TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

Data Integration and Analysis
11 Distributed Data-Parallel Computation

Matthias Boehm

Graz University of Technology, Austria

Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMK endowed chair for Data Management

PUBLIC
DOMAIN

Last update: Jan 13, 2022 “ISDS

Ty

Announcements/Org

= #1 Video Recording
= Link in TUbe & TeachCenter (lectures will be public)

& TUbe

||I:l"|!P

= QOptional attendance (independent of COVID)

= Virtual lectures (recorded) until end of the semester cisco \VVebex
https://tugraz.webex.com/meet/m.boehm

= Jan 10: TU Graz Status RED

= #2 Programming Projects/Exercises
" Progress?, Questions & Answers 73/116

= Deadline Reminder: Jan 21 11.59pm
(max 7 late days, with (2*late_days) point deduction)

= Exercise submission in TeachCenter, projects via pull requests

= #3 Course Evaluation and Exam
= Evaluation period: Jan 01 — Feb 15 S5
= Exam date: Feb 04, 3pm (90+min written exam)

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

https://tugraz.webex.com/meet/m.boehm

Ty

Course Outline Part B:
Large-Scale Data Management and Analysis

12 Distributed Stream 13 Distributed Machine
Processing Learning Systems

11 Distributed Data-Parallel Computation
Compute/
Storage
10 Distributed Data Storage
09 Cloud Resource Management and Scheduling
Infra
08 Cloud Computing Fundamentals

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .EISDS
Matthias Boehm, Graz University of Technology, WS 2021/22 i b | =l]

Ty

Agenda

= Motivation and Terminology

= Data-Parallel Collection Processing

= Data-Parallel DataFrame Operations

= Data-Parallel Computation in SystemDS

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation
Matthias Boehm, Graz University of Technology, WS 2021/22

“ISDS

Ty

Motivation and Terminology

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation
Matthias Boehm, Graz University of Technology, WS 2021/22

“ISDS

Motivation and Terminology ﬁ-lc:r%!-

Recap: Central Data Abstractions

= #1 Files and Objects
= File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)
= Object: binary large object, with certain meta data

= #2 Distributed Collections Key

= Logical multi-set (bag) of key-value pairs

(unsorted collection) = Delta
= Different physical representations 2 Bravo
= Easy distribution of pairs 1 Alfa
via horizontal pa.rt-ltlonmg 3 Charlie
(aka shards, partitions) c —
. . cho
= Can be created from single file,
or directory of files (unsorted) 6 Foxtrot
7 Golf
1 Alfa
706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation "
Matthias Boehm, Graz University of Technology, WS 2021/22 ISDS

Motivation and Terminology ﬁ-le-rg.

[Michael E. Thomadakis:

Excursus: Nehalem Architecture o h aomecal

Nehalem Processor and Nehalem-
. EP SMP Platforms, Report, 2010
= Multi-core CPU P]

= 4 core w/ hyper-threading
= Per core: L1i/L1d, L2 cache

= Per CPU: L3 cache (8MB)

= 3 memory channels
(8B width, max 1.333Ghz)

QPI ... Quick Path
Interconnect

= Pipeline Nenalem ©15C Nehalem Execution Engine NN
! Out-of-order Pipelines : & \’.? °
™ Frontend: |nStFUCtI0n FetCh, :g . 1#§£CEF}|§£B IReglsterAllasTable andAIIocatorI
2 Retirement Register File l« & Reorder-Buffer |
Pre-Decode, and Decode 3 peenoctos site; S (ROB) 128 enties
E 4\.1995
= Backend: Rename/Allocate !
/ ’ T Unified Reservation Stations (URS) 36 entries
Scheduler, Execute i Hg > e
%: c = Stor ﬁ
2 2 Address
= Out-of-Order g f | =
Execution Engine (IPC=4) g ® Memory Orderuter
i A SSE Integer (MOB) SSE Integer ALLI
= 128b FP Multiply i B e

Nehalem RISC Y SR 2

u 1 2 8 b F P Ad d micro-operations 1Ic?aedB 32 kiB L1 131::?(:?8
leycle Data Cache leycle

