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Announcements/Org

= #1 Video Recording
= Link in TUbe & TeachCenter (lectures will be public)

& TUbe

||I:l"|!P

= QOptional attendance (independent of COVID)

= Virtual lectures (recorded) until end of the semester cisco \VVebex
https://tugraz.webex.com/meet/m.boehm

= Jan 10: TU Graz Status RED

= #2 Programming Projects/Exercises
" Progress?, Questions & Answers 73/116

= Deadline Reminder: Jan 21 11.59pm
(max 7 late days, with (2*late_days) point deduction)

= Exercise submission in TeachCenter, projects via pull requests

= #3 Course Evaluation and Exam
= Evaluation period: Jan 01 — Feb 15 S5
= Exam date: Feb 04, 3pm (90+min written exam)
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Course Outline Part B:
Large-Scale Data Management and Analysis

12 Distributed Stream 13 Distributed Machine
Processing Learning Systems

11 Distributed Data-Parallel Computation
Compute/
Storage
10 Distributed Data Storage
09 Cloud Resource Management and Scheduling
Infra
08 Cloud Computing Fundamentals
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Agenda

= Motivation and Terminology

= Data-Parallel Collection Processing

= Data-Parallel DataFrame Operations

= Data-Parallel Computation in SystemDS

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation
Matthias Boehm, Graz University of Technology, WS 2021/22

“ISDS



Ty

Motivation and Terminology
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Motivation and Terminology ﬁ-lc:r%!-

Recap: Central Data Abstractions

= #1 Files and Objects
= File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)
= Object: binary large object, with certain meta data

= #2 Distributed Collections Key

= Logical multi-set (bag) of key-value pairs

(unsorted collection) = Delta
= Different physical representations 2 Bravo
= Easy distribution of pairs 1 Alfa
via horizontal pa.rt-ltlonmg 3 Charlie
(aka shards, partitions) c —
. . cho
= Can be created from single file,
or directory of files (unsorted) 6 Foxtrot
7 Golf
1 Alfa
706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation "
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Motivation and Terminology ﬁ-le-rg.

[Michael E. Thomadakis:

Excursus: Nehalem Architecture o h aomecal

Nehalem Processor and Nehalem-
. EP SMP Platforms, Report, 2010
= Multi-core CPU P ]

= 4 core w/ hyper-threading
= Per core: L1i/L1d, L2 cache

= Per CPU: L3 cache (8MB)

= 3 memory channels
(8B width, max 1.333Ghz)

QPI ... Quick Path
Interconnect

= Pipeline Nenalem ©15C  Nehalem Execution Engine NN
! Out-of-order Pipelines : & \’.? °
™ Frontend: |nStFUCtI0n FetCh, :g . 1#§£CEF}|§£B IReglsterAllasTable andAIIocatorI
2 Retirement Register File l« & Reorder-Buffer |
Pre-Decode, and Decode 3 peenoctos site; S (ROB) 128 enties
E 4\.1995
= Backend: Rename/Allocate !
/ ’ T Unified Reservation Stations (URS) 36 entries
Scheduler, Execute i Hg > e
%: c = Stor ﬁ
2 2 Address
= Out-of-Order g f | =
Execution Engine (IPC=4) g ® Memory Orderuter
i A SSE Integer (MOB) SSE Integer ALLI
= 128b FP Multiply i B e

Nehalem RISC Y SR 2

u 1 2 8 b F P Ad d micro-operations 1Ic?aedB 32 kiB L1 131::?(:?8
leycle Data Cache leycle




Motivation and Terminology ﬂl’g_

Terminology
Singe Data Multiple Data
= Flynn’s Classification
= SISD, SIMD | fingf‘ SISD SIMD
nstruction i-
« (MISD), MIMD (uni-core) (vector)
[Michael J. Flynn, Kevin W. _
Rudd: Parallel Architectures. Multiple MISD MIMD
ACM Comput. Surv. 28(1) 1996] Instruction (pipelining) (multi-core)

= Example: SIMD Processing

2009 Nehalem: 128b (2xFP64)
2012 Sandy Bridge: 256b (4xFP64)
2017 Skylake: 512b (8xFP64)

Streaming SIMD Extensions (SSE)

Process the same operation on
multiple elements at a time

acked vs scalar SSE instructions
(p ‘ ) ¢ = _mm512_fmadd_pd(a, b);
Data parallelism ] T [ T |

. . . a | I
(aka: instruction-level parallelism) bl T T T T T 1T 11
Example: VFMADD132PD c( I [ 1 1 I 1 [ 1}
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Motivation and Terminology ﬁ-le-g.

