

# Data Integration and Large-scale Analysis (DIA) 02 Data Warehousing, ETL, and SQL/OLAP

#### **Prof. Dr. Matthias Boehm**

Technische Universität Berlin Berlin Institute for the Foundations of Learning and Data Big Data Engineering (DAMS Lab)





# **Announcements / Administrative Items**

- #1 Video Recording
  - Hybrid lectures: in-person H 0107, zoom live streaming, video recording
  - https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

#### #2 Project Selection

- Binding project/exercise selection by Nov 03
- Either via email to <u>matthias.boehm@tu-berlin.de</u> or via the following form

# https://tinyurl.com/3j5ubvh2

#### #3 SystemDS JIRA Accounts

No need for a JIRA account; # accounts limited by ASF; assignment after completion



ZOOM



# Agenda



- Data Warehousing (DWH)
- Extraction, Transformation, Loading (ETL)
- SQL/OLAP Extensions







# **Data Warehousing (DWH)**



[Wolfgang Lehner: Datenbanktechnologie für Data-Warehouse-Systeme. Konzepte und Methoden, Dpunkt Verlag, 1-373, 2003]





# **Motivation and Tradeoffs**



 Goal: Queries over consolidated and cleaned data of several, potentially heterogeneous, data sources



#### Tradeoffs

- Analytical query performance: write vs read optimized data stores
- Virtualization: overhead of remote access, source systems affected
- Consistency: sync vs async changes, time regime → up-to-date?
- Others: history, flexibility, redundancy, effort for data exchange



### **Data Warehouse Architecture**







# Data Warehouse Architecture, cont.

- Data Warehouse (DWH)
  - "A data warehouse is a subject-oriented, integrated, time-varying, non-volatile collection of data in support of the management's decision-making process." (Bill Inmon)

the Data Warehouse

- #1 Subject-oriented: analysis-centric organization (e.g., sales) → Data Mart
- #2 Integrated: consistent data from different data sources
- #3 Time-varying: History (snapshots of sources), and temporal modelling
- #4 Non-volatile: Read-only access, limited to periodic data loading by admin

#### Different DWH Instantiations

- Single DWH system with virtual/materialized views for data marts
- Separate systems for consolidated DWH and aggregates/data marts (dependent data marts)
- Data-Mart-local staging areas and ETL (independent data marts)



# **Multi-dimensional Modeling: Data Cube**





- Qualifying data (categories, dimensions)
- Quantifying data (cells)
- Often sparse (0 for empty cells)
- Multi-dimensional Schema
  - Set of dimension hierarchies (D<sup>1</sup>,..., D<sup>n</sup>)
  - Set of measures (M<sup>1</sup>,...,M<sup>m</sup>)

#### Dimension Hierarchy

- Partially-ordered set D of categorical attributes ( $\{D_1,...,D_n, Top_D\}; \rightarrow$ )
- Generic maximum element  $\forall i (1 \le i \le n) : D_i \to Top_D$
- Existing minimum element (primary attribute)



Color





# Multi-dimensional Modeling: Data Cube, cont.

# berlin

#### Dimension Hierarchy, cont.

- Classifying (categorical) vs descriptive attributes
- Orthogonal dimensions: there are no functional dependencies between attributes of different dimensions

#### Fact F

- Base tuples w/ measures of summation type
- Granularity G as subset of categorical attributes

#### Measure M

- Computation function over non-empty subset of facts f(F<sub>1</sub>, ..., F<sub>k</sub>) in schema
- Scalar function vs aggregation function
- Granularity G as subset of categorical attributes





# **Multi-dimensional Modeling: Operations**



#### Slicing

- Select a "slice" of the cube by specifying a filter condition on one of the dimensions (categorical attributes)
- Same data granularity but subset of dimensions

#### Dicing

- Select a "sub-cube" by specifying a filter condition on multiple dimensions
- Complex Boolean expressions possible
- Sometimes slicing used synonym

Example: Location=Berlin AND
Color=White AND Make=BMW





## Expression "Slicing & Dicing"

(i.e., break information into smaller parts; look at it from different perspectives)



# Multi-dimensional Modeling: Operations, cont.

- **Roll-up** (similar Merge remove dim)
  - Aggregation of facts or measures into coarser-grained aggregates (measures)
  - Same dimensions but different granularity
- Drill-Down (similar Split add dim)
  - Disaggregation of measures into finer-grained measures







