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Announcements / Administrative Items

▪ #1 Video Recording
▪ Hybrid lectures: in-person H 0107, zoom live streaming, video recording

▪ https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

▪ #2 Exercises/Projects
▪ Reminder: exercise/project submissions by Feb 02 (no extensions)

▪ Make use of office hours Wed 4.30pm-6pm in TEL 0811

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
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Course Outline Part B:
Large-Scale Data Management and Analysis

08 Cloud Computing Fundamentals

09 Cloud Resource Management and Scheduling

10 Distributed Data Storage

11 Distributed Data-Parallel Computation

12 Distributed Stream
Processing

13 Distributed Machine 
Learning Systems

Compute/
Storage

Infra
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▪ Motivation, Terminology, and Fundamentals

▪ Resource Allocation, Isolation, and Monitoring

▪ Task Scheduling and Elasticity

Agenda
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Motivation, Terminology, and 
Fundamentals
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▪ Definition Cloud Computing
▪ On-demand, remote storage and compute resources, or services

▪ User: computing as a utility (similar to energy, water, internet services)

▪ Cloud provider: computation in data centers / multi-tenancy

▪ Service Models 
▪ IaaS: Infrastructure as a service (e.g., storage/compute nodes)

▪ PaaS: Platform as a service (e.g., distributed systems/frameworks)

▪ SaaS: Software as a Service (e.g., email, databases, office, github)

➔ Transforming IT Industry/Landscape
▪ Since ~2010 increasing move from on-prem to cloud resources

▪ System software licenses become increasingly irrelevant

▪ Few cloud providers dominate IaaS/PaaS/SaaS markets (w/ 2018 revenue):

Microsoft Azure Cloud ($ 32.2B), Amazon AWS ($ 25.7B), Google Cloud (N/A), IBM Cloud ($ 19.2B), 

Oracle Cloud ($ 5.3B), Alibaba Cloud ($ 2.1B) 

Recap: Motivation Cloud Computing 

“Computing as 
a Utility”
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▪ Argument #1: Pay as you go
▪ No upfront cost for infrastructure

▪ Variable utilization ➔ over-provisioning

▪ Pay per use or acquired resources

▪ Argument #2: Economies of Scale
▪ Purchasing and managing IT infrastructure at scale ➔ lower cost

(applies to both HW resources and IT infrastructure/system experts)

▪ Focus on scale-out on commodity HW over scale-up ➔ lower cost

▪ Argument #3: Elasticity
▪ Assuming perfect scalability, work done in constant time * resources 

▪ Given virtually unlimited resources allows to reduce time as necessary

Recap: Motivation Cloud Computing, cont.

Utili-
zation

Time

100%

100 days @ 1 node

≈
1 day @ 100 nodes

(but beware Amdahl’s law: 
max speedup sp = 1/s)
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▪ Resource Bundles
▪ Logical containers (aka nodes/instances) of different resources (vcores, mem)

▪ Disk capacity, disk and network bandwidth

▪ Accelerator devices (GPUs, FPGAs), etc

▪ Resource 
Management

Overview Resource Management & Scheduling

Resource 
Selection

Resource 
Allocation

Resource 
Isolation & 
Monitoring

Task 
Scheduling 

4x m5.large 
(2vCPU, 8GB Mem)

12/48GB 10/12 vc

2

8

Scheduling is a fundamental 
computer science technique 

(at many different levels)
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▪ High-Level Architecture
▪ Different language bindings:

Scala, Java, Python, R

▪ Different libraries: SQL, ML, Stream, Graph

▪ Spark core (incl RDDs)

▪ Different file systems/formats, and 

data sources: HDFS, S3, DBs, NoSQL

▪ Different cluster managers:

Standalone, Mesos, Yarn, Kubernetes

➔ Separation of concerns: 
resource allocation vs task scheduling

Overview Resource Management & Scheduling, cont.

