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Announcements/Org
 #1 Video Recording 

 Link in TUbe & TeachCenter (lectures will be public)
 Optional attendance (independent of COVID)
 Virtual lectures (recorded) until end of the semester

https://tugraz.webex.com/meet/m.boehm

 #2 Programming Projects/Exercises
 Deadline Reminder: Jan 21 11.59pm  Jan 28 11.59pm

(max 7 late days, with (2*late_days) point deduction)
 Exercise submission in TeachCenter, projects via pull requests

 #3 Course Evaluation and Exam
 Evaluation period: Jan 01 – Feb 15
 Exam date: Feb 04, 3pm (90+min written exam)
 Doodle for registered oral exam participants

16 Ex.
15 Proj.
(xxx+27 

students)

https://tugraz.webex.com/meet/m.boehm
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Data Management Courses

Data Management / 
Databases

(DM, SS+WS)

Architecture of 
Database Systems

(ADBS, WS)

Architecture of 
ML Systems
(AMLS, SS)

Data Integration and 
Large-Scale Analysis

(DIA, WS)

Master

Bachelor

Data management from 
user/application perspective

Distributed 
Data Management 

ML system 
internals 

DB system 
internals 
+ prog. project 

Prog. projects in SystemDS
[github.com/apache/systemds] 

Data Management Group

Intro to Scientific 
Writing (WS)

https://github.com/apache/systemds
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Agenda
 Landscape of ML Systems
 Distributed Linear Algebra
 Distributed Parameter Servers
 Q&A and Exam Preparation (New)
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Landscape of ML Systems
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What is an ML System?

Machine 
Learning 

(ML)
Statistics Data 

Mining

ML Applications 
(entire KDD/DS 

lifecycle)

Classification
Regression

Recommenders
Clustering

Dim Reduction
Neural Networks

ML System

HPC

Prog. 
Language 
Compilers

Compilation 
TechniquesDistributed 

Systems

Operating  
Systems

Data 
Management

Runtime Techniques 
(Execution, Data Access)

HW 
Architecture

Accelerators

Rapidly Evolving

Landscape of ML Systems
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The Data Science Lifecycle
aka KDD Process
aka CRISP-DM

Landscape of ML Systems

Data/SW 
Engineer

ML/DevOps 
Engineer

Data Integration 
Data Cleaning 

Data Preparation

Model Selection
Training 

Hyper-parameters

Validate & Debug
Deployment

Scoring & Feedback

Data 
Scientist

Data-centric View:
Application perspective
Workload perspective

System perspective

Exploratory Process 
(experimentation, refinements, ML pipelines)

Key observation: SotA
data integration/cleaning based on ML

Data extraction, schema alignment, entity 
resolution, data validation, data cleaning, outlier 

detection, missing value imputation, semantic type 
detection, data augmentation, feature selection, 

feature engineering, feature transformations 
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Driving Factors for ML
 Improved Algorithms and Models

 Success across data and application domains
(e.g., health care, finance, transport, production) 

 More complex models which leverage large data

 Availability of Large Data Collections
 Increasing automation and monitoring  data

(simplified by cloud computing & services)
 Feedback loops, data programming/augmentation

 HW & SW Advancements
 Higher performance of hardware and infrastructure (cloud)
 Open-source large-scale computation frameworks, 

ML systems, and vendor-provides libraries

Landscape of ML Systems

Data

ModelUsage

Feedback Loop

[Credit: Andrew Ng’14]
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Stack of ML Systems
Landscape of ML Systems

ML Apps & Algorithms

Language Abstractions

Fault Tolerance

Execution Strategies

Data Representations

HW & Infrastructure

Training

Eager interpretation, lazy 
evaluation, prog. compilation

Approximation, lineage, 
checkpointing, checksums, ECC

Supervised, unsupervised, RL
linear algebra, libs, AutoML

Validation & 
Debugging

Deployment & 
Scoring

Hyper-parameter 
Tuning

Model and Feature 
Selection

Data Preparation 
(e.g., one-hot, binning)

Data Integration & Data 
Cleaning

Data Programming & 
Augmentation

Local, distributed, cloud 
(data, task, parameter server)

Dense & sparse tensor/matrix;
compress, partition, cache

CPUs, NUMA, GPUs, FPGAs, 
ASICs, RDMA, SSD/NVM

Improve accuracy vs. performance vs. resource requirements
 Specialization & Heterogeneity
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Accelerators (GPUs, FPGAs, ASICs)
 Memory- vs Compute-intensive