Motivation and Terminology ﬂl’g_

Terminology
Singe Data Multiple Data
= Flynn’s Classification
= SISD, SIMD | fingf‘ SISD SIMD
nstruction i-
« (MISD), MIMD (uni-core) (vector)
[Michael J. Flynn, Kevin W. _
Rudd: Parallel Architectures. Multiple MISD MIMD
ACM Comput. Surv. 28(1) 1996] Instruction (pipelining) (multi-core)

= Example: SIMD Processing

2009 Nehalem: 128b (2xFP64)
2012 Sandy Bridge: 256b (4xFP64)
2017 Skylake: 512b (8xFP64)

Streaming SIMD Extensions (SSE)

Process the same operation on
multiple elements at a time

acked vs scalar SSE instructions
(p ‘) ¢ = _mm512_fmadd_pd(a, b);
Data parallelism] T [T |

. . . a | I
(aka: instruction-level parallelism) bl T T T T T 1T 11
Example: VFMADD132PD c(I [1 1 I 1 [1}

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22 L

Motivation and Terminology ﬁ-le-g.

Terminology cont.

= Distributed, Data-Parallel Y = X. map(x -> 'FOO(X))
Computation

= Parallel computation of function foo() =
= Collection X of data items (key-value pairs) =

= Data parallelism similar to SIMD but more coarse-grained notion of
“instruction” and “data” =» SPMD (single program, multiple data)

[Frederica Darema: The SPMD Model : Past,
Present and Future. PVM/MPI 2001]

= Additional Terminology

= Bulk Synchronous Parallel (global barriers)
= Asynchronous Parallel (no barriers, often with accuracy impact)
= Stale-synchronous parallel (staleness constraint on fastest-slowest)

= Qther: Fork&Join, Hogwild!, event-based, decentralized

= Beware: used in very different contexts (e.g., Param Server)
706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation =
Matthias Boehm, Graz University of Technology, WS 2021/22 ISDS

Ty

Data-Parallel Collection Processing

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

Ty

Data-Parallel Collection Processing

Hadoop History and Architecture

[Jeffrey Dean, Sanjay
Ghemawat: MapReduce:
Simplified Data Processing on
Large Clusters. OSDI 2004]

ClErEEED

= Recap: Brief History

= Google’s GFS [SOSP’03] + MapReduce
- Apache Hadoop (2006)

= Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

= Hadoop Architecture / Eco System

= Management (Ambari)

Worker Node1 Worker Node n

= Coordination / workflows

r-r—--—-——m=m=== iQFrE==-=-=== 1
(Zookeeper, Oozie) ! T |
= Storage (HDFS) ' 2’:\: MR :: MR || MR |,
= Resources (YARN) - -~ task | | task]| task |
[SOCC'13] MR MR : | MR MR :

|
= Processing Resource task || task | | task || task |
(MapReduce) Manager Node : : Node :
Manager B Manager §
MR Client I DataNode | DataNode J
11312388 312]°9 26

Data-Parallel Collection Processing ﬁ!g.

MapReduce — Programming Model

= Overview Programming Model
= |nspired by functional programming languages
= Implicit parallelism (abstracts distributed storage and processing)
o function: key/value pair = set of intermediate key/value pairs
= function: merge all intermediate values by key

= Example SELECT Dep, count(*) FROM csv_files GROUP BY Dep

(Long pos, String line) {
parts & line.split(“,”)

X CS emit(parts[1], 1)
Y CS .

} cs 1 (String dep, .
A EE Iterator<Long> iter) {
7 cs CS 1 total < iter.sum();

EE 1 emit(dep, total)
. CS 3
Collection of S 1 }

key/value pairs EE 1

Data-Parallel Collection Processing ﬁ-le-rLa!.