Terminology cont.

= Distributed, Data-Parallel Y = X. map(x -> 'FOO(X) )
Computation

= Parallel computation of function foo() =
= Collection X of data items (key-value pairs) =

= Data parallelism similar to SIMD but more coarse-grained notion of
“instruction” and “data” =» SPMD (single program, multiple data)

[Frederica Darema: The SPMD Model : Past,
Present and Future. PVM/MPI 2001]

= Additional Terminology

= Bulk Synchronous Parallel (global barriers)
= Asynchronous Parallel (no barriers, often with accuracy impact)
= Stale-synchronous parallel (staleness constraint on fastest-slowest)

= Qther: Fork&Join, Hogwild!, event-based, decentralized

= Beware: used in very different contexts (e.g., Param Server)
706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation =
Matthias Boehm, Graz University of Technology, WS 2021/22 ISDS
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Data-Parallel Collection Processing
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Data-Parallel Collection Processing

Hadoop History and Architecture

[Jeffrey Dean, Sanjay
Ghemawat: MapReduce:
Simplified Data Processing on
Large Clusters. OSDI 2004]

ClErEEED

= Recap: Brief History

= Google’s GFS [SOSP’03] + MapReduce
- Apache Hadoop (2006)

= Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

= Hadoop Architecture / Eco System

= Management (Ambari)

Worker Node1  Worker Node n

= Coordination / workflows

r-r—--—-——m=m=== iQFrE==-=-=== 1
(Zookeeper, Oozie) ! T |
= Storage (HDFS) ' 2’:\: MR :: MR || MR |,
= Resources (YARN) - -~ task | | task ]| task |
[SOCC'13] MR MR : | MR MR :

|
= Processing Resource task || task | | task || task |
(MapReduce) Manager Node : : Node :
Manager B Manager §
MR Client I DataNode | DataNode J
11312388 312]°9 26




Data-Parallel Collection Processing ﬁ!g.

MapReduce — Programming Model

= Overview Programming Model
= |nspired by functional programming languages
= Implicit parallelism (abstracts distributed storage and processing)
o function: key/value pair = set of intermediate key/value pairs
= function: merge all intermediate values by key

= Example SELECT Dep, count(*) FROM csv_files GROUP BY Dep

(Long pos, String line) {
parts & line.split(“,”)

X CS emit(parts[1], 1)
Y CS .

} cs 1 (String dep, .
A EE Iterator<Long> iter) {
7 cs CS 1 total < iter.sum();

EE 1 emit(dep, total)
. CS 3
Collection of S 1 }

key/value pairs EE 1



Data-Parallel Collection Processing ﬁ-le-rLa!.

MapReduce — Execution Model

#1 Data Locality (delay sched., write affinity)

Input CSV files Map-Phase #2 Reduced shuffle (combine)
(stored in HDFS) #3 Fault tolerance (replication, attempts)

CSV k
L1 Split 12
\

]

f
csv | ! Spllt 21
\ ]

File 2 (- - T \
iz

(- - T T \

csv |! Spllt 31 )

N oo

File3 [ == ===\

Sort, [Combine], [Compress] w/ #reducers = 3

[Reduce-Phase]  Output Files
(HDFS)

/

reduce out 1

task 7
reduce out 2

\

task 7

reduce Out 3

:L
i

task 7

—i

Shuffle, Merge,
[Combine]

N




Data-Parallel Collection Processing ﬁ!g

MapReduce — Query Processing

= Basic Unary Operations
= Selections (brute-force), projections
= Ordering (e.g., TeraSort): Sample, pick k quantiles; shuffle-based partition sort
= Additive and semi-additive aggregation with grouping, distinct

* Binary Operatlons [Spyros Blanas et al.: A comparison
= Set operations of join algorithms for log processing

. . . . . in MapReduce. SIGMOD 2010
(union, intersect, difference) and joins P ]

= Different physical operators for R < S

= : broadcast S, build HT S, map-side HJIOIN

= : shuffle (repartition) R and S, reduce-side MJOIN

= avoid buffering via key-tag sorting

= (pre/co-partitioned): map-only, R input, S read side-ways

= Hybrid SQL-on-Hadoop Systems [VLDB’15]
= E.g.: Hadapt (HadoopDB), Impala, IBM BigSQL, Presto, Drill, Actian

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
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Data-Parallel Collection Processing ﬁ!g.

