
Data Integration and Large-scale Analysis (DIA)
09 Cloud Resource Management and Scheduling

Prof. Dr. Matthias Boehm
Technische Universität Berlin
Berlin Institute for the Foundations of Learning and Data
Big Data Engineering (DAMS Lab)

Last update: Dec 21, 2023

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling2

Announcements / Administrative Items

▪ #1 Video Recording
▪ Hybrid lectures: in-person H 0107, zoom live streaming, video recording

▪ https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

▪ #2 Exercises/Projects
▪ Reminder: exercise/project submissions by Feb 02 (no extensions)

▪ Make use of office hours Wed 4.30pm-6pm in TEL 0811

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling3

Course Outline Part B:
Large-Scale Data Management and Analysis

08 Cloud Computing Fundamentals

09 Cloud Resource Management and Scheduling

10 Distributed Data Storage

11 Distributed Data-Parallel Computation

12 Distributed Stream
Processing

13 Distributed Machine
Learning Systems

Compute/
Storage

Infra

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling4

▪ Motivation, Terminology, and Fundamentals

▪ Resource Allocation, Isolation, and Monitoring

▪ Task Scheduling and Elasticity

Agenda

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling5

Motivation, Terminology, and
Fundamentals

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling6

▪ Definition Cloud Computing
▪ On-demand, remote storage and compute resources, or services

▪ User: computing as a utility (similar to energy, water, internet services)

▪ Cloud provider: computation in data centers / multi-tenancy

▪ Service Models
▪ IaaS: Infrastructure as a service (e.g., storage/compute nodes)

▪ PaaS: Platform as a service (e.g., distributed systems/frameworks)

▪ SaaS: Software as a Service (e.g., email, databases, office, github)

➔ Transforming IT Industry/Landscape
▪ Since ~2010 increasing move from on-prem to cloud resources

▪ System software licenses become increasingly irrelevant

▪ Few cloud providers dominate IaaS/PaaS/SaaS markets (w/ 2018 revenue):

Microsoft Azure Cloud ($ 32.2B), Amazon AWS ($ 25.7B), Google Cloud (N/A), IBM Cloud ($ 19.2B),

Oracle Cloud ($ 5.3B), Alibaba Cloud ($ 2.1B)

Recap: Motivation Cloud Computing

“Computing as
a Utility”

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling7

▪ Argument #1: Pay as you go
▪ No upfront cost for infrastructure

▪ Variable utilization ➔ over-provisioning

▪ Pay per use or acquired resources

▪ Argument #2: Economies of Scale
▪ Purchasing and managing IT infrastructure at scale ➔ lower cost

(applies to both HW resources and IT infrastructure/system experts)

▪ Focus on scale-out on commodity HW over scale-up ➔ lower cost

▪ Argument #3: Elasticity
▪ Assuming perfect scalability, work done in constant time * resources

▪ Given virtually unlimited resources allows to reduce time as necessary

Recap: Motivation Cloud Computing, cont.

Utili-
zation

Time

100%

100 days @ 1 node

≈
1 day @ 100 nodes

(but beware Amdahl’s law:
max speedup sp = 1/s)

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling8

▪ Resource Bundles
▪ Logical containers (aka nodes/instances) of different resources (vcores, mem)

▪ Disk capacity, disk and network bandwidth

▪ Accelerator devices (GPUs, FPGAs), etc

▪ Resource
Management

Overview Resource Management & Scheduling

Resource
Selection

Resource
Allocation

Resource
Isolation &
Monitoring

Task
Scheduling

4x m5.large
(2vCPU, 8GB Mem)

12/48GB 10/12 vc

2

8

Scheduling is a fundamental
computer science technique

(at many different levels)

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling9

▪ High-Level Architecture
▪ Different language bindings:

Scala, Java, Python, R

▪ Different libraries: SQL, ML, Stream, Graph

▪ Spark core (incl RDDs)

▪ Different file systems/formats, and

data sources: HDFS, S3, DBs, NoSQL

▪ Different cluster managers:

Standalone, Mesos, Yarn, Kubernetes

➔ Separation of concerns:
resource allocation vs task scheduling

Overview Resource Management & Scheduling, cont.