MapReduce — Execution Model

#1 Data Locality (delay sched., write affinity)

Input CSV files Map-Phase #2 Reduced shuffle (combine)
(stored in HDFS) #3 Fault tolerance (replication, attempts)

CSV k
L1 Split 12
\

]

f
csv | ! Spllt 21
\]

File 2 (- - T \
iz

(- - T T \

csv |! Spllt 31)

N oo

File3 [== ===\

Sort, [Combine], [Compress] w/ #reducers = 3

[Reduce-Phase] Output Files
(HDFS)

/

reduce out 1

task 7
reduce out 2

\

task 7

reduce Out 3

:L
i

task 7

—i

Shuffle, Merge,
[Combine]

N

Data-Parallel Collection Processing ﬁ!g

MapReduce — Query Processing

= Basic Unary Operations
= Selections (brute-force), projections
= Ordering (e.g., TeraSort): Sample, pick k quantiles; shuffle-based partition sort
= Additive and semi-additive aggregation with grouping, distinct

* Binary Operatlons [Spyros Blanas et al.: A comparison
= Set operations of join algorithms for log processing

. in MapReduce. SIGMOD 2010
(union, intersect, difference) and joins P]

= Different physical operators for R < S

= : broadcast S, build HT S, map-side HJIOIN

= : shuffle (repartition) R and S, reduce-side MJOIN

= avoid buffering via key-tag sorting

= (pre/co-partitioned): map-only, R input, S read side-ways

= Hybrid SQL-on-Hadoop Systems [VLDB’15]
= E.g.: Hadapt (HadoopDB), Impala, IBM BigSQL, Presto, Drill, Actian

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

Data-Parallel Collection Processing ﬁ!g.

Spark History and Architecture

= Summary MapReduce
= Large-scale & fault-tolerant processing w/ UDFs and files =» Flexibility
= Restricted functional APIs =» Implicit parallelism and fault tolerance
= Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems

AAAAAA

= Spark [HotCloud’10] + RDDs [NSDI'12] = Apache Spark (2014) SPQ

= Design: standing executors with in-memory storage,
lazy evaluation, and fault-tolerance via RDD lineage

= Performance: In-memory storage and fast job scheduling (100ms vs 10s)

= APIs: Richer functional APIs and general computation DAGs,
high-level APIs (e.g., DataFrame/Dataset), unified platform

= Evolution to Spark (and Flink) Iy
rK

=» But many shared concepts/infrastructure
= Implicit parallelism through dist. collections (data access, fault tolerance)
= Resource negotiators (YARN, Mesos, Kubernetes)
= HDFS and object store connectors (e.g., Swift, S3)

Data-Parallel Collection Processing ﬁ-ley.

Spark History and Architecture, cont.

= High-Level Architecture (https://spark.apache.org/]

Different language bindings:
Scala, Java, Python, R

MLlIlib

Different libraries:
SQL, ML, Stream, Graph

Spark core (incl RDDs)

Different cluster managers:

Yarn, Kubernetes

e
formats, and data sources:

HDFS, S3, SWIFT, DBs, NoSQL S‘p“o’”rk [hadggp
2 o
ek

learning)

AVAVA
VAVAY

MESOS) kubernetes

= Focus on a unified platform
for data-parallel computation (Apache Flink w/ similar goals)

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22 [

https://spark.apache.org/

Data-Parallel Collection Processing ﬁ!g.

Spark Resilient Distributed Datasets (RDDs)

= RDD Abstraction JavaPairRDD<MatrixIndexes,MatrixBlock>

= Immutable, partitioned
collections of key-value pairs

= Coarse-grained deterministic operations (transformations/actions)
= Fault tolerance via lineage-based re-computation

= Operations

= Transformations: Transformation

map, hadoopFile, textFile,
flatMap, filter, sample, join,

define new RDDs (lazy) groupByKey, cogroup, reduceByKey,
= Actions: return cross, sortByKey, mapValues
result to driver Action reduce, save,
collect, count, lookupKey
= Distributed Caching Nodel Node2

= Use fraction of worker memory for caching ‘-\ ‘-\
= Eviction at granularity of individual partitions
= Different storage levels (e.g., mem/disk x serialization x compression)

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

Data-Parallel Collection Processing ﬁIrLa!.

Spark Resilient Distributed Datasets (RDDs), cont.