Spark History and Architecture

= Summary MapReduce
= Large-scale & fault-tolerant processing w/ UDFs and files =» Flexibility
= Restricted functional APIs =» Implicit parallelism and fault tolerance
= Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems

AAAAAA

= Spark [HotCloud’10] + RDDs [NSDI'12] = Apache Spark (2014)  SPQ

= Design: standing executors with in-memory storage,
lazy evaluation, and fault-tolerance via RDD lineage

= Performance: In-memory storage and fast job scheduling (100ms vs 10s)

= APIs: Richer functional APIs and general computation DAGs,
high-level APIs (e.g., DataFrame/Dataset), unified platform

= Evolution to Spark (and Flink) Iy
rK

=» But many shared concepts/infrastructure
= Implicit parallelism through dist. collections (data access, fault tolerance)
= Resource negotiators (YARN, Mesos, Kubernetes)
= HDFS and object store connectors (e.g., Swift, S3)



Data-Parallel Collection Processing ﬁ-ley.

Spark History and Architecture, cont.

= High-Level Architecture (https://spark.apache.org/]

Different language bindings:
Scala, Java, Python, R

MLlIlib

Different libraries:
SQL, ML, Stream, Graph

Spark core (incl RDDs)

Different cluster managers:

Yarn, Kubernetes

e
formats, and data sources:

HDFS, S3, SWIFT, DBs, NoSQL S‘p“o’”rk [ hadggp
2 o
ek

learning)

AVAVA
VAVAY

MESOS ) kubernetes

= Focus on a unified platform
for data-parallel computation (Apache Flink w/ similar goals)

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
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Data-Parallel Collection Processing ﬁ!g.

Spark Resilient Distributed Datasets (RDDs)

= RDD Abstraction JavaPairRDD<MatrixIndexes,MatrixBlock>

= Immutable, partitioned
collections of key-value pairs

= Coarse-grained deterministic operations (transformations/actions)
= Fault tolerance via lineage-based re-computation

= Operations

= Transformations:  Transformation

map, hadoopFile, textFile,
flatMap, filter, sample, join,

define new RDDs (lazy) groupByKey, cogroup, reduceByKey,
= Actions: return cross, sortByKey, mapValues
result to driver Action reduce, save,
collect, count, lookupKey
= Distributed Caching Nodel Node2

= Use fraction of worker memory for caching ‘-\ ‘-\
= Eviction at granularity of individual partitions
= Different storage levels (e.g., mem/disk x serialization x compression)

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
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Data-Parallel Collection Processing ﬁIrLa!.

Spark Resilient Distributed Datasets (RDDs), cont.

= Lifecycle of an RDD X.filter(foo())
= Note: can’t broadcast X.mapValues(foo())
an RDD directly X.reduceByKey(foo())
X.cache()
sc.parallelize(1lst)

Local Data = Distributed
(value, collection) & Collection

1st = X.collect()
v = X.reduce(foo())

sc.hadoopFile(f)
sc.textFile(f)

X.saveAsObjectFile(f)
X.saveAsTextFile(f)

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
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Data-Parallel Collection Processing ﬂELa!.

Spark Partitions and Implicit/Explicit Partitioning

= Spark Partitions

= Logical key-value collections are split into physical partitions

~128MB
= Partitions are granularity of tasks, 1/0, shuffling, evictions
= Partitioning via Partitioners Example Hash Partitioning:
= |Implicitly on every data shuffling For all (k,v) of R:
= Explicitly viaR.repartition(n) pid = hash(k) % n

Partitioning-Preserving

= All operations that are guaranteed to keep keys unchanged
(e.g. mapValues (), mapPartitions() w/ preservesPart flag)

Hash partitioned

X
- BN E5
A ETE

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

= Partitioning-Exploiting
= Join: R3 = R1.join(R2)

= Lookups:
v = C.lookup(k)




