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Announcements/Org

= #1 Video Recording
= Link in TUbe & TeachCenter (lectures will be public) 0 TU be
= QOptional attendance (independent of COVID) g
= Hybrid, in-person but video-recorded lectures ‘cisco Webe>
= HS i5 + Webex: https://tugraz.webex.com/meet/m.boehm

= #2 COVID-19 Precautions (HS i5) max
= Room capacity: 24/48 (green/yellow), 12/48 (orange/red) 24/1 16

= #3 Exercises / Programming Projects
= Project Selection by Nov 05, 11.59pm 41/1 16
= WS 20/21 DIA projects still valid

= #4 Exam Date
= Feb 04, 3pm-5pm in HS i13 (76 seats)
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Announcements/Org

= #4 Exercise Help

= How to even parse/convert the data in a distributed manner?

#index 1 Option 1: Custom TextInputFormat w/ split at
#* paper Title 1 empty line or ‘#index’ = one record per paper
ﬁ(g g«;‘;gorl, Author2 Option 2: Default TextInputFormat and
iz reg N Sgcroupmg via cumulative aggregates
o "€ textfile( ) 1 1
#index 2 .zipWithIndex(); //Tuple2<String,Long> 8 %
#* Paper Title 2 pos = lines o 1
#@ Author4 .filter(r -> r._1().startsWith(“#index”)) 8 %
#t 2020 .map(r -> r. 2()).collect() o 1
. posArray[pos] = 1; Local 0 3
#index 3 posArray = cumsum(posArray); — 2 Z
#* Paper Title 3 b = sc.broadcast(posArray); 8 5
#@ Author2, Author3 papers = lines % %
#;t 2021 .map(r -> (b[r._2()-1], r._1())) @ 3
#% refs .reduceByKey() //shuffling 8 g
706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication u
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Agenda

= Motivation and Terminology
= Entity Resolution Concepts

= Entity Resolution Tools

= Example Applications
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Motivation and Terminology
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Motivation and Terminology ﬁ-lt.‘:r%!-

' Recap: Corrupted/Inconsistent Data

= #1 Heterogeneity of Data Sources
No Global

= Update anomalies on denormalized data / eventual consistency Keys

= Changes of app/prep over time (US vs us) = inconsistencies
= #2 Human Error
= Errors in semi-manual data collection, laziness (see default values), bias
= Errors in data labeling (especially if large-scale: crowd workers / users)
= #3 Measurement/Processing Errors
= Unreliable HW/SW and measurement equipment (e.g., batteries)
* Harsh environments (temperature, movement) = aging

Uniqueness & Contradictions & Missing [Credit: Felix
duplicates wrong values Values Ref. Integrity Naumann]
mm-mmm\m

Smith, Jane  05/06/1975 999-9999 98120

98120 San Jose
3 John Smith  38/12/1963 55 M 867-4511 11111

90001 Lost Angeles
7 Jane Smith  05/06/1975 24 F 567-3211 98120

Typos



Motivation and Terminology ﬁ-le-g.

Te 'Mm | NO | Ogy [Douglas Burdick, Ronald Fagin, Phokion G. Kolaitis, |*  ®

Lucian Popa, Wang-Chiew Tan: Expressive power of
entity-linking frameworks. J. Comput. Syst. Sci. 2019]
= Entity Linking

= “Entity linking is the problem of creating links among records
representing real-world entities that are related in certain ways.”

= “As an important special case, it includes entity resolution, which is
the problem of

= Other Terminology
= Entity Linking = Entity Linkage, Record Linkage ©
= Entity Resolution = Data Deduplication, Entity Matching

= Applications

» Named entity recognition and disambiguation Hussein I
The US president (2016)

Archiving, knowledge bases and graphs

Recommenders / social networks

. o » and
= Financial institutions (persons and legal entities) i
are married ....
= Travel agencies, transportation, health care
706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication .ISDS
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Entity Resolution Concepts

[Xin Luna Dong, Theodoros Rekatsinas: Data Integration and Machine Learning:
A Natural Synergy. Tutorials, SIGMOD 2018, PVLDB 2018, KDD 2019]

- _ | [Sairam Gurajada, Lucian Popa, Kun Qian, Prithviraj Sen: Learning-Based
“#BLH | Methods with Human in the Loop for Entity Resolution, Tutorial, CIKM 2019]

[Felix Naumann, Ahmad Samiei, John Koumarelas: Master project seminar
for Distributed Duplicate Detection. Seminar, HPI WS 2016]
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Entity Resolution Concepts ﬁ!g.