[https://spark.apache.org/]

Standalone MESOS YARN Kubernetes

https://spark.apache.org/
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▪ Bag-of-Tasks Scheduling
▪ Job of independent (embarrassingly parallel) tasks

▪ Examples: EC2 instances, map tasks

▪ Gang Scheduling
▪ Job of frequently communicating parallel tasks

▪ Examples: MPI programs, parameter servers

▪ DAG Scheduling 
▪ Job of tasks with precedence constraints (e.g., data dependencies)

▪ Examples: Op scheduling Spark, TensorFlow, SystemDS

▪ Real-Time Scheduling 
▪ Job or task with associated deadline (soft/hard)

▪ Examples: rendering, car control

Scheduling Problems
[Eleni D. Karatza: Cloud Performance 

Resource Allocation and Scheduling Issue, 
Aristotle University of Thessaloniki 2018]

Bs

A
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▪ Operator-Device Placement
▪ Given neural network, multiple devices → operator placement (parallelism, data transfer)

▪ Sequence-to-sequence model to predict which operations should run on which device

▪ Example: ML Workloads

▪ white: CPU; colors: different GPU devices

Scheduling Problems, cont.

[Azalia Mirhoseini et al: Device Placement 
Optimization with Reinforcement 

Learning. ICML 2017]

Inception V3
(CNN)

Neural Machine 
Translation

(RNN)
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▪ Common Metrics
▪ Mean time to completion (total runtime for job), and max-stretch (completion/work – relative slowdown)

▪ Mean response time (job waiting time for resources); Throughput (jobs per time unit)

▪ Constraints / service-level agreements: max monetary costs, max latency, deadline 

▪ #1 FIFO (first-in, first-out)
▪ Simple queueing and processing in order 

▪ Problem: Single long-running job can stall many short jobs

▪ #2 SJF (shortest job first)
▪ Sort jobs by expected runtime and execute in order ascending

▪ Problem: Starvation of long-running jobs

▪ #3 Round-Robin (FAIR)
▪ Allocate similar time (tasks, time slices) to all jobs

Basic Scheduling Metrics and Algorithms

[Credit:
https://en.wikipedia.org

(French "ruban rond" –
English round ribbon)]

https://en.wikipedia.org/
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Resource Allocation, Isolation, and 
Monitoring

Resource 
Selection

Resource 
Allocation

Resource 
Isolation & 
Monitoring

Task 
Scheduling 
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▪ #1 Manual Selection
▪ Rule of thumb (I/O, mem, CPU characteristics of app)

▪ Data characteristics, and framework configurations, experience

▪ Example 
Spark Submit

Resource Selection

export HADOOP_CONF_DIR=/etc/hadoop/conf
SPARK_HOME=../spark-2.4.0-bin-hadoop2.7

$SPARK_HOME/bin/spark-submit \
--master yarn --deploy-mode client \
--driver-java-options "-server –Xms40g –Xmn4g" \
--driver-memory 40g \
--num-executors 10 \
--executor-memory 100g \
--executor-cores 32 \
SystemDS.jar -f test.dml -stats -explain -args …
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▪ #2 Application-Agnostic, Reactive
▪ Dynamic allocation based on workload characteristics

▪ Examples: Spark dynamic allocation, Databricks AutoScaling

▪ #3 Application-Aware, Proactive
▪ Estimate time/costs of job under different configurations 

(what-if scenario analysis)

▪ Min $costs under time constraint

▪ Min runtime under $cost constraint 

Resource Selection, cont.

(fixed MR job w/ 6 nodes)

[Herodotos Herodotou, Fei Dong, Shivnath Babu: 
No one (cluster) size fits all: automatic cluster 
sizing for data-intensive analytics. SoCC 2011]
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▪ Problem Formulation
▪ N nodes with memory and CPU constraints 

▪ Stream of jobs with memory and CPU requirements

▪ Assign jobs to nodes (or to minimal number of nodes)

➔ Knapsack problem (bin packing problem)

▪ In Practice: Heuristics
▪ Major concern: scheduling efficiency

(online, cluster bottleneck)

▪ Approach: Sample queues, best/next-fit selection

▪ Multiple metrics: dominant resource calculator

Resource Negotiation and Allocation

[https://blog.cloudera.com/
managing-cpu-resources-in-
your-hadoop-yarn-clusters/]

12/48GB

2/8GB1/32GB6/8GB 32GB

8GB

8GB
6

1
2

“Tetris Analogy”
(w/ expiration and 

queues)

https://blog.cloudera.com/managing-cpu-resources-in-your-hadoop-yarn-clusters/
https://blog.cloudera.com/managing-cpu-resources-in-your-hadoop-yarn-clusters/
https://blog.cloudera.com/managing-cpu-resources-in-your-hadoop-yarn-clusters/
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▪ Slurm Overview
▪ Simple Linux Utility for Resource Management (SLURM)

