
1
SCIENCE
PASSION

TECHNOLOGY

Data Integration and Analysis
10 Distributed Data Storage
Matthias Boehm

Graz University of Technology, Austria

Institute of Interactive Systems and Data Science
Computer Science and Biomedical Engineering

BMK endowed chair for Data Management

Last update: Jan 05, 2022

2

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Announcements/Org
 #1 Video Recording

 Link in TUbe & TeachCenter (lectures will be public)
 Optional attendance (independent of COVID)
 Virtual lectures (recorded) until end of the semester

https://tugraz.webex.com/meet/m.boehm
 Jan 10: TU Graz Status RED

 #2 Programming Projects/Exercises
 Progress?, Questions & Answers
 Deadline Reminder: Jan 21 11.59pm

(max 7 late days, with (2*late_days) point deduction)
 Exercise submission in TeachCenter, projects via pull requests

 #3 Course Evaluation and Exam
 Evaluation period: Jan 01 – Feb 15
 Exam date: Feb 04, 3pm (90+min written exam)

73/116

https://tugraz.webex.com/meet/m.boehm

3

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Course Outline Part B:
Large-Scale Data Management and Analysis

08 Cloud Computing Fundamentals

09 Cloud Resource Management and Scheduling

10 Distributed Data Storage

11 Distributed Data-Parallel Computation

12 Distributed Stream
Processing

13 Distributed Machine
Learning Systems

Compute/
Storage

Infra

4

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Agenda
 Motivation and Terminology
 Object Stores and Distributed File Systems
 Key-Value Stores and Cloud DBMS

5

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Motivation and Terminology

6

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Overview Distributed Data Storage
 Recap: Distributed DBS (03 Replication, MoM, and EAI)

 Distributed DB: Virtual (logical) DB, appears like a
local DB but consists of multiple physical DBs

 Components for global query processing
 Virtual DBS (homo.) vs federated DBS (hetero.)

 Cloud and Distributed Data Storage
 Motivation: size (large-scale), semi-structured/nested , fault tolerance
 #1 Cloud and Distributed Storage

 Block storage: files split into blocks, read/write (e.g., SAN, AWS EBS)
 Object storage: objects of limited size (e.g., 5TB), get/put (e.g., AWS S3)
 Distributed file systems: file system on block/object stores (NFS, HDFS)

 #2 Database as a Service
 NoSQL stores: Key-value stores, document stores
 Cloud DBMSs (SQL, for OLTP and OLAP workloads)

Motivation and Terminology

DB1

DB2 DB3

DB4

Global
Q

Q’ Q’’’
Q’’

7

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Central Data Abstractions
 #1 Files and Objects

 File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)
 Object: binary large object, with certain meta data

 #2 Distributed Collections
 Logical multi-set (bag) of key-value pairs

(unsorted collection)
 Different physical representations
 Easy distribution of pairs

via horizontal partitioning
(aka shards, partitions)

 Can be created from single file,
or directory of files (unsorted)

Motivation and Terminology

Key Value
4 Delta
2 Bravo
1 Alfa
3 Charlie
5 Echo
6 Foxtrot
7 Golf
1 Alfa

8

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Data Lakes
 Concept “Data Lake”

 Store massive amounts of un/semi-structured, and structured data
(append only, no update in place)

 No need for architected schema or upfront costs (unknown analysis)
 Typically: file storage in open, raw formats (inputs and intermediates)
 Distributed storage and analytics for scalability and agility

 Criticism: Data Swamp
 Low data quality (lack of schema,

integrity constraints, validation)
 Missing meta data (context) and

data catalog for search
 Requires proper data curation / tools

According to priorities (data governance)

Motivation and Terminology

[Credit: www.collibra.com]

http://www.collibra.com/

9

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Catalogs of Data and Artefacts
 Data Catalogs

 Data curation in repositories for finding relevant datasets in data lakes
 Augment data with open and linked data sources