 CPU: dense/sparse, large mem, high 
mem-bandwidth, moderate compute

 GPU: dense, small mem, slow PCI, 
very high mem-bandwidth / compute

 Graphics Processing Units (GPUs) 
 Extensively used for deep learning training and scoring
 NVIDIA Volta: “tensor cores” for 4x4 mm  64 2B FMA instruction

 Field-Programmable Gate Arrays (FPGAs)
 Customizable HW accelerators for prefiltering, compression, DL
 Examples: Microsoft Catapult/Brainwave Neural Processing Units (NPUs)

 Application-Specific Integrated Circuits (ASIC)
 Spectrum of chips: DL accelerators to computer vision
 Examples: Google TPUs (64K 1B FMA), NVIDIA DLA, Intel NNP

Landscape of ML Systems

Apps
Lang

Faults
Exec
Data
HWOps

Operational Intensity

ML

DL

Roofline 
Analysis
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Data Representation
 ML- vs DL-centric Systems

 ML: dense and sparse matrices or tensors, different sparse 
formats (CSR, CSC, COO), frames (heterogeneous)

 DL: mostly dense tensors, 
embeddings for NLP, graphs

 Data-Parallel Operations for ML
 Distributed matrices: RDD<MatrixIndexes,MatrixBlock>
 Data properties: distributed caching, 

partitioning, compression

 Lossy Compression  Acc/Perf-Tradeoff
 Sparsification (reduce non-zero values)
 Quantization (reduce value domain), learned
 New data types: Intel Flexpoint (mantissa, exp)

Landscape of ML Systems

vec(Berlin) – vec(Germany) 
+ vec(France) ≈ vec(Paris) 

Node1 Node2

[Credit: Song Han’16]

Apps
Lang

Faults
Exec
Data
HW
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Execution Strategies
 Batch Algorithms: Data and Task Parallel

 Data-parallel operations
 Different physical operators

 Mini-Batch Algorithms: Parameter Server 
 Data-parallel and model-parallel PS
 Update strategies (e.g., 

async, sync, backup)
 Data partitioning strategies
 Federated ML (trend 2018)

 Lots of PS Decisions  Acc/Perf-Tradeoff
 Configurations (#workers, batch size/param schedules, update type/freq)
 Transfer optimizations: lossy compression, sparsification, residual 

accumulation, layer-wise all-reduce, gradient clipping, momentum corrections

Landscape of ML Systems

Apps
Lang

Faults
Exec
Data
HW
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Fault Tolerance & Resilience
 Resilience Problem

 Increasing error rates at scale
(soft/hard mem/disk/net errors)

 Robustness for preemption
 Need cost-effective resilience

 Fault Tolerance in Large-Scale Computation
 Block replication (min=1, max=3) in distributed file systems
 ECC; checksums for blocks, broadcast, shuffle
 Checkpointing (MapReduce: all task outputs; Spark/DL: on request)
 Lineage-based recomputation for recovery in Spark

 ML-specific Schemes (exploit app characteristics)
 Estimate contribution from lost partition to avoid strugglers
 Example: user-defined “compensation” functions

Landscape of ML Systems

Apps
Lang

Faults
Exec
Data
HW
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Language Abstractions
 Optimization Scope

 #1 Eager Interpretation (debugging, no opt)
 #2 Lazy expression evaluation

(some opt, avoid materialization)
 #3 Program compilation (full opt, difficult)

 Optimization Objective
 Most common: min time s.t. memory constraints
 Multi-objective: min cost s.t. time, min time s.t. acc, max acc s.t. time

 Trend: Fusion and Code Generation
 Custom fused operations
 Examples: SystemDS, 

Weld, Taco, Julia, 
TF XLA, TVM, TensorRT

Landscape of ML Systems

Sparsity-Exploiting Operator

Apps
Lang

Faults
Exec
Data
HW

Apache 
SystemDS
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ML Applications
 ML Algorithms (cost/benefit – time vs acc)

 Unsupervised/supervised; batch/mini-batch; first/second-order ML
 Mini-batch DL: variety of NN architectures and SGD optimizers 

