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Announcements/Org
 #1 Video Recording 

 Link in TUbe & TeachCenter (lectures will be public)
 Optional attendance (independent of COVID)
 Hybrid, in-person but video-recorded lectures

 HS i5 + Webex: https://tugraz.webex.com/meet/m.boehm

 #2 Exercises / Programming Projects
 Extended list of projects 
 Project Selection by Nov 05, 11.59pm

 #3 Course Evaluation and Exam
 Evaluation period: Jan 01 – Feb 15
 Exam date: Feb 04, 3pm (90+min written exam)

70/116

https://tugraz.webex.com/meet/m.boehm
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Agenda
 Motivation and Terminology
 Data Cleaning and Fusion
 Missing Value Imputation
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Motivation and Terminology
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Recap: Corrupted/Inconsistent Data
 #1 Heterogeneity of Data Sources

 Update anomalies on denormalized data / eventual consistency
 Changes of app/prep over time (US vs us)  inconsistencies

 #2 Human Error
 Errors in semi-manual data collection, laziness (see default values), bias
 Errors in data labeling (especially if large-scale: crowd workers / users)

 #3 Measurement/Processing Errors
 Unreliable HW/SW and measurement equipment (e.g., batteries)
 Harsh environments (temperature, movement)  aging

Motivation and Terminology

ID Name BDay Age Sex Phone Zip

3 Smith, Jane 05/06/1975 44 F 999-9999 98120

3 John Smith 38/12/1963 55 M 867-4511 11111

7 Jane Smith 05/06/1975 24 F 567-3211 98120

[Credit: Felix 
Naumann]

Zip City

98120 San Jose

90001 Lost Angeles

Typos

Missing 
Values Ref. Integrity

Contradictions & 
wrong values

Uniqueness & 
duplicates



6

706.520 Data Integration and Large-Scale Analysis – 06 Data Cleaning
Matthias Boehm, Graz University of Technology, WS 2021/22 

Examples (aka errors are everywhere)
 DM SS’19

(Soccer 
World Cups)

 DM WS’19/20
(Airports and Airlines)

 DM SS’20
(DBLP Publications)

Motivation and Terminology


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Terminology
 #1 Data Cleaning (aka Data Cleansing)

 Detection and repair of data errors
 Outliers/anomalies: values or objects that do not match normal behavior

(different goals: data cleaning vs finding interesting patterns)
 Data Fusion: resolution of inconsistencies and errors 

(e.g., entity resolution see Lecture 05)

 #2 Missing Value Imputation
 Fill missing info with “best guess”
 Difference between NAs and 0 (or special values like NaN) for ML models 

 #3 Data Wrangling
 Automatic cleaning unrealistic?  Interactive data transformations
 Recommended transforms + user selection

 Note: Partial Overlap w/ KDDM  it’s fine, different perspectives

Motivation and Terminology
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Express Expectations as Validity Constraints
 Manual Approach: “Common Sense”

 (Semi-)Automatic Approach: Expectations!
 PK  Values must be unique and defined (not null)
 Exact PK-FK  Inclusion dependencies
 Noisy PK-FK  Robust inclusion dependencies |R[X]∈S[Y]| / |R[X]| > δ
 Semantics of attributes  Value ranges / # distinct values
 Invariant to capitalization 
 Duplicates that differ in capitalization

 Patterns  regular expressions 

 Formal Constraints
 Functional dependencies (FD), conditional FDs (CFD), metric dependencies
 Inclusion dependencies, matching dependencies
 Denial constraints 

Motivation and Terminology

Route
(Airline, From, To)

Planes

Age=9999?

∀𝑡𝑡𝛼𝛼𝑡𝑡𝛽𝛽 ∈ 𝑅𝑅: ¬(𝑡𝑡𝛼𝛼 .𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑡𝑡𝛽𝛽 .𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∧ 𝑡𝑡𝛼𝛼 .𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ′𝑁𝑁𝑁𝑁𝐶𝐶′

∧ 𝑡𝑡𝛽𝛽 .𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≠ ′𝑁𝑁𝑁𝑁𝐶𝐶′ ∧ 𝑡𝑡𝛼𝛼 . 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 < 𝑡𝑡𝛽𝛽 . 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)

2019-11-15 vs Nov 15, 2019
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Data Cleaning and Fusion
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Data Validation
Sanity checks on expected shape 
before training first model