= Lifecycle of an RDD X.filter(foo())
= Note: can’t broadcast X.mapValues(foo())
an RDD directly X.reduceByKey(foo())
X.cache()
sc.parallelize(1lst)

Local Data = Distributed
(value, collection) & Collection

1st = X.collect()
v = X.reduce(foo())

sc.hadoopFile(f)
sc.textFile(f)

X.saveAsObjectFile(f)
X.saveAsTextFile(f)

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22 L

Data-Parallel Collection Processing ﬂELa!.

Spark Partitions and Implicit/Explicit Partitioning

= Spark Partitions

= Logical key-value collections are split into physical partitions

~128MB
= Partitions are granularity of tasks, 1/0, shuffling, evictions
= Partitioning via Partitioners Example Hash Partitioning:
= |Implicitly on every data shuffling For all (k,v) of R:
= Explicitly viaR.repartition(n) pid = hash(k) % n

Partitioning-Preserving

= All operations that are guaranteed to keep keys unchanged
(e.g. mapValues (), mapPartitions() w/ preservesPart flag)

Hash partitioned

X
- BN E5
A ETE

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

= Partitioning-Exploiting
= Join: R3 = R1.join(R2)

= Lookups:
v = C.lookup(k)

Data-Parallel Collection Processing ﬁ-IG-rE!-

Spark Scheduling Process (Timann Rabl

Big Data Systems,
HPI WS2019/20]

RDD Objects DAGScheduler TaskScheduler Workers
1 1 1
| | |
: : Scheduler : :
| | Backend | Threads
DAG @ | TaskSet
1 I} manager

/7

rddl.join(rdd2) split graph into launch tasks at execute tasks

A
v
-
DR By
tt

-reduceByKey(...) stages of tasks workers
filter(..)
build submit each retry failed or store and serve
operator DAG stage as ready straggling tasks blocks
706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation "
Matthias Boehm, Graz University of Technology, WS 2021/22 ISDS

()
Data-Parallel Collection Processing ﬁ-!s-rLa!.

Spark Lazy Evaluation, Caching, and Lineage

/’:__::__:__:__: _____________________ RN
/ " \ \‘
: ! A partitioning- ,
;! aware I
I : |
| : G :
|
|\ _Stagel — |
|
: // —————————————————————
C 1
I
: I -' -‘ :r‘educe
I |
(s - |
|
|
I |
I
|
' . | :
| I :
I '\ -] , -
\ Y Stage 2 / Stage3
\ N e e e e e e e e e e e e e e e e e = -~ y
~ - cached

[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauly, Michael J. Franklin, Scott Shenker, lon Stoica: Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI 2012]

Presenter
Presentation Notes
Notes:
Dryad-­‐like DAGs
Pipelines functions within a stage
Locality & data reuse aware
Partitioning-­‐aware to avoid shuffles

Data-Parallel Collection Processing ﬁ!g.

Example: k-Means Clustering

= k-Means Algorithm

= Given dataset D and number of clusters k, find cluster centroids
(“mean” of assigned points) that minimize within-cluster variance

= Euclidean distance: sqrt(sum((a-b)"2))

| Pseudo COde Clustering Result with k = 4, nax_iterations = 18, seed = 1468
function Kmeans(D, k, maxiter) { ol
C¢ = randCentroids(D, k); ol
C =1}
i = @; //until convergence B
while(C¢ != C & i<=maxiter) { o
C =CS;
. . 6
1 =1+ 1;
A = getAssignments(D, C); a
c _ 4 .
C¢ = getCentroids(D, A, k); ,
return C° “ e 2 p 5 s 10 12 14
706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

Data-Parallel Collection Processing ﬂELa!.

Example: K-Means Clustering in Spark

// create spark context (allocate configured executors)
JavaSparkContext sc = new JavaSparkContext();

// read and cache data, initialize centroids

JavaRDD<Row> D = sc.textFile(“hdfs:/user/mboehm/data/D.csv*)
.map(new ParseRow()).cache(); // cache data in spark executors

Map<Integer,Mean> C = asCentroidMap(D.takeSample(false, k));

// until convergence
while(!equals(C, C2) & i<=maxiter) {
C2 = C; i++;
// assign points to closest centroid, recompute centroid
Broadcast<Map<Integer,Row>> bC = sc.broadcast(C)
C = D.mapToPair(new NearestAssignment(bC))
.foldByKey(new Mean(©), new IncComputeCentroids())
.collectAsMap();