 Specialized Apps: Video Analytics
in NoScope (time vs acc)
 Difference detectors / specialized 

models for “short-circuit evaluation”
 AutoML (time vs acc)

 Not algorithms but tasks (e.g., doClassify(X, y) + search space)
 Examples: MLBase, Auto-WEKA, TuPAQ, Auto-sklearn, Auto-WEKA 2.0
 AutoML services at Microsoft Azure, Amazon AWS, Google Cloud

 Data Programming and Augmentation (acc?)
 Generate noisy labels for pre-training
 Exploit expert rules, simulation models,

rotations/shifting, and labeling IDEs (Software 2.0)

Landscape of ML Systems

Apps
Lang

Faults
Exec
Data
HW

[Credit:
Jonathan 

Tremblay‘18]

[Credit: Daniel Kang‘17]
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Landscape of ML Systems
Landscape of ML Systems

#3 Distribution

Local (single node)

HW accelerators 
(GPUs, FPGAs, ASICs)

Distributed

#4 Data Types

Collections

Graphs

Matrices

Tensors

Frames

#1 Language Abstraction

Operator Libraries

Algorithm Libraries

Computation Graphs

Linear Algebra 
Programs

#2 Execution Strategies

Data-Parallel
Operations

Task-Parallel
Constructs

Parameter Server
(Modell-Parallel)
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Distributed Linear Algebra
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Linear Algebra Systems
 Comparison Query Optimization

 Rule- and cost-based rewrites and operator ordering
 Physical operator selection and query compilation
 Linear algebra / other ML operators, DAGs, 

control flow, sparse/dense formats

 #1 Interpretation (operation at-a-time)
 Examples: R, PyTorch, Morpheus [PVLDB’17]

 #2 Lazy Expression Compilation (DAG at-a-time)
 Examples: RIOT [CIDR’09], 

Mahout Samsara [MLSystems’16]
 Examples w/ control structures: Weld [CIDR’17],

OptiML [ICML’11], Emma [SIGMOD’15]
 #3 Program Compilation (entire program)

 Examples: SystemML [PVLDB’16], Julia
Cumulon [SIGMOD’13], Tupleware [PVLDB’15]

Distributed Linear Algebra

Compilers for 
Large-scale ML

DB
PL HPC

1: X = read($1); # n x m matrix
2: y = read($2); # n x 1 vector
3: maxi = 50; lambda = 0.001; 
4: intercept = $3;
5: ...
6: r = -(t(X) %*% y); 
7: norm_r2 = sum(r * r); p = -r;
8: w = matrix(0, ncol(X), 1); i = 0;
9: while(i<maxi & norm_r2>norm_r2_trgt) 
10: {
11: q = (t(X) %*% X %*% p)+lambda*p;
12: alpha = norm_r2 / sum(p * q);
13: w = w + alpha * p;
14: old_norm_r2 = norm_r2;
15: r = r + alpha * q;
16: norm_r2 = sum(r * r);
17: beta = norm_r2 / old_norm_r2;
18: p = -r + beta * p; i = i + 1; 
19: }
20: write(w, $4, format="text");

Optimization Scope
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Linear Algebra Systems, cont.
 Some Examples …

Distributed Linear Algebra

X = read("./X");
y = read("./y");
p = t(X) %*% y;
w = matrix(0,ncol(X),1);

while(...) {
q = t(X) %*% X %*% p;
...

}

var X = drmFromHDFS("./X")
val y = drmFromHDFS("./y")
var p = (X.t %*% y).collect
var w = dense(...)
X = X.par(256).checkpoint()

while(...) {
q = (X.t %*% X %*% p)

.collect
...

}

# read via queues
sess = tf.Session()
# ...
w = tf.Variable(tf.zeros(...,    

dtype=tf.float64))

while ...:
v1 = tf.matrix_transpose(X)
v2 = tf.matmult(X, p)
v3 = tf.matmult(v1, v2)
q = sess.run(v3)
...