 Check a feature’s min, max, and most common value
 Ex: Latitude values must be within the range [-90, 90] or [-π/2, π/2]

 The histograms of continuous or categorical values are as expected
 Ex: There are similar numbers of positive and negative labels

 Whether a feature is present in enough examples
 Ex: Country code must be in at least 70% of the examples

 Whether a feature has the right number of values (i.e., cardinality)
 Ex: There cannot be more than one age of a person

Data Cleaning and Fusion

[Neoklis Polyzotis, Sudip Roy, Steven 
Euijong Whang, Martin Zinkevich: Data 
Management Challenges in Production 

Machine Learning. Tutorial, SIGMOD 2017] (Google 
Research)
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Data Validation, cont.
 Constraints 

and Metrics
for quality 
check UDFs

 Approach
 #1 Quality checks on basic metrics, computed in Apache Spark
 #2 Incremental maintenance of metrics and quality checks

Data Cleaning and Fusion

(Amazon 
Research)

Organizational Lesson: 
benefit of shared 

vocabulary/procedures

Technical Lesson:
fast/scalable; reduce 
manual and ad-hoc 

analysis 

[Sebastian Schelter, Dustin Lange, Philipp 
Schmidt, Meltem Celikel, Felix Bießmann, 

Andreas Grafberger: Automating Large-Scale 
Data Quality Verification. PVLDB 2018]

Presenter
Presentation Notes
Data to Models and Back DEEM workshop see if u can extend TFDV
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Data Validation, cont.
 TensorFlow Data Validation (TFDV)

 Library or TFX components
 Provides functions for stats computation, 

validation checks and anomaly detection

Data Cleaning and Fusion

(Google)

[Mike Dreves; Gene Huang; Zhuo Peng; Neoklis
Polyzotis; Evan Rosen; Paul Suganthan: From 

Data to Models and Back. DEEM 2020]
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Standardization and Normalization
 #1 Standardization

 Centering and scaling to 
mean 0 and variance 1

 Ensures well-behaved training
 Densifying operation
 Awareness of NaNs
 Batch normalization in DNN: standardization of activations

 #2 Normalization
 Aka min-max normalization
 Rescale values into common range [0,1]
 Avoid bias to large-scale features
 Does not handle outliers

Data Cleaning and Fusion

X = X – colMeans(X);
X = X / sqrt(colVars(X));

X = replace(X, pattern=NaN, 
replacement=0); #robustness

X = (X – colMins(X)) 
/ (colMaxs(X) – colMins(X)); 
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Winsorizing and Trimming
 Recap: Quantiles

 Quantile Qp w/ 𝑝𝑝 ∈ (0,1) defined as 𝑃𝑃 𝑋𝑋 ≤ 𝑥𝑥 = 𝑝𝑝

 Winsorizing
 Replace tails of data 

distribution at user-
specified threshold

 Quantiles / std-dev
 Reduce skew

 Truncation/Trimming
 Remove tails of data 

distribution at user-
specified threshold

 Largest Difference 
from Mean

Data Cleaning and Fusion

# compute quantiles for lower and upper
ql = quantile(X, 0.05); 
qu = quantile(X, 0.95); 

# replace values outside [ql,qu] w/ ql and qu
Y = ifelse(X < ql, ql, X);
Y = ifelse(Y > qu, qu, Y);

# remove values outside [ql,qu]
I = X < qu | X > ql;
Y = removeEmpty(X, “rows”, select = I);

[Credit: https://en.wikipedia.org]

# determine largest diff from mean
I = (colMaxs(X)-colMeans(X)) 
> (colMeans(X)-colMins(X));

Y = ifelse(xor(I,op), colMaxs(X), colMins(X));

SystemDS:
winsorize() 
outlier()

Presenter
Presentation Notes
Box and whisker plots
SystemDS: quantiles via sort+pick, quickselect possible
Iterative winsoring/trimming to X std-devs of mean also possible


https://en.wikipedia.org/
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Winsorizing and Trimming, cont.
 SystemDS outlierByIQR

 less than Q1 – ( k×IQR ) or greater than 
Q3 + ( k×IQR )  outlier

 SystemDS outlierBySd
 less than mean – ( k×stdev ) or greater than 

mean + ( k×stdev )  outlier

 Methods for Handling Outliers
 Replace outliers with default values (constants or mean/median/mode)
 Update outliers as missing values 
 Data clipping