Problem Formulation

= Entity Resolution

[lvan Fellegi, Alan Sunter: A
= “Recognizing those records in two files which Theory for Record Linkage, J.

represent identical persons, objects, or events” American. Statistical Assoc.,
pp. 1183-1210, 1969]

= Given two data sets A and B

= Decide for all pairs of records a;,— b; in Ax B
if match (link), no match (non-link), or not enough evidence (possible-link)

" Naive Deduplication _Name | Position | _ Affiiation | Research _

= UNION DISTINCT via hash Matthias RSM IBM Research—  Apache
group-by or sort group-by Boehm Almaden SystemML

= Problem: Only exact matches Matthias Prof TU Graz ApaChe
Bohm SystemDS

=» Similarity Measures
= Token-based: e.g., Jaccard J(A,B) = (A N B) / (A U B)
= Edit-based: e.g., Levenshtein lev(A,B) = min(replace, insert, delete)
= Phonetic similarity (e.g., soundex, metaphone), Python lib Jellyfish

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication .ISDS
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Entity Resolution Concepts ﬂ-le-rLa!.

Entity Resolution Pipeline

Prepare Blocking/

Data Sorting Matching Clustering

e [e
s

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication ‘ISDS
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Entity Resolution Concepts ﬁ!g.

Entity Linking Approaches

[Xin Luna Dong, Theodoros Rekatsinas:
Data Integration and Machine Learning:
A Natural Synergy. PVLDB 2018]

50 Years of Entity Linkage

Rule-llaazllseg_ anFI stats-based Supervised learning
* ocKIng. .e.g., same name e Random forest for matching
° Match.mg. e.g., avg similarity E-msr: 95% w. ~1M labels
of attrlt.)utc.e values . e Active learning for blocking & matching
e Clustering: e.g., transitive F-msr: 80%-98% w. ~1000 labels
closure, etc. ' '
~2000 (Early ML) 2018 (Deep ML)
1969 (Pre-ML) ~2015 (ML)
Sup / Unsup learning Deep learning
e Matching: Decision tree, SVM e Deep learning
F-msr: 70%-90% w. 500 labels e Entity embedding

e Clustering: Correlation clustering,
Markov clustering

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication .ISDS
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Entity Resolution Concepts

Ty

Step 1: Data Preparation

= #1 Schema Matching and Mapping
= See lecture
= Create homogeneous schema for comparison
= Split composite attributes

= #2 Normalization

= Removal of special characters and white spaces

= (to upper/lower)
= Remove redundant works, resolve abbreviations

= #3 Data Cleaning
= See lecture
= Correct data corruption and inconsistencies

Autonomous,
heterogeneous
systems

likes/liked/likely/liking
- like

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication .ISDS
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Entity Resolution Concepts ﬁl—g_

Step 2: Blocking and Sorting

= #1 Naive All-Pairs

= Brute-force, naive approach
-2 n*(n-1)/2 pairs 2 0(n?) complexity

= #2 Blocking / Partitioning
= Efficiently create small blocks of similar records for pair-wise matching

= equivalent values on selected attributes (name)

= whole field, token field, common integer, same x char start, n-grams
u disjunctions/conjunctions

= Blocking Keys: - JRO1111

ohn Roberts 20 Main St Plainville MA
[Nicholas Chammas, Eddie Pantrige:

o _ _ Building a Scalable Record Linkage
Learned: Minimal rule set via greedy algorithms System, Spark+Al Summit 2018]

=» Significant reduction: 1M records = 1T pairs
=>» 1K partitions w/ 1K records = 1G pairs (1000x)

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22



Entity Resolution Concepts

Ty

Step 2: Blocking, cont.

= #3 Sorted Neighborhood

= Define sorting keys (similar to blocking keys)

= Sort records by sorting keys

= Define sliding window of size m (e.g., 100) and compute all-pair

= #4 Blocking via Word Embeddings and LSH/DL Distributed Tuple
= Compute word/attribute embeddings + tuple embeddings Representation
. for blocking

= K hash functions h(t) =2 k-dim hash-code
= | hash tables, each k hash functions

V %*% H

v[t1]=[0.45,0.8,0.85] [1.2,2.1,-0.4,-0.5] _
v[t2]=[0.4,0.85,0.75] [1.2,2.0,-0.5,-0.3]

[Muhammad Ebraheem et al:
Distributed Representations of Tuples
for Entity Resolution. PVLDB 2018]

[Saravanan Thirumuruganathan et al.

hi=[-1, 1,1], h2=[ 1,1, 1], Deep Learning for Blocking in Entity
h3=[-1,-1,1], h4=[-1,1,-1], Matching [...]. PVLDB 2021]