(Custom DSL 
w/ R-like syntax; 

program compilation)

(Embedded DSL in Scala; 
lazy evaluation)

(Embedded DSL in Python; 
lazy [and eager] evaluation)

(1.x)

Note: TF 2.0
[Dan Moldovan et al.: AutoGraph: 

Imperative-style Coding with Graph-
based Performance. SysML 2019.]
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ML Libraries
 Fixed algorithm implementations

 Often on top of existing linear algebra or UDF abstractions

Distributed Linear Algebra

Single-node Example (Python)

from numpy import genfromtxt
from sklearn.linear_model \
import LinearRegression

X = genfromtxt('X.csv')
y = genfromtxt('y.csv')

reg = LinearRegression()
.fit(X, y)

out = reg.score(X, y)

Distributed Example (Spark Scala)

import org.apache.spark.ml 
.regression.LinearRegression

val X = sc.read.csv('X.csv')
val y = sc.read.csv('y.csv')
val Xy = prepare(X, y).cache() 

val reg = new LinearRegression()
.fit(Xy)

val out reg.transform(Xy)

SparkML/ 
MLlib
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DL Frameworks
 High-level DNN Frameworks

 Language abstraction for DNN construction and model fitting
 Examples: Caffe, Keras

 Low-level DNN Frameworks
 Examples: TensorFlow, MXNet, PyTorch, CNTK

Distributed Linear Algebra

model = Sequential()
model.add(Conv2D(32, (3, 3), 
padding='same',

input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(
MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))
...

opt = keras.optimizers.rmsprop(
lr=0.0001, decay=1e-6)

# Let's train the model using RMSprop
model.compile(loss='cat…_crossentropy',

optimizer=opt,
metrics=['accuracy'])

model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test), 
shuffle=True)
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Distributed Matrix Operations
Distributed Linear Algebra

Elementwise Multiplication
(Hadamard Product) Transposition

Matrix
Multiplication

Note: also with 
row/column vector rhs

Note: 1:N join
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Physical Operator Selection
 Common Selection Criteria

 Data and cluster characteristics (e.g., data size/shape, memory, parallelism)
 Matrix/operation properties (e.g., diagonal/symmetric, sparse-safe ops)
 Data flow properties (e.g., co-partitioning, co-location, data locality)

 #0 Local Operators
 SystemML mm, tsmm, mmchain; Samsara/Mllib local

 #1 Special Operators (special patterns/sparsity)
 SystemML tsmm, mapmmchain; Samsara AtA

 #2 Broadcast-Based Operators (aka broadcast join)
 SystemML mapmm, mapmmchain

 #3 Co-Partitioning-Based Operators (aka improved repartition join)
 SystemML zipmm; Emma, Samsara OpAtB

 #4 Shuffle-Based Operators (aka repartition join)
 SystemML cpmm, rmm; Samsara OpAB

Distributed Linear Algebra

X

v

X

1st

pass 2nd

pass

q┬

t(X) %*% (X%*%v)
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 Examples  Distributed MM Operators

Physical Operator Selection, cont.
Distributed Linear Algebra

X1,1

X2,1

X3,1

X1,2

X2,2

X3,2

X4,1 X4,2

Y
1,1

Y
2,1

Y1,1

Y2,1

Y3,1

Y1,2

Y2,2

Y3,2

Y4,1 Y4,2

X1,1

X2,1

X1,3X1,2

X2,2

X1,4

X2,3 X2,4

Broadcast-based
MM (mapmm)

Shuffle-based
MM (cpmm)
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Sparsity-Exploiting Operators
 Goal: Avoid dense intermediates and unnecessary computation

 #1 Fused Physical Operators 
 E.g., SystemML [PVLDB’16]

wsloss, wcemm, wdivmm
 Selective computation 

over non-zeros of 
“sparse driver”

 #2 Masked Physical Operators
 E.g., Cumulon MaskMult [SIGMOD’13]
 Create mask of “sparse driver”
 Pass mask to single masked

matrix multiply operator

Distributed Linear Algebra

U V┬W –sum X

^2

*

sum(W * (X – U %*% t(V))^2)

O / (C %*% E %*% t(B))
/

O E t(B)

mm

mm

C

M
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Overview Data Access Methods
 #1 (Distributed) Caching

 Keep read only feature matrix in (distributed) memory

 #2 Buffer Pool Management
 Graceful eviction of intermediates, out-of-core ops

 #3 Scan Sharing (and operator fusion)
 Reduce the number of scans as well as read/writes

 #4 NUMA-Aware Partitioning and Replication
 Matrix partitioning / replication  data locality

 #5 Index Structures
 Out-of-core data, I/O-aware ops, updates

 #6 Compression
 Fit larger datasets into available memory

Distributed Linear Algebra

Node1 Node2

Socket1 Socket2
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Distributed Parameter Servers
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Background: Mini-batch ML Algorithms
 Mini-batch ML Algorithms