Data Cleaning and Fusion

IQR
Q1 – 1.5 * IQR Q3 + 1.5 * IQR

Outlier

Q1 Q3median

µ 1σ-1σ 2σ-2σ 3σ-3σ

Presenter
Presentation Notes
Box and whisker plots
SystemDS: quantiles via sort+pick, quickselect possible
Iterative winsoring/trimming to X std-devs of mean also possible
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Outliers and Outlier Detection
 Types of Outliers

 Point outliers: single data points 
far from the data distribution

 Contextual outliers: noise or other systematic anomalies in data
 Sequence (contextual) outliers: sequence of values w/ abnormal shape/agg
 Univariate vs multivariate analysis
 Beware of underlying assumptions (distributions)

 Types of Outlier Detection
 Type 1 Unsupervised: No prior knowledge 

of data, similar to unsupervised clustering
 expectations: distance, # errors

 Type 2 Supervised: Labeled normal and abnormal 
data, similar to supervised classification

 Type 3 Normal Model: Represent normal behavior,
similar to pattern recognition  expectations: rules/constraints

Data Cleaning and Fusion

[Victoria J. Hodge, Jim 
Austin: A Survey of Outlier 
Detection Methodologies. 

Artif. Intell. Rev. 2004]

[Varun Chandola, Arindam Banerjee, 
Vipin Kumar: Anomaly detection: A 

survey. ACM Comput. Surv. 2009]
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Outlier Detection Techniques
 Classification

 Learn a classifier using labeled data
 Binary: normal / abnormal
 Multi-class: k normal / abnormal  (one against the rest)  none=abnormal
 Examples: AutoEncoders, Bayesian Networks, SVM, decision trees

 K-Nearest Neighbors
 Anomaly score: distance to kth nearest neighbor
 Compare distance to threshold + (optional) max number of outliers

 Clustering 
 Clustering of data points, anomalies are points not assigned / too far away 
 Examples: DBSCAN (density), K-means (partitioning)
 Cluster-based local outlier factor (global, local, and size-specific density)

Data Cleaning and Fusion

[Varun Chandola, Arindam Banerjee, 
Vipin Kumar: Anomaly detection: A 

survey. ACM Comput. Surv. 2009]

Presenter
Presentation Notes
Coverage analysis search coverage in slicing paper
XGBoost
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Outlier Detection Techniques, cont.
 Frequent Itemset Mining

 Rare itemset mining / sequence mining; 
Examples: Apriori/Eclat/FP-Growth

 Coverage Analysis
 Given a database D and a data pattern P
 Coverage of a data pattern cov(P) is 

defined as the number of records in 
table  T that satisfy pattern P

 Pattern P is a covered pattern if cov(P) ≥  τ
 Otherwise, this pattern is said to be uncovered

Data Cleaning and Fusion

TID Items
1 Bread, Milk
2 Bread, Diaper, Beer, Eggs
3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer
5 Bread, Milk, Diaper, Coke

[Yin Lin et al: Identifying 
Insufficient Data Coverage 
in Databases with multiple 

Relations. PVLDB 2020]

Presenter
Presentation Notes
Coverage analysis search coverage in slicing paper
XGBoost
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Time Series Anomaly Detection
 Basic Problem Formulation

 Given regular (equi-distant) time series of measurements
 Detect anomalous subsequences s of length l (fixed/variable)

 Anomaly Detection
 #1 Supervised: Classification problem
 #2 Unsupervised: k-Nearest Neighbors

(discords)  All-pairs similarity join

Data Cleaning and Fusion

[Chin-Chia Michael Yeh et al: 
Matrix Profile I: All Pairs Similarity 

Joins for Time Series: A Unifying 
View That Includes Motifs, Discords 

and Shapelets. ICDM 2016]

[Matrix Profile XIV, 
SoCC’19]

Time series T, window m 
 O(T2) time but anytime, O(T) space
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Automatic Data Repairs
 Overview Repairs

 Question: Repair data, rules/constraints, or both?
 General principle: “minimality of repairs”

 Example Data Repair
 Functional dependency A B
 Violation for A=1

 Note: Piece-meal vs holistic data repairs

Data Cleaning and Fusion

[Xu Chu, Ihab F. Ilyas: Qualitative Data 
Cleaning. Tutorial, PVLDB 2016]