[https://spark.apache.org/]

Standalone MESOS YARN Kubernetes

https://spark.apache.org/

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling10

▪ Bag-of-Tasks Scheduling
▪ Job of independent (embarrassingly parallel) tasks

▪ Examples: EC2 instances, map tasks

▪ Gang Scheduling
▪ Job of frequently communicating parallel tasks

▪ Examples: MPI programs, parameter servers

▪ DAG Scheduling
▪ Job of tasks with precedence constraints (e.g., data dependencies)

▪ Examples: Op scheduling Spark, TensorFlow, SystemDS

▪ Real-Time Scheduling
▪ Job or task with associated deadline (soft/hard)

▪ Examples: rendering, car control

Scheduling Problems
[Eleni D. Karatza: Cloud Performance

Resource Allocation and Scheduling Issue,
Aristotle University of Thessaloniki 2018]

Bs

A

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling11

▪ Operator-Device Placement
▪ Given neural network, multiple devices → operator placement (parallelism, data transfer)

▪ Sequence-to-sequence model to predict which operations should run on which device

▪ Example: ML Workloads

▪ white: CPU; colors: different GPU devices

Scheduling Problems, cont.

[Azalia Mirhoseini et al: Device Placement
Optimization with Reinforcement

Learning. ICML 2017]

Inception V3
(CNN)

Neural Machine
Translation

(RNN)

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling12

▪ Common Metrics
▪ Mean time to completion (total runtime for job), and max-stretch (completion/work – relative slowdown)

▪ Mean response time (job waiting time for resources); Throughput (jobs per time unit)

▪ Constraints / service-level agreements: max monetary costs, max latency, deadline

▪ #1 FIFO (first-in, first-out)
▪ Simple queueing and processing in order

▪ Problem: Single long-running job can stall many short jobs

▪ #2 SJF (shortest job first)
▪ Sort jobs by expected runtime and execute in order ascending

▪ Problem: Starvation of long-running jobs

▪ #3 Round-Robin (FAIR)
▪ Allocate similar time (tasks, time slices) to all jobs

Basic Scheduling Metrics and Algorithms

[Credit:
https://en.wikipedia.org

(French "ruban rond" –
English round ribbon)]

https://en.wikipedia.org/

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling13

Resource Allocation, Isolation, and
Monitoring

Resource
Selection

Resource
Allocation

Resource
Isolation &
Monitoring

Task
Scheduling

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling14

▪ #1 Manual Selection
▪ Rule of thumb (I/O, mem, CPU characteristics of app)

▪ Data characteristics, and framework configurations, experience

▪ Example
Spark Submit

Resource Selection

export HADOOP_CONF_DIR=/etc/hadoop/conf
SPARK_HOME=../spark-2.4.0-bin-hadoop2.7

$SPARK_HOME/bin/spark-submit \
--master yarn --deploy-mode client \
--driver-java-options "-server –Xms40g –Xmn4g" \
--driver-memory 40g \
--num-executors 10 \
--executor-memory 100g \
--executor-cores 32 \
SystemDS.jar -f test.dml -stats -explain -args …

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling15

▪ #2 Application-Agnostic, Reactive
▪ Dynamic allocation based on workload characteristics

▪ Examples: Spark dynamic allocation, Databricks AutoScaling

▪ #3 Application-Aware, Proactive
▪ Estimate time/costs of job under different configurations

(what-if scenario analysis)

▪ Min $costs under time constraint

▪ Min runtime under $cost constraint

Resource Selection, cont.

(fixed MR job w/ 6 nodes)

[Herodotos Herodotou, Fei Dong, Shivnath Babu:
No one (cluster) size fits all: automatic cluster
sizing for data-intensive analytics. SoCC 2011]

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling16

▪ Problem Formulation
▪ N nodes with memory and CPU constraints

▪ Stream of jobs with memory and CPU requirements

▪ Assign jobs to nodes (or to minimal number of nodes)

➔ Knapsack problem (bin packing problem)

▪ In Practice: Heuristics
▪ Major concern: scheduling efficiency

(online, cluster bottleneck)

▪ Approach: Sample queues, best/next-fit selection

▪ Multiple metrics: dominant resource calculator

Resource Negotiation and Allocation

[https://blog.cloudera.com/
managing-cpu-resources-in-
your-hadoop-yarn-clusters/]

12/48GB

2/8GB1/32GB6/8GB 32GB

8GB

8GB
6

1
2

“Tetris Analogy”
(w/ expiration and

queues)

https://blog.cloudera.com/managing-cpu-resources-in-your-hadoop-yarn-clusters/
https://blog.cloudera.com/managing-cpu-resources-in-your-hadoop-yarn-clusters/
https://blog.cloudera.com/managing-cpu-resources-in-your-hadoop-yarn-clusters/