 Iterative ML algorithms, where each iteration
only uses a batch of rows to make the 
next model update (in epochs or w/ sampling)

 For large and highly redundant training sets
 Applies to almost all iterative, model-based 

ML algorithms (LDA, reg., class., factor., DNN)
 Stochastic Gradient Descent (SGD)

 Statistical vs Hardware Efficiency (batch size)
 Statistical efficiency: # accessed data points to achieve certain accuracy
 Hardware efficiency: number of independent computations to 

achieve high hardware  utilization (parallelization at different levels)
 Beware higher variance / class skew for too small batches!

 Training Mini-batch ML algorithms sequentially is hard to scale

Distributed Parameter Servers

Data

Batch 2

Batch 1

Epoch

W’
W’’
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# Initialize W1-W4, b1-b4
# Initialize SGD w/ Nesterov momentum optimizer
iters = ceil(N / batch_size)

for( e in 1:epochs ) {
for( i in 1:iters ) {

X_batch = X[((i-1) * batch_size) %% N + 1:min(N, beg + batch_size - 1),] 
y_batch = Y[((i-1) * batch_size) %% N + 1:min(N, beg + batch_size - 1),]

## layer 1: conv1 -> relu1 -> pool1
## layer 2: conv2 -> relu2 -> pool2
## layer 3:  affine3 -> relu3 -> dropout
## layer 4:  affine4 -> softmax
outa4 = affine::forward(outd3, W4, b4)
probs = softmax::forward(outa4)

## layer 4:  affine4 <- softmax
douta4 = softmax::backward(dprobs, outa4)
[doutd3, dW4, db4] = affine::backward(douta4, outr3, W4, b4)
## layer 3:  affine3 <- relu3 <- dropout
## layer 2: conv2 <- relu2 <- pool2
## layer 1: conv1 <- relu1 <- pool1

# Optimize with SGD w/ Nesterov momentum W1-W4, b1-b4
[W4, vW4] = sgd_nesterov::update(W4, dW4, lr, mu, vW4)
[b4, vb4] = sgd_nesterov::update(b4, db4, lr, mu, vb4)

}
}

Background: Mini-batch DNN Training (LeNet)
Distributed Parameter Servers

NN Forward 
Pass

NN Backward
Pass

 Gradients

Model 
Updates

[Yann LeCun, Leon Bottou, Yoshua
Bengio, and Patrick Haffner:  Gradient-

Based Learning Applied to Document 
Recognition, Proc of the IEEE 1998]
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Overview Data-Parallel Parameter Servers
 System 

Architecture
 M Parameter

Servers
 N Workers
 Optional

Coordinator

 Key Techniques
 Data partitioning D  workers Di (e.g., disjoint, reshuffling)
 Updated strategies (e.g., synchronous, asynchronous)
 Batch size strategies (small/large batches, hybrid methods)

Distributed Parameter Servers

M

N

W .. Model
ΔW .. Gradient
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History of Parameter Servers
 1st Gen: Key/Value 

 Distributed key-value store for 
parameter exchange and synchronization

 Relatively high overhead

 2nd Gen: Classic Parameter Servers
 Parameters as dense/sparse matrices
 Different update/consistency strategies
 Flexible configuration and fault tolerance

 3rd Gen: Parameter Servers w/ 
improved data communication
 Prefetching and range-based pull/push
 Lossy or lossless compression w/ compensations

 Examples 
 TensorFlow, MXNet, PyTorch, CNTK, Petuum

Distributed Parameter Servers

[Alexander J. Smola, Shravan 
M. Narayanamurthy: An 

Architecture for Parallel Topic 
Models. PVLDB 2010]

[Jeffrey Dean et al.: Large Scale 
Distributed Deep Networks. 

NIPS 2012]

[Mu Li et al: Scaling Distributed 
Machine Learning with the 

Parameter Server. OSDI 2014]

[Jiawei Jiang, Bin Cui, Ce Zhang, 
Lele Yu: Heterogeneity-aware 

Distributed Parameter Servers. 
SIGMOD 2017]

[Jiawei Jiang et al: SketchML: 
Accelerating Distributed Machine 

Learning  with  Data Sketches. 
SIGMOD 2018]
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Basic Worker Algorithm (batch)

Distributed Parameter Servers

[Jeffrey Dean et al.: Large Scale 
Distributed Deep Networks. 