[1,1,-1,-1] _ _ [12] Hash
[1,1,-1,-1] [12] bucket

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication .ISDS
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V = matrix(c(0.45,0.8,0.85,0.4,0.85,0.75),2,3,byrow=TRUE)
H = matrix(c(-1,1,1,1,1,1,-1,-1,1,-1,1,-1), 3, 4)
V %*% H


Entity Resolution Concepts ﬁl—g_

Step 3: Matching

= #1 Basic Similarity Measures
= Pick similarity measure sim(r, r’) and thresholds: high 8, (and low 8))
= Record similarity: avg attribute similarity
= sim(r, r’) > 6, sim(r, r’) <6,
6, <sim(r, r’) <8,

= #2 Learned Matchers (Traditional ML) [Mikhail Bilenko, Raymond J.

. T Mooney: Adaptive duplicate

- Learned string Slmlla”ty detection using learnable string

measures for selected attributes similarity measures. KDD 2003]

" Training matChing decisions [Hanna Kopcke, Andreas Thor, Erhard

from similarity metrics Rahm: Evaluation of entity resolution

. . approaches on real-world match

u Selec.tl.on of sgmples for labeling oroblems. PVLDB 2010]
(sufficient, suitable, balanced)

= SVM and decision trees, logistic [Xin Luna Dong: Building a Broad

regression, random forest, XGBoost 8% oducty e Knovledge Graph for

Bagraph e Products. ICDE 2019]

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication .ISDS
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Entity Resolution Concepts ﬁ-le-rLa!.

Step 3: Matching, cont.

= Deep Learning for ER
= Automatic representation learning from text (avoid feature engineering)
= Leverage pre-trained word embeddings for semantics (no syntactic limitations)

= Example DeepER tuple t

l Embedding lookup
[Muhammad Ebraheem et al: layer

* w1 M GO‘I‘(]DOSllen Simﬂa.r‘ity Dense Classification
==! Distributed Representations _ *-\@"%a;:fm layer | layer layer

of Tuples for Entity Words
Resolution. PVLDB 2018]

= Example Magellan
= DL for text and dirty data

1 _..

Words

Abs Difference /
Hadamard Prod.

[Sidharth Mudgal et al: Deep
Learning for Entity Matching:
A Design Space Exploration. {

SIGMOD 2018] tuplet’ | A0 . Ap. i

Distributed Tuple
Representation

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication .ISDS
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Entity Resolution Concepts ﬁ!g.

Ste p 3 : M atch | ng’ CO nt. [Sairam Gurajada, Lucian Popa, Kun Qian, Prithviraj

Sen: Learning-Based Methods with Human in the
Loop for Entity Resolution, Tutorial, CIKM 2019]
= Labeled Data DBLP-ACM

T
m Scarce (experts) 98 . é,ﬁ —— Deep Learning = Be 5
o B - m

—m— Decision Tree
= Class skew e SVM

—+— Naive Bayes

Fl
precision - recall

F1 == 2 . —
precision + recall

0 1000 2000 3000 4000 5000 6000 7000
# Labeled Training examples

=» Transfer Learning

= Learn model from high-resource ER scenario (w/ regularization)

* Fine-tune using low-resource examples ungo Kasai et al: Low-resource

9 Active Learning Deep Entity Resolution with Transfer

] _ ] ] and Active Learning. ACL 2019]
= Select instances for tuning to min labeling

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication .lSDS
Matthias Boehm, Graz University of Technology, WS 2021/22



Entity Resolution Concepts ﬁ!g.

Step 4: Clustering

= Recap: Connected Components
= Determine connected components of a graph (subgraphs of connected nodes)
= Propagate max(current, msgs) if |= current to neighbors, terminate if no msgs

Step O Step 1 Step 2 Step 3

€ (3 — O converged
o0 o8 o e

= Clustering Approaches [Oktie Hassanzadeh, Fei Chiang, Renée

= Basic: connected components J. Miller, Hyun Chul Lee: Framework for
’ P Evaluating Clustering Algorithms in

(transitive closure) w/ edges sim > 6, Duplicate Detection. PVLDB 2009]
- Issues: big clusters and dissimilar records

= Correlation clustering: +/- cuts based on sims > global opt NP-hard
= Markov clustering: stochastic flow simulation via random walks

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication .ISDS
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Entity Resolution Concepts ﬁ!g.