▪ Heavily used in HPC clusters (e.g., MPI gang scheduling)

▪ Scheduler Design
▪ Allocation/placement of requested resources

▪ Considers nodes, sockets, cores, HW threads, 

memory, GPUs, file systems, SW licenses

▪ Job submit options: 

sbatch (async job script), salloc (interactive); srun (sync job submission and scheduling) 

▪ Configuration: cluster, node count (ranges), task count, mem, etc

▪ Constraints via filters: sockets-per-node, cores-per-socket, threads-per-core

mem, mem-per-cpu, mincpus, tmp min-disk-space

▪ Elasticity via re-queueing

Slurm Workload Manager

[Don Lipari: The SLURM Scheduler 
Design, User Group Meeting, 2012]
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▪ Overview
▪ Hadoop cluster w/ fixed configuration of n map slots, m reduce slots

(fixed number and fixed memory config map/reduce tasks)

▪ JobTracker schedules map and reduce tasks to slots

▪ FIFO and FAIR schedulers, account for data locality

▪ Data Locality
▪ Levels: data local, rack local, different rack

▪ Delay scheduling (with FAIR scheduler)

wait 1-3s for data local slot

▪ Problem
▪ Intermixes resource allocation and task scheduling → Scalability problems in large clusters

▪ Forces every application into MapReduce programming model

Background: Hadoop JobTracker (anno 2012)

[Matei Zaharia et al: Delay scheduling: a 
simple technique for achieving locality and 

fairness in cluster scheduling. EuroSys 2010]
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▪ Overview Mesos
▪ Fine-grained, multi-framework cluster sharing

▪ Scalable and efficient scheduling 

→ delegated to frameworks

▪ Resource offers

Mesos Resource Management [Benjamin Hindman et al: Mesos: A 
Platform for Fine-Grained Resource 

Sharing in the Data Center. NSDI 2011]
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▪ Resource Offers
▪ Mesos master decides how many resources to offer 

▪ Framework scheduler decides which offered resources to accept/reject

▪ Challenge: long waiting times, lots of offers 

→ filter specification

Mesos Resource Management, cont. [Benjamin Hindman et al: Mesos: A 
Platform for Fine-Grained Resource 

Sharing in the Data Center. NSDI 2011]

Reported 
available 
resources

Offered 
resources

Mesosphere 
Marathon: 
container 

orchestration
(e.g., Docker)
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▪ Overview YARN
▪ Hadoop 2 decoupled resource scheduler (negotiator)

▪ Independent of programming model, 

multi-framework cluster sharing

▪ Resource Requests

YARN Resource Management [Vinod Kumar Vavilapalli et al: 
Apache Hadoop YARN: yet another 

resource negotiator. SoCC 2013]

Task Scheduling via 
Application Masters 

(AMs)

Resource 
Isolation via 

Node Managers 

Resource 
Scheduling via 

Resource Manager
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▪ Example Apache 
SystemML AM 
Submission 
(anno 2014)

YARN Resource Management, cont.

// Set up the container launch context for the application master
ContainerLaunchContext amContainer = 

Records.newRecord(ContainerLaunchContext.class);
amContainer.setCommands(Collections.singletonList(command));
amContainer.setLocalResources(constructLocalResourceMap(yconf));
amContainer.setEnvironment(constructEnvionmentMap(yconf));

// Set up resource type requirements for ApplicationMaster
Resource capability = Records.newRecord(Resource.class);
capability.setMemory((int)computeMemoryAllocation(memHeap));
capability.setVirtualCores(numCores);

// Finally, set-up ApplicationSubmissionContext for the application
String qname = _dmlConfig.getTextValue(DMLConfig.YARN_APPQUEUE);
appContext.setApplicationName(APPMASTER_NAME); // application name
appContext.setAMContainerSpec(amContainer);
appContext.setResource(capability);
appContext.setQueue(qname); // queue (w/ min/max capacity constraints)

// Submit application (non-blocking)
yarnClient.submitApplication(appContext);
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▪ Capacity Scheduler
▪ Hierarchy of queues w/ shared resource among sub queues

▪ Soft (and optional hard) [min, max]

constraints of max resources

▪ Default queue-user mapping

▪ No preemption during runtime 

(only redistribution over queues)