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling17

▪ Slurm Overview
▪ Simple Linux Utility for Resource Management (SLURM)

▪ Heavily used in HPC clusters (e.g., MPI gang scheduling)

▪ Scheduler Design
▪ Allocation/placement of requested resources

▪ Considers nodes, sockets, cores, HW threads,

memory, GPUs, file systems, SW licenses

▪ Job submit options:

sbatch (async job script), salloc (interactive); srun (sync job submission and scheduling)

▪ Configuration: cluster, node count (ranges), task count, mem, etc

▪ Constraints via filters: sockets-per-node, cores-per-socket, threads-per-core

mem, mem-per-cpu, mincpus, tmp min-disk-space

▪ Elasticity via re-queueing

Slurm Workload Manager

[Don Lipari: The SLURM Scheduler
Design, User Group Meeting, 2012]

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling18

▪ Overview
▪ Hadoop cluster w/ fixed configuration of n map slots, m reduce slots

(fixed number and fixed memory config map/reduce tasks)

▪ JobTracker schedules map and reduce tasks to slots

▪ FIFO and FAIR schedulers, account for data locality

▪ Data Locality
▪ Levels: data local, rack local, different rack

▪ Delay scheduling (with FAIR scheduler)

wait 1-3s for data local slot

▪ Problem
▪ Intermixes resource allocation and task scheduling → Scalability problems in large clusters

▪ Forces every application into MapReduce programming model

Background: Hadoop JobTracker (anno 2012)

[Matei Zaharia et al: Delay scheduling: a
simple technique for achieving locality and

fairness in cluster scheduling. EuroSys 2010]

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling19

▪ Overview Mesos
▪ Fine-grained, multi-framework cluster sharing

▪ Scalable and efficient scheduling

→ delegated to frameworks

▪ Resource offers

Mesos Resource Management [Benjamin Hindman et al: Mesos: A
Platform for Fine-Grained Resource

Sharing in the Data Center. NSDI 2011]

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling20

▪ Resource Offers
▪ Mesos master decides how many resources to offer

▪ Framework scheduler decides which offered resources to accept/reject

▪ Challenge: long waiting times, lots of offers

→ filter specification

Mesos Resource Management, cont. [Benjamin Hindman et al: Mesos: A
Platform for Fine-Grained Resource

Sharing in the Data Center. NSDI 2011]

Reported
available
resources

Offered
resources

Mesosphere
Marathon:
container

orchestration
(e.g., Docker)

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling21

▪ Overview YARN
▪ Hadoop 2 decoupled resource scheduler (negotiator)

▪ Independent of programming model,

multi-framework cluster sharing

▪ Resource Requests

YARN Resource Management [Vinod Kumar Vavilapalli et al:
Apache Hadoop YARN: yet another

resource negotiator. SoCC 2013]

Task Scheduling via
Application Masters

(AMs)

Resource
Isolation via

Node Managers

Resource
Scheduling via

Resource Manager

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling22

▪ Example Apache
SystemML AM
Submission
(anno 2014)

YARN Resource Management, cont.

// Set up the container launch context for the application master
ContainerLaunchContext amContainer =

Records.newRecord(ContainerLaunchContext.class);
amContainer.setCommands(Collections.singletonList(command));
amContainer.setLocalResources(constructLocalResourceMap(yconf));
amContainer.setEnvironment(constructEnvionmentMap(yconf));

// Set up resource type requirements for ApplicationMaster
Resource capability = Records.newRecord(Resource.class);
capability.setMemory((int)computeMemoryAllocation(memHeap));
capability.setVirtualCores(numCores);

// Finally, set-up ApplicationSubmissionContext for the application
String qname = _dmlConfig.getTextValue(DMLConfig.YARN_APPQUEUE);
appContext.setApplicationName(APPMASTER_NAME); // application name
appContext.setAMContainerSpec(amContainer);
appContext.setResource(capability);
appContext.setQueue(qname); // queue (w/ min/max capacity constraints)

// Submit application (non-blocking)
yarnClient.submitApplication(appContext);

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling23

▪ Capacity Scheduler
▪ Hierarchy of queues w/ shared resource among sub queues

▪ Soft (and optional hard) [min, max]

constraints of max resources

▪ Default queue-user mapping

▪ No preemption during runtime

(only redistribution over queues)

▪ Fair Scheduler
▪ All applications get same resources over time

▪ Fairness decisions on memory requirements,

but dominant resource fairness possible too

YARN Resource Management, cont.