NIPS 2012]

for( i in 1:epochs ) {
for( j in 1:iterations ) {

params = pullModel(); # W1-W4, b1-b4 lr, mu
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);
pushGradients(gradient);

}  
}
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Extended Worker Algorithm (nfetch batches)

gradientAcc = matrix(0,...);
for( i in 1:epochs ) {

for( j in 1:iterations ) {
if( step mod nfetch = 0 )

params = pullModel();
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);
gradientAcc += gradient;
params = updateModel(params, gradients);
if( step mod nfetch = 0 ) {

pushGradients(gradientAcc); step = 0; 
gradientAcc = matrix(0, ...);   

}
step++;

}  }

Distributed Parameter Servers

[Jeffrey Dean et al.: Large Scale 
Distributed Deep Networks. 

NIPS 2012]

nfetch batches require 
local gradient accrual and 

local model update
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Update Strategies
 Bulk Synchronous

Parallel (BSP)
 Update model w/ 

accrued gradients
 Barrier for N workers

 Asynchronous
Parallel (ASP)
 Update model

for each gradient
 No barrier

 Synchronous w/ 
Backup Workers
 Update model w/

accrued gradients
 Barrier for N of 

N+b workers

Distributed Parameter Servers

Batch 1
Batch 1

Batch 1
Batch 1

Batch 2
Batch 2

Batch 2
Batch 2

Batch 3
Batch 3

Batch 3
Batch 3

Batch 1
Batch 1

Batch 1
Batch 1

Batch 2
Batch 2

Batch 2
Batch 2

Batch 3
Batch 3

Batch 3
Batch 3 but, stale 

model 
updates

Batch 1
Batch 1

Batch 1
Batch 1

Batch 2
Batch 2

Batch 2
Batch 2

Batch 3
Batch 3

Batch 3
Batch 3

[Martín Abadi et al: TensorFlow: A System for 
Large-Scale Machine Learning. OSDI 2016]
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Federated ML
 Motivation Federated ML

 Learn model w/o central data consolidation
 Privacy + data/power caps vs personalization and sharing

 Data Ownership  Federated ML in the enterprise
(machine vendor – middle-person – customer equipment)

 Federated ML Architecture
 Multiple control programs w/ single master
 Federated tensors (metadata handles)
 Federated instructions and parameter server

 ExDRa Project (Exploratory Data Science over Raw Data)
 Basic approach: Federated ML + ML over raw data
 System infra, integration, data org & reuse, Exp DB, geo-dist.

Distributed Parameter Servers

W ΔW

[Keith Bonawitz et al.:  Towards 
Federated Learning at Scale: 
System Design. MLSys 2019]

FT
CP 1*

X

CP 2
X1

CP 3
X2

Gefördert im Programm "IKT der Zukunft" 
vom Bundesministerium für Verkehr, 

Innovation, und Technologie (BMVITBMK)

Presenter
Presentation Notes
Note: besides privacy, sometimes not economically feasible to consolidate data 
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Q&A and Exam Preparation
Example Exam DIA WS20/21 v2

(90min for 100/100 points)
https://mboehm7.github.io/teaching/ws2021_dia/ExamDIA_v1.pdf
https://mboehm7.github.io/teaching/ws2021_dia/ExamDIA_v2.pdf

https://mboehm7.github.io/teaching/ws2021_dia/ExamDIA_v1.pdf
https://mboehm7.github.io/teaching/ws2021_dia/ExamDIA_v2.pdf
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Task 1: Entity Resolution
 a) Explain the phases of a typical entity resolution pipeline and discuss 

example techniques for the individual phases. [16/100 points]

Q&A and Exam Preparation

Prepare 
Data

Blocking/
Sorting Matching Clustering

A1

A2

C1 D1

B1 B2

C2 B3

A1
A2

C1
D1

B1 B2

C2

B3

A1
A2

C1
D1

B1 B2

C2

B3

A

C

D

B

r1, r4

r2, r7

r3

r5, r6, r8

Presenter
Presentation Notes
Step 1: data cleaning, normalization, schema mapping
Step 2: blocking via blocking keys, sorting + window, blocking via ML / LSH
Step 3: similarity+threshold, ML via classification
Step 4: connected components, correlation/Markov clustering
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Task 1: Entity Resolution, cont.
 b) Assume two publication datasets A and B that need deduplication. 