▪ Fair Scheduler
▪ All applications get same resources over time

▪ Fairness decisions on memory requirements,

but dominant resource fairness possible too

YARN Resource Management, cont.

root

data science

indexing
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▪ Overview Hydra
▪ Federated RM for internal MS big-data cluster

▪ Leverage sub-clusters w/ YARN RM + router

▪ AM-RM proxy (comm. across sub clusters)

▪ Global policy generator + state store for runtime adaptation

▪ Deployment 
Statistics

Hydra: Federated RM @ Microsoft

[Carlo Curino et al.: Hydra: a federated 
resource manager for data-center 

scale analytics. NSDI 2019]

[https://www.youtube.com/watch?v=k
_X13YamZXY&feature=emb_logo]

>250K servers
>500K daily jobs

>1 ZB data processed
>1T tasks scheduled

(~2G tasks daily)
>70K QPS (scheduling)

~60% avg CPU util

https://www.youtube.com/watch?v=k_X13YamZXY&feature=emb_logo
https://www.youtube.com/watch?v=k_X13YamZXY&feature=emb_logo
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▪ Overview Kubernetes
▪ Open-source system for automating, deployment, and 

management of containerized applications

▪ Container: resource isolation and application image

▪ System Architecture
▪ Pod: 1 or more containers w/ individual IP

▪ Kubelet: node manager

▪ Controller: app master

▪ API Server + Scheduler

▪ Namespaces, quotas, access control, 

auth., logging & monitoring

▪ Wide variety of applications

Kubernetes Container Orchestration

➔ from machine- to 
application-oriented 

scheduling 

[https://kubernetes.io/docs/concepts/
overview/components/]

KV Store

https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/


Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling26

▪ Pod Scheduling (Placement)
▪ Default scheduler: kube-scheduler, custom schedulers possible

▪ #1 Filtering: finding feasible nodes for pod 

(resources, free ports, node selector, requested volumes, mem/disk pressure)

▪ #2 Scoring: score feasible nodes → select highest score

(spread priority, inter-pod affinity, requested priority, image locality)

▪ Tuning: # scored nodes:  max(50, percentageOfNodesToScore [1,100])

(sample taken round robin across zones) 

➔ Binding: scheduler notifies API server

Kubernetes Container Orchestration, cont.
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▪ Container Stack 
▪ Docker as stack of development and runtime services

▪ containerd: high-level daemon for image management

▪ runc: low-level container runtime 

▪ Kubernetes deprecated Docker (as of 12/2020)
▪ Container Runtime Interface (CRI)

▪ Integrate other runtimes: cri-containerd, cri-o (Open Container Initiative)

Container Runtime

[https://kubernetes.io/blog/
2016/12/container-runtime-
interface-cri-in-kubernetes/]

[https://www.inovex.de/blog/
containers-docker-containerd-

nabla-kata-firecracker/]

[Credit:
www.inovex.de]

https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://www.inovex.de/blog/containers-docker-containerd-nabla-kata-firecracker/
https://www.inovex.de/blog/containers-docker-containerd-nabla-kata-firecracker/
https://www.inovex.de/blog/containers-docker-containerd-nabla-kata-firecracker/
https://www.inovex.de/blog/containers-docker-containerd-nabla-kata-firecracker/
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▪ Overview Key Primitives
▪ Platform-dependent resource isolation primitives → container runtime

▪ Linux namespaces: restricting visibility

▪ Linux cgroups: restricting usage

▪ Cgroups (Control Groups)
▪ Developed by Google engineers → Kernel 2.6.24 (2008)

▪ Resource metering and limiting (memory, CPU, block I/O, network)

▪ Each subsystem has a hierarchy (tree)  with each node = group of processes

▪ Soft and hard limits on groups

▪ Mem hard limit → triggers OOM killer (physical, kernel, total)
▪ CPU→ set weights (time slices)/no limits, cpuset to pin groups to CPUs

Resource Isolation

Linux Containers
(e.g., basis of Docker)

[Jérôme Petazzoni: Cgroups, name-
spaces and beyond: What are containers 

made from? DockerConEU 2015.]