A B

1 2

1 3

1 3

4 5

A B

1 3

1 3

1 3

4 5

A B

1 2

1 2

1 2

4 5

vs

A B

1 5

1 5

1 5

4 5

vs

OK, dist=1
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Automatic Data/Rule Repairs, cont.
 Example 

 Expectation: City  Country; 
new data conflicts

 Relative Trust: {FName, LName}  Salary
 Trusted FD: change salary according to {FName, LName}  Salary
 Trusted Data: change FD to {FName, LName, DoB, Phone}  Salary
 Equally-trusted: change FD to 

{FName, LName, DoB}  Salary 
AND data accordingly

Data Cleaning and Fusion

IATA ICAO Name City Country

MEL YMML Melbourne International Airport Melbourne Australia

MLB KMLB Melbourne International Airport Melbourne USA

Max d 
changes

x x x x

x

x
x

x
x

x

distC

distD

[George Beskales, Ihab F. Ilyas, Lukasz Golab, Artur
Galiullin: On the relative trust between inconsistent 

data and inaccurate constraints. ICDE 2013]
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Excursus: Simpson’s Paradox
 Overview: Statistical paradox stating that an analysis of groups may yield 

different results at different aggregation levels

 Example UC Berkeley ‘73

Data Cleaning and Fusion

“The real Berkeley story 
A Wall Street Journal interview with Peter Bickel, one of the 
statisticians involved in the original study, makes clear that 
Berkeley was never sued—it was merely afraid of being sued”

[https://www.refsmmat.com/
posts/2016-05-08-simpsons

-paradox-berkeley.html]

Applicants Admitted

Men 8442 44%

Women 4321 35%

Men Women

Appl. Adm. Appl. Adm.

A 825 62% 108 82%

B 560 63% 25 68%

C 325 37% 593 34%

D 417 33% 375 35%

E 191 28% 393 24%

F 373 6% 341 7%

more women had applied to 
departments that admitted a small 

percentage of applicants

https://www.refsmmat.com/posts/2016-05-08-simpsons-paradox-berkeley.html
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Selected Research
 ActiveClean (SampleClean)

 Suggest sample of data for manual cleaning
(rule/ML-based detectors, Simpson's paradox)

 Example
Linear 
Regression

 Approach: Cleaning and training as form of SGD
 Initialization: model on dirty data
 Suggest sample of data for cleaning
 Compute gradients over newly cleaned data
 Incrementally update model w/ weighted gradients of previous steps 

Data Cleaning and Fusion

[Sanjay Krishnan et al: 
ActiveClean: Interactive 

Data Cleaning For Statistical 
Modeling. PVLDB 2016]

[Jiannan Wang et al: A sample-and-clean 
framework for fast and accurate query 

processing on dirty data. SIGMOD 2014]
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Selected Research, cont.
 HoloClean

 Clean and enrich based on quality rules, 
value correlations, and reference data

 Probabilistic models for capturing data generation
 HoloDetect

 Learn data representations of errors
 Data augmentation w/ erroneous 

data from sample of clean data
(add/remove/exchange characters)

 Other Systems
 AlphaClean (generate data cleaning pipelines) [preprint 2019]
 BoostClean (generate repairs for domain value violations) [preprint 2017]
 CPClean (prioritize repairs for incomplete data)[preprint 2020]

Data Cleaning and Fusion

[Alireza Heidari, Joshua McGrath, 
Ihab F. Ilyas, Theodoros Rekatsinas: 
HoloDetect: Few-Shot Learning for 

Error Detection, SIGMOD 2019]

[Theodoros Rekatsinas, Xu Chu, Ihab F. 
Ilyas, Christopher Ré: HoloClean: 

Holistic Data Repairs with Probabilistic 
Inference. PVLDB 2017]
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Query Planning w/ Data Cleaning
 Problem

 Given query tree or data flow graph
 Find placement of data cleaning operators 

to reduce costs

 Approach
 Budget B of user actions
 Active learning user feedback on query results
 Map query results back to sources 

via lineage
 Cleaning in decreasing order of impact

 Extensions?
 Query-aware placement/refinement

(e.g., UK) of cleaning primitives
 Ordering of cleaning primitives (norm, dedup, missing value?)