 Examples

Motivation and Terminology

SAP Data Hub Google Data Search

[Alon Y. Halevy et al: Goods: Organizing
Google's Datasets. SIGMOD 2016]

[SAP Sapphire Now 2019]

Recap FAIR Data Principles
(see 07 Data Provenance)

10

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Excursus: Research Data Management (RDM)
 Overview

 Ensure reproducibility of research results and conclusions
 Common problem: “All code and data was on the student’s laptop

and the student left / the laptop crashed.”
 Create value for others (compare, reuse, understand, extend)
 EU Projects: Mandatory proposal section & deliverable on RDM plan

 RDM @ TU Graz: https://www.tugraz.at/sites/rdm/home/
 Toni Ross-Hellauer: Open and Reproducible Research Group (ORRG)
 Ilire Hasani-Mavriqi / Sarah Stryeck: RDM Team
 TU Graz RDM Policy 12/2019, TU Graz Repository based on

Reproducibility and RDM

“Ensure that research data, code and any other materials needed to reproduce
research findings are appropriately documented, stored and shared in a research
data repository in accordance with the FAIR principles (Findable, Accessible,
Interoperable and Reusable) for at least 10 years from the end of the research
project, unless there are valid reasons not to do so. [...]

Develop a written data management strategy for managing research outputs within
the first 12 months of the PhD study as part of their supervision agreements.”

https://github.com/
inveniosoftware/
invenio-app-rdm

https://www.tugraz.at/sites/rdm/home/
https://github.com/inveniosoftware/invenio-app-rdm

11

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Object Stores and
Distributed File Systems

12

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Object Storage
 Recap: Key-Value Stores

 Key-value mapping, where values can be of a variety of data types
 APIs for CRUD operations; scalability via sharding (objects or object segments)

 Object Store
 Similar to key-value stores, but: optimized for large objects in GBs and TBs
 Object identifier (key), meta data, and object as binary large object (BLOB)
 APIs: often REST APIs, SDKs, sometimes implementation of DFS APIs

 Key Techniques
 Partitioning
 Replication &

Distribution
 Erasure Coding

(partitioning + parity)

Object Stores and Distributed File Systems

D
D1
D2
D3

Partitioning Replication D11
D21
D31

D12
D22
D32

D11 D21 D31D12 D22D32

Distribution

13

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Object Storage, cont.
 Example Object Stores / Protocols

 Amazon Simple Storage Service (S3)
 OpenStack Object Storage (Swift)
 IBM Object Storage
 Microsoft Azure Blob Storage

 Example Amazon S3
 Reliable object store for photos, videos, documents or any binary data
 Bucket: Uniquely named, static data container
http://s3.aws-eu-central-1.amazonaws.com/mboehm7datab

 Object: key, version ID, value, metadata, access control
 Single (5GB)/multi-part (5TB) upload and direct/BitTorrent download
 Storage classes: STANDARD, STANDARD_IA, GLACIER, DEEP_ARCHIVE
 Operations: GET/PUT/LIST/DEL, and SQL over CSV/JSON objects
 Eventual consistency  Dec 1 2020: read-after-write and list consistency

Object Stores and Distributed File Systems

14

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Hadoop Distributed File System (HDFS)
 Brief Hadoop History

 Google’s GFS + MapReduce [ODSI’04]
 Apache Hadoop (2006)

 Apache Hive (SQL), Pig (ETL), Mahout/SystemML (ML), Giraph (Graph)

 HDFS Overview
 Hadoop’s distributed file system, for large clusters and datasets
 Implemented in Java, w/ native libraries for compression, I/O, CRC32
 Files split into 128MB blocks, replicated (3x), and distributed

Object Stores and Distributed File Systems

1 2 3 4 5 6M

Head Node Worker Nodes (shared-nothing cluster)

Hadoop Distributed File System (HDFS)

Client

Name
Node

Data
Node

Data
Node

Data
Node

Data
Node

Data
Node

Data
Node

[Sanjay Ghemawat, Howard
Gobioff, Shun-Tak Leung: The

Google file system. SOSP 2003]