Data-Parallel Collection Processing ﬁ-IG-rE!-

Spark Scheduling Process (Timann Rabl

Big Data Systems,
HPI WS2019/20]

RDD Objects DAGScheduler TaskScheduler Workers
1 1 1
| | |
: : Scheduler : :
| | Backend | Threads
DAG @ | TaskSet
1 I} manager

/7

rddl.join(rdd2) split graph into launch tasks at execute tasks

A
v
-
DR By
tt

-reduceByKey(...) stages of tasks workers
filter(..)
build submit each retry failed or store and serve
operator DAG stage as ready straggling tasks blocks
706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation "
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Data-Parallel Collection Processing ﬁ-!s-rLa!.

Spark Lazy Evaluation, Caching, and Lineage

/’:__::__:__:__: _____________________ RN
/ " \ \‘
: ! A partitioning- ,
;! aware I
I : |
| : G :
|
|\ _Stagel — |
|
: // —————————————————————
C 1
I
: I -' -‘ :r‘educe
I |
(s - |
|
|
I |
I
|
' . | :
| I :
I '\ - ] , -
\ Y Stage 2 / Stage3
\ N e e e e e e e e e e e e e e e e e = -~ y
~ - cached

[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauly, Michael J. Franklin, Scott Shenker, lon Stoica: Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI 2012]



Presenter
Presentation Notes
Notes:
Dryad-­‐like DAGs 
Pipelines functions within a stage 
Locality & data reuse aware 
Partitioning-­‐aware to avoid shuffles 


Data-Parallel Collection Processing ﬁ!g.

Example: k-Means Clustering

= k-Means Algorithm

= Given dataset D and number of clusters k, find cluster centroids
(“mean” of assigned points) that minimize within-cluster variance

= Euclidean distance: sqrt(sum((a-b)"2))

| Pseudo COde Clustering Result with k = 4, nax_iterations = 18, seed = 1468
function Kmeans(D, k, maxiter) { ol
C¢ = randCentroids(D, k); ol
C =1}
i = @; //until convergence B
while( C¢ != C & i<=maxiter ) { o
C =CS;
. . 6
1 =1+ 1;
A = getAssignments(D, C); a
c _ 4 .
C¢ = getCentroids(D, A, k); ,
return C° “ e 2 p 5 s 10 12 14
706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
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Data-Parallel Collection Processing ﬂELa!.

Example: K-Means Clustering in Spark

// create spark context (allocate configured executors)
JavaSparkContext sc = new JavaSparkContext();

// read and cache data, initialize centroids

JavaRDD<Row> D = sc.textFile(“hdfs:/user/mboehm/data/D.csv*)
.map(new ParseRow()).cache(); // cache data in spark executors

Map<Integer,Mean> C = asCentroidMap(D.takeSample(false, k));

// until convergence
while( !equals(C, C2) & i<=maxiter ) {
C2 = C; i++;
// assign points to closest centroid, recompute centroid
Broadcast<Map<Integer,Row>> bC = sc.broadcast(C)
C = D.mapToPair(new NearestAssignment(bC))
.foldByKey(new Mean(©), new IncComputeCentroids())
.collectAsMap();

}
Note: Existing library algorithm
return C; [https://github.com/apache/spark/blob/master/mllib/src/
main/scala/org/apache/spark/mllib/clustering/KMeans.scala]

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
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Presentation Notes
Spark Local Mode
Download and unzip Spark https://spark.apache.org/downloads.html,�or pull dependency into IDE project via maven or similar tools
Setup prerequisites and path variables 
Test spark-shell, spark-submit, or in your IDE
NOTE: in local mode, operations run in driver JVM and I/O to local FS

Amazon AWS EMR (Elastic Map Reduce)


https://github.com/apache/spark/blob/master/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala
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Data-Parallel DataFrame Operations
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Data-Parallel DataFrame Operations ﬁl—g_

Origins of DataFrames

= Recap: Data Preparation Problem —
= 80% Argument: 80-90% time for finding, integrating, cleaning data
= Data scientists prefer scripting languages and in-memory libraries

= R and Python DataFrames

= Rdata.frame/dplyr and Python pandas DataFrame for
seamless data manipulations (most popular packages/features)

= DataFrame:
= Descriptive stats and basic math, reorganization, joins, grouping, windowing
= Limitation: Only in-memory, single-node operations

= Example import pandas as pd

Pandas df = pd.read_csv(‘data/tmpl.csv’, index col=2)
df.head() # df w/ indexes A-Z

df = pd.concat(df, df[[‘A’,’C’]], axis=0)

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
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Data-Parallel DataFrame Operations ﬁ!g.