Data Cleaning and Fusion

R

S

⨝

σUK

dedup

[Dong Deng et al: The Data 
Civilizer System. CIDR 2017]

[Hotham Altwaijry, Sharad Mehrotra, 
Dmitri V. Kalashnikov: QuERy: A Framework 

for Integrating Entity Resolution with 
Query Processing. PVLDB 9(3), 2015]
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Data Wrangling
 Data Wrangler Overview

 Interactive data cleaning via 
spreadsheet-like interfaces

 Iterative structure inference,
recommendations, and 
data transformations

 Predictive interaction
(infer next steps from interaction)

 Commercial/Free Tools
 Trifacta (from Data Wrangler)
 Google Fusion Tables: semi-automatic

resolution and deduplication (sunset Dec 2019)

Data Cleaning and Fusion

[Vijayshankar Raman, Joseph M. 
Hellerstein: Potter's Wheel: An Interactive 

Data Cleaning System. VLDB 2001]

[Sean Kandel, Andreas Paepcke, Joseph 
M. Hellerstein, Jeffrey Heer: Wrangler: 
interactive visual specification of data 

transformation scripts. CHI 2011]

[Jeffrey Heer, Joseph M. Hellerstein, 
Sean Kandel: Predictive Interaction for 

Data Transformation. CIDR 2015]
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Data Wrangling, cont.
 Example: Trifacta Smart Cleaning

Data Cleaning and Fusion

[Credit: Alex Chan (Apr 2, 2019) 
https://www.trifacta.com/blog/trifacta-for-
data-quality-introducing-smart-cleaning/]

https://www.trifacta.com/blog/trifacta-for-data-quality-introducing-smart-cleaning/
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Missing Value Imputation
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Basic Missing Value Imputation
 Missing Value

 Application context defines if 0 is missing value or not
 If differences between 0 and missing values, use NA or NaN?
 Could be a number outside the domain or symbol as ‘?’

 Relationship to Data Cleaning
 Missing value is error, need to generate data repair
 Data imputation techniques can be used as outlier/anomaly detectors

 Recap: Reasons
 #1 Heterogeneity of Data Sources
 #2 Human Error
 #3 Measurement/Processing Errors

Missing Value Imputation

MCAR: Missing Completely 
at Random

MAR: Missing at Random
MNAR: Missing Not at Random
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Basic Missing Value Imputation
 Missing Completely at Random 

 Missing values are randomly distributed 
across all records (independent from 
recorded or missing values)

 Missing at Random 
 Missing values are randomly distributed 

within one or more sub-groups of records
 Missing values depend on the recorded but not 

on the missing values, and can be recovered

 Not Missing at Random 
 Missing data depends on the missing 

values themselves
 E.g., missing low salary, age, weight, etc.

Missing Value Imputation

ID Position Salary ($)
1 Manager null
2 Secretary 2200
3 Manager 3600
4 Technician null
5 Technician 2500
6 Secretary null

ID Position Salary ($)
1 Manager 3500
2 Secretary 2200
3 Manager 3600
4 Technician null
5 Technician null
6 Secretary 2000

ID Position Salary ($)
1 Manager 3500
2 Secretary null
3 Manager 3600
4 Technician null
5 Technician 2500
6 Secretary null

<= 2400
missing

(3500)

(2400)

(2000)

[Abdulhakim Ali Qahtan, Ahmed K. Elmagarmid, Raul 
Castro Fernandez, Mourad Ouzzani, Nan Tang: FAHES: A 
Robust Disguised Missing Values Detector. KDD 2018]
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Basic Missing Value Imputation, cont.
 Basic Value Imputation (for MCAR)

 General-purpose: replace by user-specified constant, 
or drop records, or one-hot encode as separate column

 Continuous variables: replace by mean, median
 Categorical variables: replace by mode (most frequent category)

 Iterative Algorithms (chained-equation imputation for MAR)
 Train ML model on available data to predict missing information

 Initialize with basic imputation (e.g., mean)
 One dirty variable at a time
 Feature k  label, split data into 

training: observed / scoring: missing
 Types: categorical  classification, 

continuous  regression
 Noise reduction: train models over feature subsets + averaging 

Missing Value Imputation

[Stef van Buuren, Karin 
Groothuis-Oudshoorn: mice: 

Multivariate Imputation by 
Chained Equations in R, 

J. of Stat. Software 2011]
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Basic Missing Value Imputation, cont.
 MICE example