15

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

HDFS Daemon Processes
 HDFS NameNode

 Master daemon that manages file system
namespace and access by clients

 Metadata for all files (e.g., replication,
permissions, sizes, block ids, etc)

 FSImage: checkpoint of FS namespace
 EditLog: write-ahead-log (WAL) of file write operations (merged on startup)

 HDFS DataNode
 Worker daemon per cluster node that manages block storage (list of disks)
 Block creation, deletion, replication as individual files in local FS
 On startup: scan local blocks and send block report to name node
 Serving block read and write requests
 Send heartbeats to NameNode (capacity, current transfers) and

receives replies (replication, removal of block replicas)

Object Stores and Distributed File Systems

hadoop fs -ls ./data/mnist1m.bin

Presenter
Presentation Notes
Note: multiple fsimage/editlogs can be configured + synchronously written for fault tolerance

16

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

HDFS InputFormats and RecordReaders
 Overview InputFormats

 InputFormat: implements access to distributed collections in files
 Split: record-aligned block of file (aligned with HDFS block size)
 RecordReader: API for reading key-value pairs from file splits
 Examples: FileInputFormat, TextInputFormat, SequenceFileInputFormat

 Example
Text Read

Object Stores and Distributed File Systems

FileInputFormat.addInputPath(job, path); # path: dir/file
TextInputFormat informat = new TextInputFormat();
InputSplit[] splits = informat.getSplits(job, numSplits);

LongWritable key = new LongWritable();
Text value = new Text();
for(InputSplit split : splits) {
RecordReader<LongWritable,Text> reader = informat
.getRecordReader(split, job, Reporter.NULL);

while(reader.next(key, value))
... //process individual text lines

}

17

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

HDFS InputFormats and RecordReaders, cont.
 Sequence Files

 Binary files for key/value pairs, w/ optional compression
(MapReduce/Spark inputs/outputs, MapReduce intermediates)

 InputFormat with readers, writers, and sorters

 Example Uncompressed SequenceFile
 Header: SEQ+version (4 bytes), keyClassName, valueClassName, compression,

blockCompression, compressor class (codec), meta data
 Splittable binary representation of key-value pair collection

Object Stores and Distributed File Systems

Header Sy
nc Record Record Record Sy
nc Record

Record
Length

Key
Length Key Value

SystemDS: values are
1k x 1k matrix blocks

18

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

HDFS Write and Read
 HDFS Write

 #1 Client RPC to NameNode
to create file  lease/replica DNs

 #2 Write blocks to DNs, pipelined
replication to other DNs

 #3 DNs report to NN via heartbeat

 HDFS Read
 #1 Client RPC to NameNode

to open file  DNs for blocks
 #2 Read blocks sequentially from

closest DN w/ block
 InputFormats and RecordReaders

as abstraction for multi-part files
(incl. compression/encryption)

Object Stores and Distributed File Systems

M

Name
Node

1 2

Data
Node

Data
Node

Client

HDFS Client D1
D2

1. Create
foo.txt

D

D1 D2

foo.txt:
D1-1,2
D2-1,2

D1 D2

M

Name
Node

1 2

Data
Node

Data
Node

HDFS Client D1
D2

1. Open
foo.txt

D1 D2

foo.txt:
D1-1,2
D2-1,2

D1 D2

2
3

2

Presenter
Presentation Notes
Note: writes synchronous but pipelined replication; if less than k data nodes returned (errors, loaded) write still successful if replication > min.replication

19

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

HDFS Data Locality
 Data Locality

 HDFS is generally rack-aware (node-local, rack-local, other)
 Schedule reads from closest data node
 Replica placement (rep 3): local DN, other-rack DN, same-rack DN
 MapReduce/Spark: locality-aware execution (function vs data shipping)