root

data science

indexing

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling24

▪ Overview Hydra
▪ Federated RM for internal MS big-data cluster

▪ Leverage sub-clusters w/ YARN RM + router

▪ AM-RM proxy (comm. across sub clusters)

▪ Global policy generator + state store for runtime adaptation

▪ Deployment
Statistics

Hydra: Federated RM @ Microsoft

[Carlo Curino et al.: Hydra: a federated
resource manager for data-center

scale analytics. NSDI 2019]

[https://www.youtube.com/watch?v=k
_X13YamZXY&feature=emb_logo]

>250K servers
>500K daily jobs

>1 ZB data processed
>1T tasks scheduled

(~2G tasks daily)
>70K QPS (scheduling)

~60% avg CPU util

https://www.youtube.com/watch?v=k_X13YamZXY&feature=emb_logo
https://www.youtube.com/watch?v=k_X13YamZXY&feature=emb_logo

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling25

▪ Overview Kubernetes
▪ Open-source system for automating, deployment, and

management of containerized applications

▪ Container: resource isolation and application image

▪ System Architecture
▪ Pod: 1 or more containers w/ individual IP

▪ Kubelet: node manager

▪ Controller: app master

▪ API Server + Scheduler

▪ Namespaces, quotas, access control,

auth., logging & monitoring

▪ Wide variety of applications

Kubernetes Container Orchestration

➔ from machine- to
application-oriented

scheduling

[https://kubernetes.io/docs/concepts/
overview/components/]

KV Store

https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling26

▪ Pod Scheduling (Placement)
▪ Default scheduler: kube-scheduler, custom schedulers possible

▪ #1 Filtering: finding feasible nodes for pod

(resources, free ports, node selector, requested volumes, mem/disk pressure)

▪ #2 Scoring: score feasible nodes → select highest score

(spread priority, inter-pod affinity, requested priority, image locality)

▪ Tuning: # scored nodes: max(50, percentageOfNodesToScore [1,100])

(sample taken round robin across zones)

➔ Binding: scheduler notifies API server

Kubernetes Container Orchestration, cont.

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling27

▪ Container Stack
▪ Docker as stack of development and runtime services

▪ containerd: high-level daemon for image management

▪ runc: low-level container runtime

▪ Kubernetes deprecated Docker (as of 12/2020)
▪ Container Runtime Interface (CRI)

▪ Integrate other runtimes: cri-containerd, cri-o (Open Container Initiative)

Container Runtime

[https://kubernetes.io/blog/
2016/12/container-runtime-
interface-cri-in-kubernetes/]

[https://www.inovex.de/blog/
containers-docker-containerd-

nabla-kata-firecracker/]

[Credit:
www.inovex.de]

https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://www.inovex.de/blog/containers-docker-containerd-nabla-kata-firecracker/
https://www.inovex.de/blog/containers-docker-containerd-nabla-kata-firecracker/
https://www.inovex.de/blog/containers-docker-containerd-nabla-kata-firecracker/
https://www.inovex.de/blog/containers-docker-containerd-nabla-kata-firecracker/

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling28

▪ Overview Key Primitives
▪ Platform-dependent resource isolation primitives → container runtime

▪ Linux namespaces: restricting visibility

▪ Linux cgroups: restricting usage

▪ Cgroups (Control Groups)
▪ Developed by Google engineers → Kernel 2.6.24 (2008)

▪ Resource metering and limiting (memory, CPU, block I/O, network)

▪ Each subsystem has a hierarchy (tree) with each node = group of processes

▪ Soft and hard limits on groups

▪ Mem hard limit → triggers OOM killer (physical, kernel, total)
▪ CPU→ set weights (time slices)/no limits, cpuset to pin groups to CPUs

Resource Isolation

Linux Containers
(e.g., basis of Docker)

[Jérôme Petazzoni: Cgroups, name-
spaces and beyond: What are containers

made from? DockerConEU 2015.]

[https://www.youtube.com/watch?v=sK5i-
N34im8&feature=youtu.be]

https://www.youtube.com/watch?v=sK5i-N34im8&feature=youtu.be
https://www.youtube.com/watch?v=sK5i-N34im8&feature=youtu.be

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling29

▪ Example YARN
▪ Set max CPU time per node manager

▪ Container weights: cores/total cores

▪ OOM killer if mem w/ overhead exceeded

▪ Lesson Learned
▪ “The resource isolation provided by containers has enabled Google

to drive utilization significantly higher than industry norms. [..] Borg

uses containers to co-locate batch jobs with latency-sensitive,

user-facing jobs on the same physical machines.”