Incremental Data Deduplication

= Goals [Anja Gruenheid, Xin Luna Dong,
Divesh Srivastava: Incremental

= |ncremental stream of updates Record Linkage. PVLDB 2014]

— previously computed results obsolete
= Same or AND than batch computation

= Approach
= End-to-end incremental record linkage for new and changing records
= |[ncremental maintenance of similarity graph and incremental graph clustering
= |nitial graph created by
= Greedy update approach in polynomial time
= Directly connect components from increment AG into Q

= of pairs of clusters to obtain better result?
m of cluster into two to obtain better result?
= nodes between two clusters to obtain better result?
706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22
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Entity Resolution Tools
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Entity Resolution Tools ﬂELa!.

Pyt h 0 n Ded u pe https://docs.dedupe.io/en/latest/API-documentation.html

https://dedupeio.github.io/dedupe-examples/docs/csv_example.html

= Overview
= Python library for data deduplication (entity resolution)
= By default: logistic regression matching (and blocking)

= Example fields = [
{'field':'Site name', 'type':'String'},
{'field':'Address', 'type':'String'}]
deduper = dedupe.Dedupe(fields)
Do these records refer

# sample data and active learning to the same thing?
deduper.sample(data, 15000) (y)es / (n)o /
dedupe.consoleLabel(deduper) (u)nsure / (f)inished

# learn blocking rules and pairwise classifier
deduper.train()

# Obtain clusters as lists of (RIDs and confidence)
threshold = deduper.threshold(data, recall weight=1)
clustered dupes = deduper.match(data, threshold)

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication .ISDS
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Entity Resolution Tools ﬁ!g.

Mage”an (UW-Mad|Son) [Pradap Konda et al.: Magellan:

Toward Building Entity Matching
Management Systems. PVLDB 2016]

= System Architecture

* How-to guides for users

Facilities for Lay Users

= Tools for individual steps UL, wizards, ..
of entire ER pipeline

[ ]
[nl Power Users

" B u I Id onto p Of eXiSti ng EM h Development Stage Production Stage
Python/big data stack Scenarios
L. . - Supporting tools - EM —> Supporting tools
u SC ri ptl ] g environment How-to (as Python commands) Workflow (as Python commands)
Guid
fO r power users e Data samples Original data

Python Interactive Environment

|

A c no Script Language
' () G
A (-] (=) + iy YES
>si‘,’.1“,‘,'.‘e"t> blogker—| & -mateher 1 - 7 Theet — Data Analysis Stack Big Data Stack
B’ A~ L . )
B AN )] VRN - pandas, scikit-learn, matplotlib, PySpark, mrjob, Pydoop,
| A / f
‘_\ blocker— ¢ \ sample — Eg
E/ X )
+
cross-validate la:ae(l; . . .
6N o, matcher U ¢ [Yash Govind et al: Entity Matching Meets
l/*’"’ﬁ““" S | Data Science: A Progress Report from the
oatcherv ./ Magellan Project. SIGMOD 2019]
Select the best blocker: X, Y Select the best matcher: U, V

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication .ISDS
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Entity Resolution Tools ﬁ!g.

SystemER (IBM Almaden — Research)

[Kun Qian, Lucian Popa, Prithviraj Sen:
SystemER: A Human-in-the-loop System for
Explainable Entity Resolution. PVLDB 2019]

2 SystemER Graphic User Interface
-SU_pP_OFt csv and newline T -an auxillary toc_JI for Iearning -effective at_:tive _Iea_rniqg algorithm
delimited json [T e complex matching functions -scale up with distributing computing
-prior blocking is not needed -provide prebuilt functions -produce explainable ER models
3 | B  § 3
1. Data 2. Create data 3. Feature 4.Model
preparation |~ | Training Data Engineering — Learning |[—»
] .
(re,sy) e.g.,JaccardSim, Explainable
Sm} (rp,89) X normalizeName, ... ER model
DBLP.title = ACM.title
AND DBLP.year = ACM.year [Mauricio A. Hernandez, Georgia
AND jaccanSim(DBLP .authors ) ACM. authors ) >0.1 Koutrika, Rajasekar Krishnamurthy,
AND jaccardSim(DBLP.venue,ACM.venue)>0.1 Lucian Popa, Ryan Wisnesky:
> SamePaper (DBLP.id,ACM.id) HIL: a high-level scripting language
for entity integration. EDBT 2013]
706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication .lSDS
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Entity Resolution Tools
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BEER (Blocking for Effective Entity Resolution)

Feedback after 1% sample

[Sainyam Galhotra, Donatella Firmani, Barna
Saha, and Divesh Srivastava: BEER: Blocking for
Effective Entity Resolution, SIGMOD 2021]