 Custom Locality Information
 Custom InputFormat and

FileSplit implementations
 Return customized mapping

of locations on getLocations()
 Can use block locations

of arbitrary files

Object Stores and Distributed File Systems

public class MyFileSplit extends FileSplit
{
public MyFileSplit(FileSplit x, ...) {}
@Override
public String[] getLocations() {
return new String[]{“node1”,“node7”};

}
}

FileStatus st = fs.getFileStatus(new Path(fname));
BlockLocation[] tmp1 = fs.getFileBlockLocations(st, 0, st.getLen());

20

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

HDFS Federated NameNodes
 HDFS Federation

 Eliminate NameNode as
namespace scalability bottleneck

 Independent NameNodes,
responsible for name spaces

 DataNodes store blocks of
all NameNodes

 Client-side mount tables

 GFS Multiple Cells
 “We also ended up doing what we call

a "multi-cell" approach, which basically
made it possible to put multiple GFS
masters on top of a pool of chunkservers.”
-- Sean Quinlan

Object Stores and Distributed File Systems

[Credit: https://hadoop.apache.org/docs/current/hadoop-
project-dist/hadoop-hdfs/Federation.html]

[Kirk McKusick, Sean Quinlan:
GFS: evolution on fast-forward.

Commun. ACM 53(3) 2010]

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/Federation.html

21

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Other DFS
 HDFS FileSystem Implementations (subset)

 LocalFileSystem (file), DistributedFileSystem (hdfs)
 FTPFileSystem, HttpFileSystem, ViewFilesystem (ViewFs – mount table)
 NativeS3FileSystem (s3, s3a), NativeSwiftFileSystem, NativeAzureFileSystem
 Other proprietary: IBM GPFS, Databricks FS (DBFS)

 Google Colossus
 More fine-grained accesses, Google Cloud Storage

 High-Performance Computing
 Scope: Focus on high IOPs (instead of bandwidth) with block write
 IBM GPFS (General Parallel File System) / Spectrum Scale
 BeeGFS (Fraunhofer GFS) – focus on usability, storage/metadata servers
 Lustre (Linux + Cluster) – GPL license, LNET protocol / metadata / object storage
 RedHat GFS2 (Global File System) – Linux cluster file system, close to local
 NAS (Network Attached Storage), SAN (Storage Area Network)
 GekkoFS (Uni Mainz / Barcelona SC) – data-intensive HPC applications

Object Stores and Distributed File Systems

[WIRED: Google Remakes
Online Empire With 'Colossus',
https://www.wired.com/2012/

07/google-colossus/]

https://www.wired.com/2012/07/google-colossus/

22

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Key-Value Stores and Cloud DBMS

23

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Motivation and Terminology
 Motivation

 Basic key-value mapping via simple API (more complex data models
can be mapped to key-value representations)

 Reliability at massive scale on commodity HW (cloud computing)

 System Architecture
 Key-value maps, where values

can be of a variety of data types
 APIs for CRUD operations

(create, read, update, delete)
 Scalability via sharding

(horizontal partitioning)

 Example Systems
 Dynamo (2007, AP)  Amazon DynamoDB (2012)
 Redis (2009, CP/AP)

Key-Value Stores and Cloud DBMS

[Giuseppe DeCandia et
al: Dynamo: amazon's

highly available key-
value store. SOSP 2007]

users:1:a “Inffeldgasse 13, Graz”

users:1:b “[12, 34, 45, 67, 89]”

users:2:a “Mandellstraße 12, Graz”

users:2:b “[12, 212, 3212, 43212]”

Presenter
Presentation Notes
Notes:
* Dynamo + SimpleDB  DynamoDB

24

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Example Systems: Dynamo
 Motivation

 Simple, highly-available data storage for small objects in ~1MB range
 Aim for good load balance (99.9th percentile SLAs)

 #1 System Interface
 Simple get(k, ctx) and put(k, ctx) ops

 #2 Partitioning
 Consistent hashing of nodes and keys

on circular ring for incremental scaling
 Nodes hold multiple virtual nodes

for load balance (add/rm, heterogeneous)