# Multi-dimensional Modeling: Operations, cont.



#### Drill-Across

Navigate to neighboring cells at same granularity (changed selection)

#### Drill-Through

- Drill-Down to smallest granularity of underlying data store (e.g., RDBMS)
- E.g., find relational tuples

| FName    | LName | Local  | Make | Color |
|----------|-------|--------|------|-------|
| Matthias | Boehm | Berlin | BMW  | White |
|          |       |        |      |       |
|          |       |        |      |       |

#### Pivot

 Rotate cube by exchanging dimensions





# **Aggregation Types**

#### Recap: Classification of Aggregates

- Additive aggregation functions (SUM, COUNT)
- Semi-additive aggregation functions (MIN, MAX)
- Additively computable aggregation functions (AVG, STDDEV, VAR)
- Aggregation functions (MEDIAN, QUANTILES)

#### Summation Types of Measures

- FLOW: arbitrary aggregation possible
- STOCK: aggregation possible, except over temporal dim
- VPU: value-per-unit typically (e.g., price)

#### Necessary Conditions for Aggregation

- Disjoint attribute values
- Completeness
- Type compatibility
- Example TU Graz CS Studies
  - Aggregation across study programs: not ok
  - Aggregation across time: not ok

[Hans-Joachim Lenz, Arie Shoshani: Summarizability in OLAP and Statistical Data Bases. SSDBM 1997]

| instantiative is the of | and Redshift Auto-Ress-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | La Contra |
| time at                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| . Includes              | and the set of the set of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### [TUGraz online]

| # Stud | 16/17 | 17/18 | 18/19 | 19/20 | 20/21 | Total |
|--------|-------|-------|-------|-------|-------|-------|
| CS     | 1,153 | 1,283 | 1,321 | 1,343 | 1368  | ?     |
| SEM    | 928   | 970   | 939   | 944   | 985   | ?     |
| ICE    | 804   | 868   | 846   | 842   | 849   | ?     |
| Total  | 2,885 | 3,121 | 3,106 | 3,129 | 3,202 | ?     |



# **Excursus: Other Misleading Statistics**

- Problem Setting
  - 100 people (90 vaccinated, 10 non-vaccinated)
  - 5 infected vaccinated,
    - 2 infected non-vaccinated

- P(vacc|infected) = 5/7 = 0.71 → misleading
- P(infected|vacc) = 5/90 = 0.056
- P(infected|non-vacc) = 2/10 = 0.2
- [see also Simpson's Paradox in <mark>06 Data Cleaning</mark>]





[https://twitter.com/howie\_hua/ status/1421502809862664197]





# Aggregation Types, cont.



#### Additivity

|         | ELOW/        | STOCK: Ten | nporal Agg?  |              |
|---------|--------------|------------|--------------|--------------|
|         | FLOW         | Yes        | No           | VPU          |
| MIN/MAX | $\checkmark$ | Ň          | 1            | $\checkmark$ |
| SUM     | $\checkmark$ | X          | $\checkmark$ | X            |
| AVG     | $\checkmark$ | •          | 1            | $\checkmark$ |
| COUNT   | $\checkmark$ | ``         | 1            | $\checkmark$ |

# Type Compatibility (addition/ subtraction)

|       | FLOW | <b>STOCK</b> | VPU |
|-------|------|--------------|-----|
| FLOW  | FLOW | STOCK        | X   |
| STOCK |      | STOCK        | X   |
| VPU   |      |              | VPU |



# **Data Cube Mapping and MDX**

- MOLAP (Multi-Dim. OLAP)
  - OLAP server with native multi-dimensional data storage
  - Dedicated query language:
     Multidimensional Expressions (MDX)
  - E.g., IBM Cognos Powerplay, Essbase

### ROLAP (Relation OLAP)

- OLAP server w/ storage in RDBMS
- E.g., all commercial RDBMS vendors

# HOLAP (Hybrid OLAP)

 OLAP server w/ storage in RDBMS and multi-dimensional in-memory caches and data structures

```
-- MDX Example

SELECT

{[Measures].[Sales],

[Measures].[Tax]} ON COLUMNS,

{[Date].[Fiscal].[Year].&[2002],

[Date].[Fiscal].[Year].&[2003] } ON ROWS

FROM [Adventure Works]

WHERE ([Sales Territory].[Southwest])
```



[Example systems: https://en.wikipedia.org/wiki/ Comparison\_of\_OLAP\_servers]