▪ “The isolation is not perfect, though: containers cannot prevent

interference in resources that the operating-system kernel doesn’t

manage, such as level 3 processor caches and memory bandwidth […]”

Resource Isolation, cont.

[Brendan Burns et al.: Borg,
Omega, and Kubernetes. ACM

Queue 14(1): 10 (2016)]

[Abhishek Verma et al. Large-scale
cluster management at Google with

Borg. EuroSys 2015]

[Malte Schwarzkopf et al.: Omega:
flexible, scalable schedulers for large

compute clusters. EuroSys 2013]

<property>
<name>yarn.nodemanager.resource.
percentage-physical-cpu-limit<name>

<value>60</value>
</property> (hard → strict/soft)

[https://developer.ibm.com/hadoop/
2017/06/30/deep-dive-yarn-cgroups/]

https://developer.ibm.com/hadoop/2017/06/30/deep-dive-yarn-cgroups/
https://developer.ibm.com/hadoop/2017/06/30/deep-dive-yarn-cgroups/

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling30

Task Scheduling and Elasticity

Resource
Selection

Resource
Allocation

Resource
Isolation &
Monitoring

Task
Scheduling

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling31

▪ Problem Formulation
▪ Given computation job and set of resources (servers, threads)

▪ Distribute job in pieces across resources

▪ #1 Job-Task Partitioning
▪ Split job into sequence of N tasks

▪ #2 Task Placement / Execution
▪ Assign tasks to K resources for execution

▪ Goal: Min Job Completion Time
▪ Beware: Max runtime per resource

determines job completion time

Task Scheduling Overview

Node 1 Node 2

t1 t2 t3 t4 t5 t6

Computation Job

t1 t2 t3 t5

t4 t6

Node 1:

Node 2:

Job done

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling32

▪ Static Partitioning
▪ M = K tasks, task size ceil(N/K)

▪ Low overhead, poor load balance

▪ Fixed Partitioning
▪ M = N/d tasks, task size d

▪ E.g., # iterations, # tuples to process

▪ Self-Scheduling
▪ Exponentially decreasing task sizes d

→M = log N tasks (w/ min task size)

▪ Low overhead and good load balance at end

▪ Guided self scheduling

▪ Factoring: waves of task w/ equal size

Task Scheduling – Partitioning Example Hyper-param Tuning
parfor(i in 1:800)
R[i,] = lm(X,y,reg[i])

400

400

100 100 100100

100 100

100

100

200

100200

100 50

50

50

50

[Susan Flynn Hummel, Edith Schonberg, Lawrence
E. Flynn: Factoring: a practical and robust method

for scheduling parallel loops. SC 1991]

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling33

▪ Task Queues
▪ Sequence of tasks in FIFO queue

▪ #1 Single Task Queue

(self-balancing, but contention)

▪ #2 Per-Worker Task Queue

(work separation, and preparation)

▪ Work Stealing
▪ On empty worker queue, probe other queues and “steal” tasks

▪ More common in multi-threading, difficult in distributed systems

▪ Excursus: Power of 2 Choices
▪ Choose d bins at random, task in least full bin

▪ Reduce max load from
log 𝑀

log log 𝑀
to

log log 𝑀

log𝑀

Task Scheduling – Placement

Node
1

Node
2

“Airport”

Node
1

Node
2

“Super Market”

[Michael D. Mitzenmacher: The Power of
Two Choices in Randomized Load Balancing,

PhD Thesis UC Berkeley 1996]

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling34

▪ Overview
▪ Schedule job DAGs in stages (shuffle barriers)

▪ Default task scheduler: FIFO; alternative: FAIR

Spark Task Scheduling

SystemDS Example (80GB):
X = rand(rows=1e7,cols=1e3)
parfor(i in 1:4)

for(j in 1:10000)
print(sum(X)) #spark job

FAIR

FIFO

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling35

▪ FAIR scheduling
w/ k=32
concurrent jobs
and 200GB

Spark Task Scheduling, cont.

FAIR:
Share 320 cores

among 32
concurrent jobs
→ ~10 tasks/job

Elapsed:
~40min

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling36

▪ Fair Scheduler Configuration
▪ Pools with shares of cluster

▪ Scheduling modes: FAIR, FIFO

▪ weight: relative to equal share

▪ minShare: min numCores

▪ Spark on Kubernetes
▪ Run Spark in shared cluster

with Docker container apps,

Distributed TensorFlow, etc

▪ Custom controller, and

shuffle service (dynAlloc)

Spark Task Scheduling, cont.