 #3 Replication
 Each data item replicated N times

(at coord node and N-1 successors)
 Eventual consistency with async update

propagation based on vector clocks
 Replica synchronization via Merkle trees

Key-Value Stores and Cloud DBMS

[Giuseppe DeCandia et al:
Dynamo: amazon's highly available

key-value store. SOSP 2007]

Amazon
e-Commerce

Platform

Presenter
Presentation Notes
Notes:
* vector clocks (node, counter) for capturing causality between versions
* Replica synchronization via anti-entropy and Merkle-trees

25

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Example Systems, cont.
 Redis Data Types

 Redis is not a plain KV-store, but “data structure server” with
persistent log (appendfsync no/everysec/always)

 Key: ASCII string (max 512MB, common key schemes: comment:1234:reply.to)
 Values: strings, lists, sets, sorted sets, hashes (map of string-string), etc

 Redis APIs
 SET/GET/DEL: insert a key-value pair, lookup value by key, or delete by key
 MSET/MGET: insert or lookup multiple keys at once
 INCRBY/DECBY: increment/decrement counters
 Others: EXISTS, LPUSH, LPOP, LRANGE, LTRIM, LLEN, etc

 Other systems
 Classic KV stores (AP): Riak, Aerospike, Voldemort,

LevelDB, RocksDB, FoundationDB, Memcached
 Wide-column stores: Google BigTable (CP),

Apache HBase (CP), Apache Cassandra (AP)

Key-Value Stores and Cloud DBMS

26

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Log-structured Merge Trees
 LSM Overview

 Many KV-stores rely on LSM-trees as their storage engine
(e.g., BigTable, DynamoDB, LevelDB, Riak, RocksDB, Cassandra, HBase)

 Approach: Buffers writes in memory, flushes data as sorted runs to storage,
merges runs into larger runs of next level (compaction)

 System Architecture
 Writes in C0
 Reads against

C0 and C1 (w/
buffer for C1)

 Compaction
(rolling merge):
sort, merge,
including
deduplication

Key-Value Stores and Cloud DBMS

[Patrick E. O'Neil, Edward Cheng,
Dieter Gawlick, Elizabeth J. O'Neil:

The Log-Structured Merge-Tree
(LSM-Tree). Acta Inf. 1996]

C0
writes

in-memory
buffer (C0)

max capacity T

on-disk
storage (C1)

C1t+1

reads

C1t

compaction

Presenter
Presentation Notes
Note: LSM write optimized by buffering writes, read-optimized by sort-merging on-disk runs
C1 and Ci also trees similar to B-tree but nodes kept 100% full single node pages packed into multi-page blocks
 Better insert performance, worse lookup costs

27

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Log-structured Merge Trees, cont.
 LSM Tiering

 Keep up to T-1 runs per level L
 Merge all runs of Li into 1 run of Li+1

 L1
 L2
 L3

 LSM Leveling
 Keep 1 run per level L
 Merge run of Li with Li+1

 L1
 L2
 L3

Key-Value Stores and Cloud DBMS

[Niv Dayan: Log-Structured-
Merge Trees, Comp115

guest lecture, 2017]

write-
optimized

read-
optimized

[Stratos Idreos, Mark Callaghan:
Key-Value Storage Engines
(Tutorial), SIGMOD 2020]

28

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Cloud Databases (DBaaS)
 Motivation DBaaS

 Simplified setup, maintenance, tuning and auto scaling
 Multi-tenant systems (scalability, learning opportunities)
 Different types based on workload (OLTP vs OLAP)

 Elastic Data Warehouses
 Motivation: Intersection of data warehousing (02 DWH, ETL, SQL/OLAP),

cloud computing (08/09 Cloud Computing), Distributed Storage (10 today)
 Example Systems

 #1 Snowflake
 #2 Google BigQuery (Dremel)
 #3 Amazon Redshift
 Azure SQL Data Warehouse