Spark DataFrames and DataSets

= Overview Spark DataFrame J0BC

User Programs
(Java, Scala, Python)

= DataFrame is distributed collection of rows ¥ ¢ ¥
with named/typed columns | S — |
= Relational operations (e.g., projection, oo

selection, joins, grouping, aggregation) | Resilient Distributed Datasets |

Console

= DataSources (e.g., json, jdbc, parquet, hdfs, s3, avro, hbase, csv, cassandra)

= DataFrame and Dataset APIs DataFrame = Dataset[Row]

= DataFrame was introduced as basis for Spark SQL
= DataSets allow more customization and compile-time analysis errors (Spark 2)

= Example logs = spark.read.format("json").open("s3://logs")

DataFrame logs.groupBy(logs.user _id).agg(sum(logs.time))
.write.format("jdbc").save("jdbc:mysql//...")

[Michael Armbrust: Structuring Apache Spark —SQL, -> PySpark
DataFrames, Datasets, and Streaming, Spark Summit 2016]

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
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Data-Parallel DataFrame Operations

Ty

SparkSQL and DataFrame/Dataset

= QOverview SparkSQL

= Shark (~2013): academic prototype for SQL on Spark
= SparkSQL (~2015): reimplementation from scratch

= Common IR and compilation of SQL and DataFrame operations

= Catalyst: Query Planning

Analvsis Logical Physical
y Optimization Planning
SQL Query
Unresolved : Optimized ll Phvsical
: Logical Plan : ysica
Logical Plan Logical Plan |l Plans
DataFrame

Catalog

= Performance features
= #1
= H#2
= #3

Spark’soL

[Michael Armbrust et al.: Spark
SQL: Relational Data Processing
in Spark. SIGMOD 2015]

Cost Model

Plan

via Janino

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation
Matthias Boehm, Graz University of Technology, WS 2021/22
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Physical RDDs

Code
Generation

vy (sun.misc.Unsafe) for caching and certain operations
of selection, projection, joins into data sources (+ join ordering)

“ISDS



Data-Parallel DataFrame Operations ﬁ!g.

DaS k /7 DASK [Matthew Rocklin: Dask: Parallel Computation with Blocked
algorithms and Task Scheduling, Python in Science 2015]

[Dask Development Team: Dask: Library for dynamic task
scheduling, 2016, https://dask.org]

= Overview Dask

= Multi-threaded and distributed operations for arrays, bags, and dataframes

= dask.array: Numpy Pandas

list of numpy n-dim arrays E Y
= dask.dataframe:

list of pandas data frames
= dask.bag:unordered list of tuples (second order functions)

= |ocal and distributed schedulers:
threads, processes, YARN, Kubernetes, containers, HPC, and cloud, GPUs

= Execution import dask.array as da

= X = da.random.random(

(10000,10000), chunks=(1000,1000))
y = X + X.T
y.persist() # cache in memory

= Limitation: requires
static size inference

= Triggered via z = y[::2, 5000:].mean(axis=1) # colMeans
compute() ret = z. () # returns NumPy array
706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .lSDS
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Presenter
Presentation Notes
Note: somewhat in competition w/ PySpark (but not out-of-core)
NumPy syntax: y[::2, 5000:] -> every other row, columns 5001-10000

https://dask.org/

Ty

Data-Parallel Operations
in SystemDS / DAPHNE

[Matthias Boehm et al.: SystemDS: A Declarative Machine Learning
System for the End-to-End Data Science Lifecycle. CIDR 2020]

[Matthias Boehm et al.: SystemVIL: Declarative Machine Learning
on Spark. PVLDB 9(13) 2016]

[Amol Ghoting et al.: SystemVIL: Declarative Machine Learning
on MapReduce. ICDE 2011]

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
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Data-Parallel Operations in SystemDS / DAPHNE ﬁErLa!.