Explain the following two categories of schema matching techniques. 
[4/100 points]

 Schema-based Matching:
 Find similarities among (groups of) attributes of S1 and S2
 Examples: match paper title and author attributes 

based on attribute similarity

 Instance-based Matching:
 Find similarities among (groups of) attributes of S1 and S2,

with the help of instance data in S1 and S2
 Examples: match paper titles and author attributes 

based on term frequencies, string similarity of example papers
(e.g., after capitalization of words, splitting of author lists)

Q&A and Exam Preparation
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Task 2: Data Warehousing
 a) Describe the overall system architecture of a data warehouse, 

name its components, and briefly describe their purpose. [5/100 points]

Q&A and Exam Preparation

S1

Data Warehouse
(consolidated raw data, 
aggregates, metadata)

S3 S4
S2

Async replication, 
and ETL vs ELT

Materialized, non-
volatile integration

Data 
Mart 1

Data 
Mart 2

Data 
Mart 3

Operational 
source 

systems

Analysis-centric 
independent subsets 

(e.g., geo, org, 
functional)

Staging Area

subject-oriented, 
integrated, 
time-varying, 
non-volatile 
collection of data 
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Task 2: Data Warehousing, cont.
 b) Given below entity relationship (ER) diagram, create the corresponding 

star and snowflake schemas. Data types can be ignored, but indicate 
primary and foreign key constraints. [5+5/100 points]

 Star 
Schema

Q&A and Exam Preparation

Ratings
MID
UID
DID
Score

Movies
MID
Name
Length
Genre

Users
UID
Name
City
Country

Dates
DID
Day
Month
Year
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Task 2: Data Warehousing, cont.

 Snowflake 
Schema

Q&A and Exam Preparation

Ratings
MID
UID
DID
Score

Movies
MID
Name
Length
GID

Users
UID
Name
City

Dates
DID
Day
Month

Genre
GID
GName

Cities
City
Country

Months
Month
Year

Years
Year
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Task 3: Data Cleaning
 a) In the context of missing value 

imputation, describe the following types 
of missing data. [9/100 points]

 Missing Completely at Random (MCAR):
 Missing values are randomly distributed 

across all records
 Missing at Random (MAR):

 Missing values are randomly distributed 
within one or more sub-groups of records

 Missing values depend on the recorded but not 
on the missing values, and can be recovered

 Not Missing at Random (NMAR):
 Missing data depends on the missing 

values themselves
 E.g., missing low salary, age, weight, etc.

Q&A and Exam Preparation

ID Position Salary ($)
1 Manager null
2 Secretary 2200
3 Manager 3600
4 Technician null
5 Technician 2500
6 Secretary null

ID Position Salary ($)
1 Manager 3500
2 Secretary 2200
3 Manager 3600
4 Technician null
5 Technician null
6 Secretary 2000

ID Position Salary ($)
1 Manager 3500
2 Secretary null
3 Manager 3600
4 Technician null
5 Technician 2500
6 Secretary null

<= 2400
missing

(3500)

(2400)

(2000)
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Task 3: Data Cleaning
 b) Given the data below, name two techniques for missing value 

imputation (1x MCAR, 1x MAR), and impute the values. [5/100 points]

 MCAR: mean imputation
(4500+2000+4000+2500)/4 = 3250

 MAR: linear regression, functional dependencies
(Age * 100) = 5000 and 3500

 c) Explain the difference between Outlier Detection and Anomaly 
Detection, with at least one example strategy for each. [6/100 points]

 Outlier Detection:
 Remove likely incorrect values from data analysis
 Classification, clustering, pattern recognition (e.g., outlierByIQR)

 Anomaly Detection:
 Find rare / anomalous data points / subsequences
 Classification / max k-nearest neighbor (e.g., matrix profile) 

Q&A and Exam Preparation
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Task 4: Data Provenance
 a) Explain the general goal and concept of data provenance, and 

distinguish why-provenance and how-provenance. [5/100 points]

 Data Provenance:
 Track and understand data origins and transformations of data

(where?, when?, who?, why?, how?)
 Information about the origin and creation process of data