 Initialization: fill in the missing values with column mean (w/ or w/o NAs)
 Iterations: each column per iteration

Missing Value Imputation

V1 V2 V3 V4 V5
1 56 2 2 2
2 23 0 0 0
1 NA 0 0 2
2 24 -1 2 NA

NA 22 1 2 0

V1 V2 V3 V4 V5
1 56 2 2 2
2 23 0 0 0
1 25 0 0 2
2 24 -1 2 0.8

1.2 22 1 2 0

V1 V2 V3 V4 V5
1 56 2 2 2
2 23 0 0 0
1 25 0 0 2
2 24 -1 2 0.8

1.2 22 1 2 0

V1 V2 V3 V4 V5
1 56 2 2 2
2 23 0 0 0
1 25 0 0 2
2 24 -1 2 0.8
? 22 1 2 0

train(x)train(y)

test(x)
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BREAK (and Test Yourself)

 Two techniques for MVI in the categorical column C. 
If possible, provide the imputed values (6 points)
 Mode  {X, X}
 Functional Dependency (e.g., B/1000C)  {Y, Z}
 ML (Classification)

 Two techniques for MVI in the numerical column E. 
If possible, provide the imputed values (6 points)
 Mean  {35, 35}
 Functional Dependency (e.g., DE)  {35, 45}
 ML (Regression)

Missing Value Imputation

[Exam Feb 08, 2021]
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DNN Based MV Imputation
 DataWig

 Missing values imputation for heterogeneous data including unstructured text

Missing Value Imputation

[Felix Bießmann et al: DataWig: 
Missing Value Imputation for 

Tables, J. of ML Research 2019]
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Query Planning w/ MV Imputation
 Dynamic Imputation

 Data exploration w/ on-the-fly imputation
 Optimal placement of drop δ and impute μ

(chained-equation imputation via decision trees)
 Multi-objective optimization

Missing Value Imputation

[Jose Cambronero, John K. Feser, 
Micah Smith, Samuel Madden:

Query Optimization for Dynamic 
Imputation. PVLDB 2017]

Quality 
Optimized

Plan

Perf 
Optimized

Plan
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XGBoost’s Sparsity-aware Split Finding
 Motivation

 Missing values
 Sparsity in general 

(zero values, one-hot encoding)

 XGBoost
 Implementation of gradient 

boosted decision trees
 Multi-threaded, cache-conscious 

 Sparsity-aware Split Finding
 Handles the missing values by 

default paths (learned from data)

 An example will be classified into the 
default direction when the feature 
needed for the split is missing

Missing Value Imputation

Is male?

age < 20

X3

X2X1

Y N

Y N

default

default

Example Age Gender
X1 ? male
X2 15 ?
X3 25 female

[Tianqi Chen and Charlos 
Guestrin: XGBoost: A Scalable 

Tree Boosting System, KDD 2016]
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Time Series Imputation
 Example R Package imputeTS

Missing Value Imputation

[Steffen Moritz and Thomas Bartz-
Beielstein: imputeTS: Time Series 

Missing Value Imputation in R, 
The R Journal 2017]
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Excursus: Time Series Recovery
 Motivating Use Case

 Given overlapping weekly aggregates y (daily moving average)
 Reconstruct the original time series X

 Problem Formulation
 Aggregates y
 Original time series X (unknown) 
 Mapping O of subsets of X to y
 Least squares regression problem

 Advanced Method
 Discrete Cosine Transform (DCT)

(sparsest spectral representation)
 Non-negativity and smoothness 

constraints

Missing Value Imputation

[Faisal M. Almutairi et al: HomeRun: 
Scalable Sparse-Spectrum Reconstruction of 

Aggregated Historical Data. PVLDB 2018]
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Summary and Q&A
 Motivation and Terminology
 Data Cleaning and Fusion
 Missing Value Imputation

 Next Lectures (Part A)
 07 Data Provenance and Blockchain [Nov 19]

 Next Lectures (Part B)
 08 Cloud Computing Foundations [Nov 26]
 09 Cloud Resource Management and Scheduling [Dec 03]
 10 Distributed Data Storage [Dec 10]
 11 Distributed, Data-Parallel Computation [Jan 07]
 12 Distributed Stream Processing [Jan 14]
 13 Distributed Machine Learning Systems [Jan 21]
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