Background: Matrix Formats

= Matrix Block (m x n) Example
= Ak.a. tiles/chunks, most operations defined here 3x3 Matrix
= Local matrix: single block, different representations .7 .1
= Common Block Representations 2.4
= Dense (linearized arrays)

.3
= MCSR (modified CSR) ,/,.// \

= CSR (compressed sparse rows), CSC
= COO (Coordinate matrix)

MCSR CSR COoO
‘\»l;-a o4 |.7 .7
Dense (row-major) L 2L B#Rl.1 1
.7/0/.1{.2/.4/0|0 .30 \m24 4 Y |.2 .2
— 5|\ kR .4 4
O(mn)

g .3 g .3

.3
O(m + nnz(X)) O(nnz(X))

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
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Data-Parallel Operations in SystemDS / DAPHNE ﬁ!g.

Distributed Matrix Representations
Logical Blocking

= Collection of “Matrix Blocks” (and keys) 3,400%2,700 Matrix
2 (duplicates, unordered) (w/ B,=1,000)
= lLogical (Fixed-Size) Blocking an || a,2) .3

+ join processing / independence
- (sparsity skew) (2,1) || (2:2) [|(2:3)

= E.g., SystemML/SystemDS on Spark:

JavaPairRDD<MatrixIndexes,MatrixBlock> (3:1) 1] (3:2) ||(3:3)

= Blocks encoded independently (dense/sparse) (4,1) || (4,2) ||(4,3)

hash partitioned: e.g., hash(3,2) = 99,994 % 2 = 0

= Partitioning

(32 23 (21 (1,2) (42 (41
= Logical Partitioning S Us
) g Physical D S S D
(e.g., row-/column-wise) -
. L Blocking and \ partition
= Physical Partitioning Partitionin 22 L) 13 63 GL @3 >
: g
(e.g., hash / grid) 5 us | lus || < ||Us
= PartitionPruning for Indexing partition 1

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .lSDS
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Data-Parallel Operations in SystemDS / DAPHNE ﬂErLa!.

Distributed Matrix Operations

Elementwise Multiplication T . Matrix
(Hadamard Product) ransposition Multiplication
C=A*B C = t(X) C =X %*% W
T = — 2 | . . W
Ay [|Ape B ||Baa \\ X11) || X(12) // (1.1)

e
~
J

T
|
I
I
H
|l
I
s

— - — — — |+ —»
Apy) ||Apay Bpi1) || Bpa
— | === __ |l _g
A[S 1) A[S_,?.j B[S 1) B[S 2}

Note: also with
row/column vector rhs

Note: 1:N join

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
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Data-Parallel Operations in SystemDS / DAPHNE ﬁ!g.

Partitioning-Preserving Operations

Shuffle is major bottleneck for ML on Spark

Preserve Partitioning
= QOp is partitioning-preserving if keys unchanged (guaranteed)
» Implicit: Use restrictive APIs (mapValues() vs mapToPair())
= Explicit: Partition computation w/ declaration of partitioning-preserving

Exploit Partitioning
= Implicit: Operations based on join, cogroup, etc
= Explicit: Custom operators (e.g., zipmm)

repart, chkpt X MEM_DISK
= Example: parfor(iter_class in 1:num_classes) {

Multiclass SVM Y_local = 2 * (Y == iter_class) - 1

. g old = t(X) %*% Y_local
= Vectors fit chkpty _local MEM_DISK

neither into while( continue ) {
driver nor Xd = X %*% s chkpt Xd, Xw MEM_DISK
. inner while loop (compute step_sz)
broadcast Xw = Xw + step_sz * Xd;
n out 1 - Y_ local * Xw;

out

(out > @) * out;
g new =

t(X) %*% (out * Y _local) ...



Data-Parallel Operations in SystemDS / DAPHNE
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Federated Matrices / Frames

= Federated Matrices

= Metadata on coordinator

= Disjoint tiles at
federated sites

= Data-parallel operations
on federated data

= Generalization to

Multi-device Settings
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Summary and Q&A

= Motivation and Terminology

Data-Parallel Collection Processing

Data-Parallel DataFrame Operations
Data-Parallel Computation in SystemDS / DAPHNE

Next Lectures
= 12 Distributed Stream Processing [Jan 21]
= 13 Distributed Machine Learning Systems [Jan 28]
= Q&A Session including sample exam questions

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22
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