Feedback

0 © © Block Building Block Cleaning Comparison Cleaning Parr Matching Clustering o ® 0

® ©
[ ] o
5 Ej"wg-.él/«»
(] ® @
Records = ® = Entities
<L g g . g s

- Supports csv
files

- Allows SQL
queries on the
dataset

InoaDatsat | Bo

Pro-saeciod

SOL Gy | SELECT * FRCM of whary descry

Musber of matehing rows 55

inpur dataset

—
seection  moomid ot beand

a——T308 oo oukos clret | cherrolet

-Explore block
hierarchy and
its creation
criterion

- Shows changes
due to feedback

Choose a Dataset @

& Uphoa 04 St

SOQL query or manually imsclect

Subberit Cuiry User can select whah subsample to
e comsider for vemlizanon wsing
——
rows

- Ranking of blocks
based on qualty
- Highlights

progressive changes
due to feedback

! deserption

Biocking | Toker based bicckng @R Hytrid Orgoring e

) Lins Fschaack

oo Ear mekr vebhicls Lares vehicin speats car vehicla ko . rrntios desdgm comed
1@ 430 coretedecks  chevolet aring vehic aaign muncin

2 g 433 creteodecks  chowolstom  carmotor 15 car Butomotve Cesion A supercar chow
E ) 4400 clrstedccks  chevolet carland vehicle E50cts ca sports car

g 4407 o yobiena coiee  chavrolet e ok vehicie aperts car o i oot e g ki v
5 4407 bomon yotow poor | cheviolet

o 4478 clawtredocks  cheviolet om lang

? 4420 anh grey color chevmolet car land vehicls motor vehicle sports car comrt ibie sutomotive des.gn perfoeman
& g 4420 aah grey ool hevrolet arlang vehicle soors car matar vahicle sulomaotive Getgn sonvartisl Funcs ta
g 4453 laman yolow toior  choviolet o sgor e

Conligm Flcking
-—

- Visualizes

Meta-

blocking graph [6]

Cluster size distribution

-Visualizes matched

and unmatched
record pairs

- Allows custom
matching functions

User can configure blockmg
parameters like block cleanmg
threshold, meta-blockug simibisity

|| fimcrion, efe

irataon of twe tochnigues to ||

-]

- Uses [3] for
€ITor correction
- Shows different
clusters of
entities

- Allows to
change feedback

Summary of
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Progressive

behavior of the

p
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running time
and pipelne
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i
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Example Applications
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Example Applications ﬁl—g_

Previous DIA Exercise WS20/21

= Task: Distributed Entity Resolution on Apache Spark

= 1-3 person teams, data: Uni Leipzig Benchmarks https://dbs.uni-leipzig.de/
research/projects/object_matching/
= |mplement end-to-end benchmark_datasets for_entity resolution

pipeline with Apache Spark for

= Example 1: DBLP, ACM, Google Scholar Publications
= (title, authors, venue, year) In practice:
= Basic preprocessing via title capitalization, etc multi-modal data, and

= How about leveraging the linked PDF papers? feature engineering

= Example 2: Amazon, Google Products
* (name, description, manufacturer, price)
= NLP for matching medium and long descriptions, e.g., word embeddings
= How about leveraging the product images (different angles)

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication .ISDS
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Example Applications ﬁl—g_

Data Management — Autograding

= Background
u automatic grading system for Data Management exercises

= Qverview: export submissions, run ingestion programs, execute queries,
compare results and test queries, auto comments/grades, upload

= Problem: Increasing automation requires better plagiarism detection

= Plagiarism Detection via Entity Resolution
= https://issues.apache.org/jira/browse/SYSTEMDS-3191 (DIA WS21/22)
Data preparation: file names/properties, runtime, correctness

Blocking: by programming language, results sets

Matching [Fangke Ye et al: MISIM: An

End-to-End Neural Code
Similarity System. CoRR 2020
= Code similarity via SotA embeddings arxiv.org/pdf/2006.05265.pdf]

= Exact matches via basic diff + threshold

Clustering
= Connected components within each block (min sim threshold)

706.520 Data Integration and Large-Scale Analysis — 05 Entity Linking and Deduplication .ISDS
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Summary and Q&A

Motivation and Terminology Fundamental Data

Entity Resolution Concepts Integration Technique,

Entity Resolution Tools w/ lots of applications +
remaining challenges

Example Applications _

Next Lectures (Data Integration Architectures)
= 06 Data Cleaning and Data Fusion [Nov 12]
= (07 Data Provenance and Blockchain [Nov 19]
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