure) w/ edges sim > θh
 Issues: big clusters and dissimilar records

 Correlation clustering: +/- cuts based on sims  global opt NP-hard
 Markov clustering: stochastic flow simulation via random walks

Entity Resolution Concepts

1
2

4
3

5

7 6

Step 0 4
4

4
3

7

7 7

Step 1 4
4

4
4

7

7 7

Step 2 Step 3
converged

[Oktie Hassanzadeh, Fei Chiang, Renée 
J. Miller, Hyun Chul Lee: Framework for 

Evaluating Clustering Algorithms in 
Duplicate Detection. PVLDB 2009]
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Incremental Data Deduplication
 Goals

 Incremental stream of updates 
 previously computed results obsolete

 Same or similar results AND significantly faster than batch computation

 Approach
 End-to-end incremental record linkage for new and changing records
 Incremental maintenance of similarity graph and incremental graph clustering 
 Initial graph created by correlation clustering 
 Greedy update approach in polynomial time

 Directly connect components from increment ΔG into Q
 Merge of pairs of clusters to obtain better result?
 Split of cluster into two to obtain better result?
 Move nodes between two clusters to obtain better result?

Entity Resolution Concepts

[Anja Gruenheid, Xin Luna Dong, 
Divesh Srivastava: Incremental 

Record Linkage. PVLDB 2014]
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Entity Resolution Tools
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Python Dedupe
 Overview 

 Python library for data deduplication (entity resolution)
 By default: logistic regression matching (and blocking)

 Example

Entity Resolution Tools

https://docs.dedupe.io/en/latest/API-documentation.html 
https://dedupeio.github.io/dedupe-examples/docs/csv_example.html

fields = [
{'field':'Site name', 'type':'String'},
{'field':'Address', 'type':'String'}]

deduper = dedupe.Dedupe(fields)

# sample data and active learning
deduper.sample(data, 15000)
dedupe.consoleLabel(deduper)

Do these records refer 
to the same thing?

(y)es / (n)o / 
(u)nsure / (f)inished

# learn blocking rules and pairwise classifier
deduper.train()

# Obtain clusters as lists of (RIDs and confidence)
threshold = deduper.threshold(data, recall_weight=1)
clustered_dupes = deduper.match(data, threshold)

https://dedupeio.github.io/dedupe-examples/docs/csv_example.html
https://dedupeio.github.io/dedupe-examples/docs/csv_example.html
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Magellan (UW-Madison)
 System Architecture

 How-to guides for users
 Tools for individual steps

of entire ER pipeline
 Build on top of existing

Python/big data stack
 Scripting environment

for power users

Entity Resolution Tools

[Pradap Konda et al.: Magellan: 
Toward Building Entity Matching 

Management Systems. PVLDB 2016]

[Yash Govind et al: Entity Matching Meets 
Data Science: A Progress Report from the 

Magellan Project. SIGMOD 2019]

User
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SystemER (IBM Almaden – Research)
Entity Resolution Tools

DBLP.title = ACM.title
AND DBLP.year = ACM.year
AND jaccardSim(DBLP.authors,ACM.authors)>0.1
AND jaccardSim(DBLP.venue,ACM.venue)>0.1
 SamePaper(DBLP.id,ACM.id)

Learns explainable 
ER rules (in HIL)

[Kun Qian, Lucian Popa, Prithviraj Sen: 
SystemER: A Human-in-the-loop System for 
Explainable Entity Resolution. PVLDB 2019]

[Mauricio A. Hernández, Georgia 
Koutrika, Rajasekar Krishnamurthy, 

Lucian Popa, Ryan Wisnesky:
HIL: a high-level scripting language 
for entity integration. EDBT 2013]
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BEER (Blocking for Effective Entity Resolution)
Entity Resolution Tools

[Sainyam Galhotra, Donatella Firmani, Barna
Saha, and Divesh Srivastava: BEER: Blocking for 

Effective Entity Resolution, SIGMOD 2021]Feedback after 1% sample
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Example Applications
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Previous DIA Exercise WS20/21
 Task: Distributed Entity Resolution on Apache Spark

 1-3 person teams, data: Uni Leipzig Benchmarks
 Implement end-to-end entity resolution 

pipeline with Apache Spark for data-parallel computation

 Example 1: DBLP, ACM, Google Scholar Publications
 (title, authors, venue, year)
 Basic preprocessing via title capitalization, etc
 How about leveraging the linked PDF papers?

 Example 2: Amazon, Google Products
 (name, description, manufacturer, price)
 NLP for matching medium and long descriptions, e.g., word embeddings
 How about leveraging the product images (different angles) 

Example Applications

https://dbs.uni-leipzig.de/
research/projects/object_matching/

benchmark_datasets_for_entity_resolution

In practice:
multi-modal data, and 

feature engineering

https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
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Data Management – Autograding
 Background

 WS20/21: automatic grading system for Data Management exercises
 Overview: export submissions, run ingestion programs, execute queries, 

compare results and test queries, auto comments/grades, upload
 Problem: Increasing automation requires better plagiarism detection

 Plagiarism Detection via Entity Resolution
 https://issues.apache.org/jira/browse/SYSTEMDS-3191 (DIA WS21/22)
 Data preparation: file names/properties, runtime, correctness
 Blocking: by programming language, results sets 
 Matching

 Exact matches via basic diff + threshold
 Code similarity via SotA embeddings

 Clustering
 Connected components within each block (min sim threshold)

Example Applications

[Fangke Ye et al: MISIM: An 
End-to-End Neural Code 

Similarity System. CoRR 2020
arxiv.org/pdf/2006.05265.pdf]

https://issues.apache.org/jira/browse/SYSTEMDS-3191
https://arxiv.org/pdf/2006.05265.pdf
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Summary and Q&A
 Motivation and Terminology
 Entity Resolution Concepts
 Entity Resolution Tools
 Example Applications

 Next Lectures (Data Integration Architectures)
 06 Data Cleaning and Data Fusion [Nov 12]
 07 Data Provenance and Blockchain [Nov 19]

Fundamental Data 
Integration Technique, 

w/ lots of applications + 
remaining challenges
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