}
Note: Existing library algorithm
return C; [https://github.com/apache/spark/blob/master/mllib/src/
main/scala/org/apache/spark/mllib/clustering/KMeans.scala]

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

Presenter
Presentation Notes
Spark Local Mode
Download and unzip Spark https://spark.apache.org/downloads.html,�or pull dependency into IDE project via maven or similar tools
Setup prerequisites and path variables
Test spark-shell, spark-submit, or in your IDE
NOTE: in local mode, operations run in driver JVM and I/O to local FS

Amazon AWS EMR (Elastic Map Reduce)

https://github.com/apache/spark/blob/master/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala

Ty

Data-Parallel DataFrame Operations

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

Data-Parallel DataFrame Operations ﬁl—g_

Origins of DataFrames

= Recap: Data Preparation Problem —
= 80% Argument: 80-90% time for finding, integrating, cleaning data
= Data scientists prefer scripting languages and in-memory libraries

= R and Python DataFrames

= Rdata.frame/dplyr and Python pandas DataFrame for
seamless data manipulations (most popular packages/features)

= DataFrame:
= Descriptive stats and basic math, reorganization, joins, grouping, windowing
= Limitation: Only in-memory, single-node operations

= Example import pandas as pd

Pandas df = pd.read_csv(‘data/tmpl.csv’, index col=2)
df.head() # df w/ indexes A-Z

df = pd.concat(df, df[[‘A’,’C’]], axis=0)

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

Data-Parallel DataFrame Operations ﬁ!g.

Spark DataFrames and DataSets

= Overview Spark DataFrame J0BC

User Programs
(Java, Scala, Python)

= DataFrame is distributed collection of rows ¥ ¢ ¥
with named/typed columns | S — |
= Relational operations (e.g., projection, oo

selection, joins, grouping, aggregation) | Resilient Distributed Datasets |

Console

= DataSources (e.g., json, jdbc, parquet, hdfs, s3, avro, hbase, csv, cassandra)

= DataFrame and Dataset APIs DataFrame = Dataset[Row]

= DataFrame was introduced as basis for Spark SQL
= DataSets allow more customization and compile-time analysis errors (Spark 2)

= Example logs = spark.read.format("json").open("s3://logs")

DataFrame logs.groupBy(logs.user _id).agg(sum(logs.time))
.write.format("jdbc").save("jdbc:mysql//...")

[Michael Armbrust: Structuring Apache Spark —SQL, -> PySpark
DataFrames, Datasets, and Streaming, Spark Summit 2016]

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

Data-Parallel DataFrame Operations

Ty

SparkSQL and DataFrame/Dataset

= QOverview SparkSQL

= Shark (~2013): academic prototype for SQL on Spark
= SparkSQL (~2015): reimplementation from scratch

= Common IR and compilation of SQL and DataFrame operations

= Catalyst: Query Planning

Analvsis Logical Physical
y Optimization Planning
SQL Query
Unresolved : Optimized ll Phvsical
: Logical Plan : ysica
Logical Plan Logical Plan |l Plans
DataFrame

Catalog

= Performance features
= #1
= H#2
= #3

Spark’soL

[Michael Armbrust et al.: Spark
SQL: Relational Data Processing
in Spark. SIGMOD 2015]

Cost Model

Plan

via Janino

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation
Matthias Boehm, Graz University of Technology, WS 2021/22

Selected
Physical RDDs

Code
Generation

vy (sun.misc.Unsafe) for caching and certain operations
of selection, projection, joins into data sources (+ join ordering)

“ISDS

Data-Parallel DataFrame Operations ﬁ!g.