# **Recap: Relational Data Model**



Domain D (value domain): e.g., Set S, INT, Char[20]

#### Relation R

- Relation schema RS: Set of k attributes {A<sub>1</sub>,...,A<sub>k</sub>}
- Attribute A<sub>i</sub>: value domain D<sub>i</sub> = dom(A<sub>i</sub>)
- Relation: subset of the Cartesian product over all value domains D<sub>j</sub>
   R ⊆ D<sub>1</sub> × D<sub>2</sub> × ... × D<sub>k</sub>, k ≥ 1

### Additional Terminology

- Tuple: row of k elements of a relation
- Cardinality of a relation: number of tuples in the relation
- Rank of a relation: number of attributes
- Semantics: Set := no duplicate tuples (in practice: Bag := duplicates allowed)
- Order of tuples and attributes is irrelevant

| A1<br>INT | A2<br>INT | A3<br>BOOL |
|-----------|-----------|------------|
| 3         | 7         | т          |
| 1         | 2         | т          |
| 3         | 4         | F          |
| 1         | 7         | т          |

Tuple

cardinality: 4 rank: 3



# ROLAP – Star Schema











# **ROLAP – Other Schemas**

- Similar to star-schema but with multiple fact tables and potentially shared dimension tables
- Multiple stars → Galaxy

#### Snow-Storm Schema

- Similar to snow-flake-schema but with multiple fact tables and potentially shared dimension tables
- Multiple snow flakes → snow storm

#### OLAP Benchmark Schemas

- TPC-H (8 tables, normalized schema)
- SSB (5 tables, star schema, simplified TPC-H)
- TPC-DS (24 tables, snow-storm schema)

"TPC-D and its successors, TPC-H and TPC-R assumed a 3rd Normal Form (3NF) schema. However, over the years the industry has expanded towards star schema approaches."







[Raghunath Othayoth Nambiar, Meikel Poess: The Making of TPC- DS. VLDB 2006]





# **Evolution of DWH/OLAP Workloads**

berlin

Goals: Advanced analytics and Operational BI



State-of-the-Art (SotA): Column stores / HTAP systems w/ (multi-stage) write buffers



# **Excursus: MAD Skills**

#### In the days of Kings and Priests

- Computers and Data: Crown Jewels
- Executives depend on computers
  - But cannot work with them directly
- The DBA "Priesthood"
  - And their Acronymia: EDW, BI, OLAP

#### The Architected Enterprise DWH

- Rational behavior ... for a bygone era
- *"There is no point in bringing data … into the data warehouse environment without integrating it."* —Bill Inmon, Building the Data Warehouse, 2005









# **Excursus: MAD Skills, cont.**

#### Magnetic

- "Attract data and practitioners"
- Use all available data, irrespective of data quality

# Agile

- "Rapid iteration: ingest, analyze, productionalize"
- Continuous and fast evolution of physical and logical structures (ELT, no ETL)

#### Deep

- "Sophisticated analytics in Big Data"
- Ad-hoc advanced analytics and statistics



[J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein,C. Welton: MAD Skills: New Analysis Practicesfor Big Data. PVLDB 2(2) 2009]

#### 1. mad skills

**92** up,

To be able to do/perform amazing/unexpected things

I gots me mad skills, yo. To be said after performing an extraordinairy feat.









# **Trend: Cloud Data Warehousing**

- #1 Google Big Query
- #2 Amazon Redshift
- #3 Microsoft Azure Data Warehouse
- #4 IBM BlueMix dashDB
- #5 Snowflake Data Warehouse

[Google, Kazunori Sato: An Inside Look at Google BigQuery, Google White Paper 2012]

[Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Stefano Stefani, Vidhya Srinivasan: Amazon Redshift and the Case for Simpler Data Warehouses. **SIGMOD 2015**]

[IBM: IBM dashDB - Cloud-based

analytics, IBM White Paper 2015]

data warehousing as-a-service, built for

[Benoît Dageville et al.: The Snowflake

Elastic Data Warehouse. SIGMOD 2016]









**10 Distributed** 

**Data Storage** 





# **Extraction, Transformation, Loading (ETL)**



# **Extract-Transform-Load (ETL) Overview**

# berlin

#### Overview

- ETL process refers to the overall process of obtaining data from the source systems, cleaning and transforming it, and loading it into the DWH
- Subsumes many integration and cleaning techniques