Key-Value Stores and Cloud DBMS

Microsoft

Commonalities:
SQL, column stores,

data on object store / DFS,
elastic cloud scaling

29

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Example Snowflake
 Motivation (impl started late 2012)

 Enterprise-ready DWH solution for the cloud (elasticity, semi-structured)
 Pure SaaS experience, high availability, cost efficient

 Cloud Services
 Manage virtual DHWs,

TXs, and queries
 Meta data and catalogs

 Virtual Warehouses
 Query execution in EC2
 Caching/intermediates

 Data Storage
 Storage in AWS S3
 PAX / hybrid columnar
 Min-max pruning

Key-Value Stores and Cloud DBMS

[Benoît Dageville et al.: The
Snowflake Elastic Data

Warehouse. SIGMOD 2016]

Presenter
Presentation Notes
Note: Sep 2020 -> IPO (initial public offering), 33B eval

30

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Example Google BigQuery
 Background Dremel

 Scalable and fast in-situ analysis of read-only nested data (DFS, BigTable)
 Data model: protocol buffers - strongly-typed nested records
 Storage model: columnar storage of nested data

(efficient splitting and assembly records)
 Query execution via multi-level serving tree

 BigQuery System Architecture
 Public impl of internal Dremel system (2012)
 SQL over structured, nested data (OLAP, BI)
 Extensions: web Uis, REST APIs and ML
 Data storage: Colossus (NextGen GFS)

Key-Value Stores and Cloud DBMS

[Sergey Melnik et al.: Dremel:
Interactive Analysis of Web-Scale

Datasets. PVLDB 3(1) 2010]

[Kazunori Sato: An Inside Look at Google
BigQuery, Google BigQuery White Paper 2012.]

31

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Example Amazon Redshift
 Motivation (release 02/2013)

 Simplicity and cost-effectiveness
(fully-managed DWH at petabyte scale)

 System Architecture
 Data plane: data storage and SQL execution
 Control plane: workflows for monitoring,

and managing databases, AWS services

 Data Plane
 Initial engine licensed from ParAccel
 Leader node + sliced compute nodes

in EC2 (with local storage)
 Replication across nodes + S3 backup
 Query compilation in C++ code
 Support for flat and nested files

Key-Value Stores and Cloud DBMS

[Anurag Gupta et al.: Amazon
Redshift and the Case for Simpler

Data Warehouses. SIGMOD 2015]

[Mengchu Cai et al.: Integrated
Querying of SQL database data

and S3 data in Amazon Redshift.
IEEE Data Eng. Bull. 41(2) 2018]

32

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Summary and Q&A
 Motivation and Terminology
 Object Stores and Distributed File Systems
 Key-Value Stores and Cloud DBMS

 Next Lectures
 11 Distributed, Data-Parallel Computation [Jan 14]
 12 Distributed Stream Processing [Jan 21]
 13 Distributed Machine Learning Systems [Jan 28]

	Data Integration and Analysis�10 Distributed Data Storage
	Announcements/Org
	Course Outline Part B:�Large-Scale Data Management and Analysis
	Agenda
	Motivation and Terminology
	Overview Distributed Data Storage
	Central Data Abstractions
	Data Lakes
	Catalogs of Data and Artefacts
	Excursus: Research Data Management (RDM)
	Object Stores and �Distributed File Systems
	Object Storage
	Object Storage, cont.
	Hadoop Distributed File System (HDFS)
	HDFS Daemon Processes
	HDFS InputFormats and RecordReaders
	HDFS InputFormats and RecordReaders, cont.
	HDFS Write and Read
	HDFS Data Locality
	HDFS Federated NameNodes
	Other DFS
	Key-Value Stores and Cloud DBMS
	Motivation and Terminology
	Example Systems: Dynamo
	Example Systems, cont.
	Log-structured Merge Trees
	Log-structured Merge Trees, cont.
	Cloud Databases (DBaaS)
	Example Snowflake
	Example Google BigQuery
	Example Amazon Redshift
	Summary and Q&A