DaS k /7 DASK [Matthew Rocklin: Dask: Parallel Computation with Blocked
algorithms and Task Scheduling, Python in Science 2015]

[Dask Development Team: Dask: Library for dynamic task
scheduling, 2016, https://dask.org]

= Overview Dask

= Multi-threaded and distributed operations for arrays, bags, and dataframes

= dask.array: Numpy Pandas

list of numpy n-dim arrays E Y
= dask.dataframe:

list of pandas data frames
= dask.bag:unordered list of tuples (second order functions)

= |ocal and distributed schedulers:
threads, processes, YARN, Kubernetes, containers, HPC, and cloud, GPUs

= Execution import dask.array as da

= X = da.random.random(

(10000,10000), chunks=(1000,1000))
y = X + X.T
y.persist() # cache in memory

= Limitation: requires
static size inference

= Triggered via z = y[::2, 5000:].mean(axis=1) # colMeans
compute() ret = z. () # returns NumPy array
706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .lSDS

Matthias Boehm, Graz University of Technology, WS 2021/22

Presenter
Presentation Notes
Note: somewhat in competition w/ PySpark (but not out-of-core)
NumPy syntax: y[::2, 5000:] -> every other row, columns 5001-10000

https://dask.org/

Ty

Data-Parallel Operations
in SystemDS / DAPHNE

[Matthias Boehm et al.: SystemDS: A Declarative Machine Learning
System for the End-to-End Data Science Lifecycle. CIDR 2020]

[Matthias Boehm et al.: SystemVIL: Declarative Machine Learning
on Spark. PVLDB 9(13) 2016]

[Amol Ghoting et al.: SystemVIL: Declarative Machine Learning
on MapReduce. ICDE 2011]

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

Data-Parallel Operations in SystemDS / DAPHNE ﬁErLa!.

Background: Matrix Formats

= Matrix Block (m x n) Example
= Ak.a. tiles/chunks, most operations defined here 3x3 Matrix
= Local matrix: single block, different representations .7 .1
= Common Block Representations 2.4
= Dense (linearized arrays)

.3
= MCSR (modified CSR) ,/,.// \

= CSR (compressed sparse rows), CSC
= COO (Coordinate matrix)

MCSR CSR COoO
‘\»l;-a o4 |.7 .7
Dense (row-major) L 2L B#Rl.1 1
.7/0/.1{.2/.4/0|0 .30 \m24 4 Y |.2 .2
— 5|\ kR .4 4
O(mn)

g .3 g .3

.3
O(m + nnz(X)) O(nnz(X))

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22 L

Data-Parallel Operations in SystemDS / DAPHNE ﬁ!g.

Distributed Matrix Representations
Logical Blocking

= Collection of “Matrix Blocks” (and keys) 3,400%2,700 Matrix
2 (duplicates, unordered) (w/ B,=1,000)
= lLogical (Fixed-Size) Blocking an || a,2) .3

+ join processing / independence
- (sparsity skew) (2,1) || (2:2) [|(2:3)

= E.g., SystemML/SystemDS on Spark:

JavaPairRDD<MatrixIndexes,MatrixBlock> (3:1) 1] (3:2) ||(3:3)

= Blocks encoded independently (dense/sparse) (4,1) || (4,2) ||(4,3)

hash partitioned: e.g., hash(3,2) = 99,994 % 2 = 0

= Partitioning

(32 23 (21 (1,2) (42 (41
= Logical Partitioning S Us
) g Physical D S S D
(e.g., row-/column-wise) -
. L Blocking and \ partition
= Physical Partitioning Partitionin 22 L) 13 63 GL @3 >
: g
(e.g., hash / grid) 5 us | lus || < ||Us
= PartitionPruning for Indexing partition 1

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .lSDS
Matthias Boehm, Graz University of Technology, WS 2021/22

Data-Parallel Operations in SystemDS / DAPHNE ﬂErLa!.

Distributed Matrix Operations

Elementwise Multiplication T . Matrix
(Hadamard Product) ransposition Multiplication
C=A*B C = t(X) C =X %*% W
T = — 2 | . . W
Ay [|Ape B ||Baa \\ X11) || X(12) // (1.1)

e
~
J

T
|
I
I
H
|l
I
s

— - — — — |+ —»
Apy) ||Apay Bpi1) || Bpa
— | === __ |l _g
A[S 1) A[S_,?.j B[S 1) B[S 2}

Note: also with
row/column vector rhs

Note: 1:N join

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22 !