#### #1 ETL

- Extract data from heterogeneous sources
- Transform data via dedicated data flows or in staging area
- Load cleaned and transformed data into DWH

#### #2 ELT

- Extract data from heterogeneous sources
- Load raw data directly into DWH
- Perform data transformations inside the DWH via SQL
- → allows for automatic optimization of execution plans



# **Types of Heterogeneity**

[J. Hammer, M. Stonebraker, and O. Topsakal: THALIA: Test Harness for the Assessment of Legacy Information Integration Approaches. U Florida, TR05-001, **2005**]







# **Corrupted Data**

#### Heterogeneity of Data Sources

- Update anomalies on denormalized data / eventual consistency
- Changes of app/preprocessing over time (US vs us) → inconsistencies

#### Human Error

- Errors in semi-manual data collection, laziness (see default values), bias
- Errors in data labeling (especially if large-scale: crowd workers / users)

#### Measurement/Processing Errors

- Unreliable HW/SW and measurement equipment (e.g., batteries)
- Harsh environments (temperature, movement)  $\rightarrow$  aging

| Uniq<br>du | ueness &<br>plicates | Contradict<br>wrong v | tions &<br>alues | k   | Missing<br>Values | Ref. Int | tegri | ty    | <b>Credit:</b> Felix<br>Naumann] |       |
|------------|----------------------|-----------------------|------------------|-----|-------------------|----------|-------|-------|----------------------------------|-------|
| <u>ID</u>  | Name                 | BDay                  | Age              | Sex | Phone             | Zip 🔍    |       |       | <b>C</b> ''                      |       |
| 3          | Smith, Jane          | 05/06/1975            | 44               | F   | 999-9999          | 98120    |       | Zip   | City                             |       |
| 3          | John Smith           | 38/12/1963            | 55               | Μ   | 867-4511          | 11111    |       | 98120 | San Jose                         |       |
| 7          | Jane Smith           | 05/06/1975            | 24               | F   | 567-3211          | 98120    |       | 90001 | Lost Angeles                     | Typos |



# **ETL – Planning and Design Phase**

#### Architecture, Flows, and Schemas

- #1 Plan requirements, architecture, tools
- #2 Design high-level integration flows (systems, integration jobs)
- #3 Data understanding (copy/code books, meta data)
- #4 Design dimension loading (static, dynamic incl keys)
- #5 Design fact table loading

#### Data Integration and Cleaning

- #5 Types of data sources (snapshot, APIs, query language, logs)
- #6 Prepare schema mappings → see 04 Schema Matching and Mapping
- #7 Change data capture and incremental loading (diff, aggregates)
- #8 Transformations, enrichments, and deduplication → 05 Entity Linking
- #9 Data validation and cleansing → see 06 Data Cleaning and Data Fusion

#### Optimization

- #10 Partitioning schemes for loaded data (e.g., per month)
- #11 Materialized views





# **Events and Change Data Capture**

Goal: Monitoring operations of data sources for detecting changes

#### #1 Explicit Messages/Triggers

- Setup update propagation from the source systems to middleware
- Asynchronously propagate the updates into the DWH

#### #2 Log-based Capture

- Parse system logs / provenance to retrieve changes since last loading
- Leverage explicit audit columns or internal timestamps

#### #3 Snapshot Differences

- Compute difference between old and new snapshot (e.g., files) before loading
- Broadly applicable but more expensive



# **Example ETL Flows**



**Example Flows** [Alkis Simitsis, Kevin Wilkinson, Petar Jovanovic: xPAD: a platform for **Pentaho Data Integration**, analytic data flows. SIGMOD 2013] since 2015 Hitachi) Sentiment Analysis LUP pID Query Orders LUP: region Compute sales ExteDay [Matthias Boehm, Uwe Wloka, Dirk Habich, Wolfgang Lehner: ¥⊡. Insert Orders GCIP: exploiting the generation Sort P,D,R Rollup: SentimentAvg Rollup: totalSales campaign and optimization of integration processes. EDBT 2009] Join SaSe Fltr cmpn Insert Orders2: Join OnSaSe **Other Tools** 

- IBM InfoSphere, Informatica, SAP BO, MS Integration Services
- Open Source: Pentaho Data Integration, Scriptella ETL, CloverETL, Talend



cmpnReport

# **Example ETL Flows - ETL via Apache Spark**



#### Example

Distributed ETL pipeline processing

```
//load csv and postgres tables
val csvTable = spark.read.csv("/source/path")
val jdbcTable = spark.read.format("jdbc")
```

```
.option("url", "jdbc:postgresql:...")
.option("dbtable", "TEST.PEOPLE")
.load()
```