<allocations>
<pool name=“data_science">

<schedulingMode>FAIR</schedulingMode>
<weight>1</weight> <minShare>6</minShare>

</pool>
<pool name=“indexing">

<schedulingMode>FIFO</schedulingMode>
<weight>2</weight> <minShare>8</minShare>

</pool>
</allocations>

$SPARK_HOME/bin/spark-submit \
--master k8s://https://<k8s-api>:<k8s-api-port> \
--deploy-mode cluster
--driver-java-options "-server -Xms40g -Xmn4g" \
--driver-memory 40g \
--num-executors 10 \
--executor-memory 100g \
--executor-cores 32 \
--conf spark.kubernetes.container.image=<sparkimg> \
SystemDS.jar -f test.dml -stats -explain -args …

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling37

▪ Configuration for YARN/Mesos
▪ Set spark.dynamicAllocation.enabled = true

▪ Set spark.shuffle.service.enabled = true (robustness w/ stragglers)

▪ Executor Addition/Removal
▪ Approach: look at task pressure (pending tasks / idle executors)

▪ Increase exponentially (add 1, 2, 4, 8) if

pending tasks for spark.dynamicAllocation.schedulerBacklogTimeout

▪ Decrease executors they are idle for spark.dynamicAllocation.executorIdleTimeout

Spark Dynamic Allocation [https://spark.apache.org/docs/
latest/job-scheduling.html]

spark-submit \
--conf spark.shuffle.service.enabled=true \
--conf spark.dynamicAllocation.enabled=true \
--conf spark.dynamicAllocation.minExecutors=0 \
--conf spark.dynamicAllocation.initialExecutors=1 \
--conf spark.dynamicAllocation.maxExecutors=20

https://spark.apache.org/docs/latest/job-scheduling.html
https://spark.apache.org/docs/latest/job-scheduling.html

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling38

▪ Sparrow Overview
▪ Decentralized, randomized task scheduling with constraints, fair sharing

▪ Problems: Low latency, quality placement, fault tolerance, high throughput

▪ Approach
▪ Baselines: Random, Per-task (power of two choices)

▪ New Techniques: Batch Scheduling, Late Binding

Sparrow Task Scheduling [Kay Ousterhout, Patrick Wendell, Matei
Zaharia, Ion Stoica: Sparrow: distributed,

low latency scheduling. SOSP 2013]

Baseline: Per-task sampling Batch sampling w/ late binding

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling39

▪ Resource Optimizer for ML Workloads
▪ Optimize ML program resource configurations via online what-if analysis and plan generation

▪ Minimize cost w/o unnecessary overprovisioning, program-aware enumeration (e.g., mem estimates)

▪ Deployment
▪ Initial Compilation

▪ Dynamic

Recompilation

during Runtime

Resource Elasticity in SystemML

Data
&

Script

[Botong Huang et al.: Resource
Elasticity for Large-Scale Machine

Learning. SIGMOD 2015]

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling40

▪ Definition Serverless
▪ FaaS: functions-as-a-service (event-driven, stateless input-output mapping)

▪ Infrastructure for deployment and auto-scaling of APIs/functions

▪ Examples: Amazon Lambda, Microsoft Azure Functions, etc

▪ Example

Serverless Computing (FaaS)

Event Source
(e.g., cloud

services)

Lambda Functions

Other APIs
and Services

Auto scaling
Pay-per-request

(1M x 100ms = 0.2$)

[Joseph M. Hellerstein et al: Serverless
Computing: One Step Forward, Two

Steps Back. CIDR 2019]

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

public class MyHandler implements RequestHandler<Tuple, MyResponse> {
@Override
public MyResponse handleRequest(Tuple input, Context context) {

return expensiveModelScoring(input); // with read-only model
}

}

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling41

▪ Motivation, Terminology, and Fundamentals

▪ Resource Allocation, Isolation, and Monitoring

▪ Task Scheduling and Elasticity

▪ Next Lectures (Large-scale Data Management and Analysis)
▪ Happy Holidays

▪ 10 Distributed Data Storage [Jan 11]

▪ 11 Distributed, Data-Parallel Computation [Jan 18]

▪ 12 Distributed Stream Processing [Jan 25]

▪ 13 Distributed Machine Learning Systems [Feb 01]

Summary and Q&A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