Data-Parallel Operations in SystemDS / DAPHNE ﬁ!g.

Partitioning-Preserving Operations

Shuffle is major bottleneck for ML on Spark

Preserve Partitioning
= QOp is partitioning-preserving if keys unchanged (guaranteed)
» Implicit: Use restrictive APIs (mapValues() vs mapToPair())
= Explicit: Partition computation w/ declaration of partitioning-preserving

Exploit Partitioning
= Implicit: Operations based on join, cogroup, etc
= Explicit: Custom operators (e.g., zipmm)

repart, chkpt X MEM_DISK
= Example: parfor(iter_class in 1:num_classes) {

Multiclass SVM Y_local = 2 * (Y == iter_class) - 1

. g old = t(X) %*% Y_local
= Vectors fit chkpty _local MEM_DISK

neither into while(continue) {
driver nor Xd = X %*% s chkpt Xd, Xw MEM_DISK
. inner while loop (compute step_sz)
broadcast Xw = Xw + step_sz * Xd;
n out 1 - Y_ local * Xw;

out

(out > @) * out;
g new =

t(X) %*% (out * Y _local) ...

Data-Parallel Operations in SystemDS / DAPHNE

Ty

Federated Matrices / Frames

= Federated Matrices

= Metadata on coordinator

= Disjoint tiles at
federated sites

= Data-parallel operations
on federated data

= Generalization to

Multi-device Settings

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation

(FP64, 4500x3000)
[0:1000, 0:2500]

Federated
Coordinator Federated
——————————— | Data
I -
Matrix, FP64
SystemDS : 100K x 70
Control Program |, ["[1:aex,1,3,)
| nodel: 5000
[oLy [40K:80K,],3,
g i | node2:5000
r=X*w w | [SGK:J.BGK,],B,'
w=r*x I node3: 5085
|
)] I Federated
Spark Driver |)
____________ Requests
Federated Matrix

SystemDS
Worker 1 CP

3

Federated
Workers

SystemDS

Worker 2 CP

SystemDS
Worker 3 CP

|0

=)

3

GPU::1

R
! I
:—[1;0;3—5&)41 1 [0:4500, 2500:3000]
: , "I
: 0:2500] : |
Tt
! I
|-—=== — |
I . - >
|- — 1!
(3500:4500, FPGA::1
0:2500]

Matthias Boehm, Graz University of Technology, WS 2021/22

Read on
Demand

“ISDS

Ty

Summary and Q&A

= Motivation and Terminology

Data-Parallel Collection Processing

Data-Parallel DataFrame Operations
Data-Parallel Computation in SystemDS / DAPHNE

Next Lectures
= 12 Distributed Stream Processing [Jan 21]
= 13 Distributed Machine Learning Systems [Jan 28]
= Q&A Session including sample exam questions

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2021/22

	Data Integration and Analysis�11 Distributed Data-Parallel Computation
	Announcements/Org
	Course Outline Part B:�Large-Scale Data Management and Analysis
	Agenda
	Motivation and Terminology
	Recap: Central Data Abstractions
	Excursus: Nehalem Architecture
	Terminology
	Terminology cont.
	Data-Parallel Collection Processing
	Hadoop History and Architecture
	MapReduce – Programming Model
	MapReduce – Execution Model
	MapReduce – Query Processing
	Spark History and Architecture
	Spark History and Architecture, cont.
	Spark Resilient Distributed Datasets (RDDs)
	Spark Resilient Distributed Datasets (RDDs), cont.
	Spark Partitions and Implicit/Explicit Partitioning
	Spark Scheduling Process
	Spark Lazy Evaluation, Caching, and Lineage
	Example: k-Means Clustering
	Example: K-Means Clustering in Spark
	Data-Parallel DataFrame Operations
	Origins of DataFrames
	Spark DataFrames and DataSets
	SparkSQL and DataFrame/Dataset
	Dask
	Data-Parallel Operations �in SystemDS / DAPHNE
	Background: Matrix Formats
	Distributed Matrix Representations
	Distributed Matrix Operations
	Partitioning-Preserving Operations
	Federated Matrices / Frames
	Summary and Q&A