# //join tables, filter and write as parquet csvTable

```
.join(jdbcTable, Seq("name"), "outer")
.filter("id <= 2999")
.write.mode("overwrite")
.format("parquet")
.saveAsTable("outputTableName")</pre>
```

[Xiao Li: Building Robust ETL Pipelines with Apache Spark, Spark Summit 2017]



```
11 Distributed, Data-
Parallel Computation
```





# **SQL/OLAP Extensions**



# **Recap: SQL Standard (ANSI/ISO/IEC)**



x: ... a part (x) ... a package

| <u>3: CLI</u>        |          | 4: PSM                                      | 9: MED                                                    | 10: OLB                                         | 13: JRT                    | 14: XML                          |  |
|----------------------|----------|---------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|----------------------------|----------------------------------|--|
| Call Lev<br>Interfac | el<br>ce | Persistent<br>Stored Modules                | Management<br>of External Data                            | Object<br>Language<br>Bindings                  | Java Routines<br>and Types | Extensible<br>Markup<br>Language |  |
|                      |          | 11:                                         | Schemata                                                  |                                                 |                            |                                  |  |
|                      | 2: Fc    | oundation                                   |                                                           |                                                 |                            |                                  |  |
| optional             |          | (2) Er<br>N<br>1) Enhanced<br>ate/Time Fac. | hanced Integrity<br>Aanagement<br>(8) Active<br>Databases | (7) Enhanced<br>Objects<br>(6) Basic<br>Objects | (10) OLAP                  |                                  |  |
| eatures              |          |                                             |                                                           |                                                 |                            |                                  |  |



# **Overview Multi-Groupings**



- Recap: GROUP BY
  - Group tuples by categorical variables
  - Aggregate per group



Quarter Revenue **SELECT** Year, **SUM**(Revenue) Year **FROM** Sales **GROUP BY** Year SUM Year 



# **Multi-Groupings – Grouping Sets**





#### Semantics

- Grouping by multiple group-by attribute lists w/ consistent agg function
- Equivalent to multiple GROUP BY, connected by UNION ALL

| Example |
|---------|
|---------|

| Voor | Quarter | Povopuo |
|------|---------|---------|
| Tear | Quarter | Revenue |
| 2004 | 1       | 10      |
| 2004 | 2       | 20      |
| 2004 | 3       | 10      |
| 2004 | 4       | 20      |
| 2005 | 1       | 30      |

SELECT Year, Quarter, SUM(Revenue)
FROM R
GROUP BY GROUPING SETS
((), (Year), (Year,Quarter))

| Year | Quarter | SUM |
|------|---------|-----|
| -    | -       | 90  |
| 2004 | -       | 60  |
| 2005 | -       | 30  |
| 2004 | 1       | 10  |
| 2004 | 2       | 20  |
| 2004 | 3       | 10  |
| 2004 | 4       | 20  |
| 2005 | 1       | 30  |



## Multi-Groupings – Rollup (see also multi-dim ops)

GROUP BY ROLLUP
 (<attribute-list>)



#### Semantics

- Hierarchical grouping along dimension hierarchy
- GROUP BY ROLLUP (A1,A2,A3)

:= GROUP BY GROUPING SETS((),(A1),(A1,A2),(A1,A2,A3))

#### Example

| Year | Quarter | Revenue |
|------|---------|---------|
| 2004 | 1       | 10      |
| 2004 | 2       | 20      |
| 2004 | 3       | 10      |
| 2004 | 4       | 20      |
| 2005 | 1       | 30      |

SELECT Year, Quarter, SUM(Revenue)
FROM R
GROUP BY ROLLUP(Year,Quarter)

| Year | Quarter | SUM |
|------|---------|-----|
| -    | -       | 90  |
| 2004 | -       | 60  |
| 2005 | -       | 30  |
| 2004 | 1       | 10  |
| 2004 | 2       | 20  |
| 2004 | 3       | 10  |
| 2004 | 4       | 20  |
| 2005 | 1       | 30  |



# Multi-Groupings – Rollup, cont. and Grouping



#### Operator Implementation

- Aggregation towers for (semi-)additive aggregation functions
- Example SELECT Year, Quarter, SUM(Revenue) FROM R GROUP BY ROLLUP(Year, Quarter)