 Why-Provenance:
 Which input tuples contributed to an output tuple t in query Q
 Representation: Set of witnesses w for tuple t

 How-Provenance:
 How tuples where combined in the computation of an output
 Representation: provenance polynomials

Q&A and Exam Preparation
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Task 4: Data Provenance, cont.
 b) Given below tables R and S (w/ tuples ri and si), query Q and the results 

O, specify the provenance polynomials for tuples in O. [3/100 points]

Q&A and Exam Preparation

A: r1 x s1 + r3 x s1 + r2 x s3
(equivalent: (r1 + r3) x s1 + r2 x s3)

B: r2 x s2 C: r2 x s4
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Task 5: Cloud Computing
 a) Explain the motivation of cloud computing in terms of overall goal, 

key drivers, and advantages. [4/100 points]

 Argument #1: Pay as you go
 No upfront cost for infrastructure
 Variable utilization  over-provisioning
 Pay per use or acquired resources

 Argument #2: Economies of Scale
 Purchasing and managing IT infrastructure at scale  lower cost

(applies to both HW resources and IT infrastructure/system experts)
 Focus on scale-out on commodity HW over scale-up  lower cost

 Argument #3: Elasticity
 Assuming perfect scalability, work done in constant time * resources 
 Given virtually unlimited resources allows to reduce time as necessary

Q&A and Exam Preparation

Utili-
zation

Time

100%
“Computing as utility”
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Task 5: Cloud Computing, cont.
 b) Explain the concept of resource allocation for multiple resources such as 

CPU and memory (dominant resource calculation in YARN). [3/100 points]

 Multi-Metric Scheduling
 Multiple metrics: dominant resource calculator
 All constraints of relevant metrics must be respected
 Focus on bottleneck resource during scheduling

Q&A and Exam Preparation

12/48GB

2/8GB1/32GB6/8GB 32GB

8GB

8GB
6

1
2
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Task 6: Distributed, Data-parallel Computation
 Given a distributed dataset (left), describe a data-parallel approach of 

imputing the missing values (NULL) of Attr1 with its mode, and Attr2 with 
its mean. Describe strategies for improving the performance. Finally, fill in 
the concrete imputed values (right). [12+5+3/100 points]

Q&A and Exam Preparation

X

X

X

1: data-parallel group-by [Attr1,count]
 (X:5),(Y,3),(Z,1)

2: data-parallel sum(Attr2)
 37

3: data-parallel count(Attr2)
 10

4: Apply mode and mean to input data 

Performance Improvements:
• Pre-aggregation/combine (groupByKey reduceByKey)
• Caching for multi-pass computation
• Fusion of passes 1-3 with multiple outputs

with 
shuffling

3.7

3.7
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Task 7: Stream Processing
 Assume an input stream S with schema S(A,T) (where T is event time, and 

A is an integer column) and a continuous query Q with stream window 
aggregation. Compute the maximum output stream rate (tuples/second) 
for the following windows. [4/100 points]

 Tumbling Window (size 200ms):

 Sliding Window (size 500ms, step 100ms):

Q&A and Exam Preparation

Max 200 tuples/s Max 3 tuples/window

 15 Tuples/s

 30 Tuples/s
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Task 7: Stream Processing
 b) Explain the following three techniques for handling overload situations 

in stream processing engines? [6/100 points]

 #1 Back Pressure
 Graceful handling of 

overload w/o data loss
 Slow down sources
 E.g., blocking queues

 #2 Load Shedding
 #1 Random-sampling-based load shedding 
 #2 Relevance-based load shedding
 #3 Summary-based load shedding (synopses)

 #3 Distributed Stream Processing
 Data flow partitioning (distribute the query)
 Key range partitioning (distribute the data stream

Q&A and Exam Preparation

B CA

Self-adjusting operator scheduling
Pipeline runs at rate of slowest op

2ms9ms3ms
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Summary and Q&A
 Landscape of ML Systems
 Distributed Linear Algebra
 Distributed Parameter Servers
 Q&A and Exam Preparation

 #1 Projects and Exercises
 Feb 28, 11.59pm last chance exercise submission (7 late days)

 #2 Course Evaluation and Exam
 Evaluation period: Dec 15 – Jan 31 (1/120)
 Exam date: Feb 04, 3pm in HS i13 (47/120)

Thanks
(please, participate in the 

course evaluation)
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