#### GROUPING Semantics

- With ROLLUP or CUBE to identify aggregates
- NULL group vs NULL due to aggregation
- Example SELECT Team, SUM(Revenue), GROUPING(Team) AS Agg FROM R GROUP BY ROLLUP (Team)

| Team  | Team Revenue |   |
|-------|--------------|---|
| NULL  | 10           | 0 |
| Sales | 40           | 0 |
| Tech  | 20           | 0 |
| NULL  | 70           | 1 |



# **Multi-Groupings – Cube**

#### GROUP BY CUBE(<attribute-list>)



|                                                                           |         |         |                                       | Year | Quarter | SUM |
|---------------------------------------------------------------------------|---------|---------|---------------------------------------|------|---------|-----|
| Semantics                                                                 |         |         |                                       |      | -       | 90  |
| <ul> <li>Computes aggregate for all 2<sup>n</sup> combinations</li> </ul> |         |         |                                       |      | -       | 60  |
| for n grouping attributes                                                 |         |         |                                       |      | -       | 30  |
| Equivalent to enumeration via GROUPING SETS                               |         |         | -                                     | 1    | 40      |     |
| Evampla                                                                   |         |         | SELECT Vear Quarter                   | -    | 2       | 20  |
| Example                                                                   |         |         | SUM(Revenue)                          | -    | 3       | 10  |
| Year                                                                      | Quarter | Revenue | FROM R<br>GROUP BY CURE(Vean Quanter) | -    | 4       | 20  |
| 2004                                                                      | 1       | 10      |                                       | 2004 | 1       | 10  |
| 2004                                                                      | 2       | 20      |                                       | 2004 | 2       | 20  |
| 2004                                                                      | 3       | 10      |                                       | 2004 | 3       | 10  |
| 2004                                                                      | 4       | 20      |                                       | 2004 | 4       | 20  |
| 2005                                                                      | 1       | 30      |                                       | 2005 | 1       | 30  |



# Multi-Groupings – Cube, cont.

- Operator Implementation
  - Aggregation lattice for (semi-)additive aggregation functions
  - But: multiple alternative paths
    - $\rightarrow$  how to select the cheapest?
- Recap: Physical Group-By Operators
  - SortGroupBy / -Aggregate
  - HashGroupBy / -Aggregate
- Cube Implementation Strategies
  - #1 Some operators can share sorted order (e.g., {A,B} -> {A})
  - #2 Subsets with different cardinality → pick smallest intermediates







# **Overview Reporting Functions**



#### Motivation and Problem

- Scalar functions as well as grouping + aggregation
- For many advanced use cases not flexible enough

#### Reporting Functions

- Separate partitioning (grouping) and aggregation via OVER
- Allows local





# **Reporting Functions – Aggregation Function**



#### Semantics

- Operates over window and returns value for every tuple
- RANK(), DENSE\_RANK(), PERCENT\_RANK(), CUME\_DIST(), ROW\_NUMBER()

#### Example

SELECT Year, Quarter, RANK() OVER (ORDER BY Revenue ASC) AS Rank1, DENSE\_RANK() OVER (ORDER BY Revenue ASC) AS DRank1, FROM R

| Year | Quarter | Revenue |            | Year | Quarter | Rank1 | DRank1 |
|------|---------|---------|------------|------|---------|-------|--------|
| 2004 | 1       | 10      |            | 2004 | 1       | 1     | 1      |
| 2004 | 2       | 20      |            | 2004 | 3       | 1     | 1      |
| 2004 | 3       | 10      |            | 2004 | 2       | 3     | 2      |
| 2004 | 4       | 20      | OVER()     | 2004 | 4       | 3     | 2      |
| 2005 | 1       | 30      | all tuples | 2005 | 1       | 5     | 3      |



# Semantics

**Reporting Functions – Partitioning** 

- Select tuples for aggregation via PARTITON BY <attribute-list>
- Example

SELECT Year, Quarter, Revenue, **SUM**(Revenue) **OVER**(**PARTITION BY** Year)

Function(arg)

- OVER (\_\_\_\_\_\_partition by \_\_\_\_\_order by\_\_\_\_\_ clause

clause

window aggr. group

FROM R

| Year | Quarter | Revenue |
|------|---------|---------|
| 2004 | 1       | 10      |
| 2004 | 2       | 20      |
| 2004 | 3       | 10      |
| 2004 | 4       | 20      |
| 2005 | 1       | 30      |



berlin

# **Reporting Functions – Partition Sorting**



#### Semantics

- Define computation per partition via ORDER BY <attribute-list>
- Note: ORDER BY allows cumulative computation  $\rightarrow$  cumsum()



#### Example

SELECT Year, Quarter, Revenue, SUM(Revenue) OVER(PARTITION BY Year ORDER BY Quarter) FROM R

| Year | Quarter | Revenue | Year     | Quarter | Revenue | S |
|------|---------|---------|----------|---------|---------|---|
| 2004 | 1       | 10      | 2004     | 1       | 10      |   |
| 2004 | 2       | 20      | <br>2004 | 2       | 20      |   |
| 2004 | 3       | 10      | 2004     | 3       | 10      |   |
| 2004 | 4       | 20      | 2004     | 4       | 20      |   |
| 2005 | 1       | 30      | 2005     | 1       | 30      |   |



# **Reporting Functions – Windowing**



#### Measurements

#### Semantics

 Define window for computation (e.g., for moving average, cumsum)

#### Example

| 7500                                                | Moving AVGs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                     | 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                     | 7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                     | 6500 - March Martin Martin Andrew Martin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                     | eooo Hardin Martin Hiller II. A. H. Martin Martin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                     | 5500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.01.19<br>1.02.19<br>1.03.19<br>1.04.19<br>1.05.19 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2 2 2 2 2 2                                         | 01.19<br>02.19<br>02.19<br>05.19<br>05.19<br>05.19<br>05.19<br>10.19<br>12.19<br>12.19<br>12.19<br>12.19<br>12.19<br>12.19<br>12.19<br>12.19<br>12.19<br>12.19<br>12.19<br>12.19<br>12.19<br>12.19<br>12.19<br>12.19<br>12.19<br>12.19<br>12.19<br>12.19<br>12.19<br>12.19<br>12.19<br>12.19<br>12.19<br>13.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19<br>14.19 |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| [Viktor Leis, Kan Kundhikanjana, Alfons |
|-----------------------------------------|
| Kemper, Thomas Neumann: Efficient       |
| Processing of Window Functions in       |
| Analytical SOL Queries PVLDB 2015]      |

| Year | Quarter | Revenue |
|------|---------|---------|
| 2004 | 1       | 10      |
| 2004 | 2       | 20      |
| 2004 | 3       | 10      |
| 2004 | 4       | 20      |
| 2005 | 1       | 30      |

| SELECT                   | Year, Quarter, Revenue, |  |  |  |  |  |  |
|--------------------------|-------------------------|--|--|--|--|--|--|
|                          | AVG(Revenue)            |  |  |  |  |  |  |
| OVER                     | (ORDER BY Year, Quarter |  |  |  |  |  |  |
| ROWS BETWEEN 1 PRECEDING |                         |  |  |  |  |  |  |
|                          | AND CURRENT ROW)        |  |  |  |  |  |  |
| FROM                     | R                       |  |  |  |  |  |  |

| Year | Quarter | Revenue | AVG  |
|------|---------|---------|------|
| 2004 | 1       | 10      | - 10 |
| 2004 | 2       | 20      | - 15 |
| 2004 | 3       | 10      | 15   |
| 2004 | 4       | 20      | 15   |
| 2005 | 1       | 30 —    | 25   |



# **Summary and Q&A**

#### Data Warehousing (DWH)

- DWH architecture
- Multidimensional modeling

#### Extraction, Transformation, Loading (ETL)

ETL process, errors, and data flows

#### SQL/OLAP Extensions

- Multi-grouping operations
- Reporting functions

#### Next Lectures (Data Integration Architectures)

- 03 Message-oriented Middleware, EAI, and Replication [Nov 02]
- 04 Schema Matching and Mapping [Nov 09]
- 05 Entity Linking and Deduplication [Nov 16]
- 06 Data Cleaning and Data Fusion [Nov 23]



"There is a profound cultural assumption in the business world that *if only we could see all of our data, we could manage our businesses more effectively.* This cultural assumption is so deeply rooted that we take it for granted. Yet this is the mission of the data warehouse, and this is why the data warehouse is a permanent entity [...] even as it morphs and changes its shape."

-- Ralph Kimball, Joe Caserta; **2004** 