[https://www.youtube.com/watch?v=sK5i-
N34im8&feature=youtu.be] 

https://www.youtube.com/watch?v=sK5i-N34im8&feature=youtu.be
https://www.youtube.com/watch?v=sK5i-N34im8&feature=youtu.be
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▪ Example YARN
▪ Set max CPU time per node manager

▪ Container weights: cores/total cores

▪ OOM killer if mem w/ overhead exceeded

▪ Lesson Learned
▪ “The resource isolation provided by containers has enabled Google

to drive utilization significantly higher than industry norms. [..] Borg 

uses containers to co-locate batch jobs with latency-sensitive, 

user-facing jobs on the same physical machines.”

▪ “The isolation is not perfect, though: containers cannot prevent 

interference in resources that the operating-system kernel doesn’t 

manage, such as level 3 processor caches and memory bandwidth […]”

Resource Isolation, cont.

[Brendan Burns et al.: Borg, 
Omega, and Kubernetes. ACM 

Queue 14(1): 10 (2016)]

[Abhishek Verma et al. Large-scale 
cluster management at Google with 

Borg. EuroSys 2015]

[Malte Schwarzkopf et al.: Omega: 
flexible, scalable schedulers for large 

compute clusters. EuroSys 2013]

<property>  
<name>yarn.nodemanager.resource.
percentage-physical-cpu-limit<name>

<value>60</value>
</property> (hard → strict/soft)

[https://developer.ibm.com/hadoop/
2017/06/30/deep-dive-yarn-cgroups/]

https://developer.ibm.com/hadoop/2017/06/30/deep-dive-yarn-cgroups/
https://developer.ibm.com/hadoop/2017/06/30/deep-dive-yarn-cgroups/
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Task Scheduling and Elasticity

Resource 
Selection

Resource 
Allocation

Resource 
Isolation & 
Monitoring

Task 
Scheduling 
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▪ Problem Formulation
▪ Given computation job and set of resources (servers, threads)

▪ Distribute job in pieces across resources 

▪ #1 Job-Task Partitioning 
▪ Split job into sequence of N tasks 

▪ #2 Task Placement / Execution
▪ Assign tasks to K resources for execution

▪ Goal: Min Job Completion Time
▪ Beware: Max runtime per resource

determines job completion time

Task Scheduling Overview

Node 1 Node 2

t1 t2 t3 t4 t5 t6

Computation Job

t1 t2 t3 t5

t4 t6

Node 1:

Node 2:

Job done
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▪ Static Partitioning
▪ M = K tasks, task size ceil(N/K)

▪ Low overhead, poor load balance

▪ Fixed Partitioning
▪ M = N/d tasks, task size d 

▪ E.g., # iterations, # tuples to process

▪ Self-Scheduling
▪ Exponentially decreasing task sizes d 

→M = log N tasks  (w/ min task size)

▪ Low overhead and good load balance at end

▪ Guided self scheduling

▪ Factoring: waves of task w/ equal size

Task Scheduling – Partitioning Example Hyper-param Tuning
parfor(i in 1:800)
R[i,] = lm(X,y,reg[i])

400

400

100 100 100100

100 100

100

100

200

100200

100 50

50

50

50

[Susan Flynn Hummel, Edith Schonberg, Lawrence 
E. Flynn: Factoring: a practical and robust method 

for scheduling parallel loops. SC 1991]
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▪ Task Queues
▪ Sequence of tasks in FIFO queue

▪ #1 Single Task Queue

(self-balancing, but contention)

▪ #2 Per-Worker Task Queue

(work separation, and preparation)

▪ Work Stealing
▪ On empty worker queue, probe other queues and “steal” tasks

▪ More common in multi-threading, difficult in distributed systems

▪ Excursus: Power of 2 Choices
▪ Choose d bins at random, task in least full bin

▪ Reduce max load from 
log 𝑀

log log 𝑀
to 

log log 𝑀

log𝑀

Task Scheduling – Placement 

Node 
1

Node 
2

“Airport”

Node 
1

Node 
2

“Super Market”

[Michael D. Mitzenmacher: The Power of 
Two Choices in Randomized Load Balancing, 

PhD Thesis UC Berkeley 1996]
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▪ Overview 
▪ Schedule job DAGs in stages (shuffle barriers)

▪ Default task scheduler: FIFO; alternative: FAIR

Spark Task Scheduling 

SystemDS Example (80GB):
X = rand(rows=1e7,cols=1e3)
parfor(i in 1:4)

for(j in 1:10000)
print(sum(X)) #spark job

FAIR

FIFO



Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 09 Cloud Resource Management and Scheduling35

▪ FAIR scheduling 
w/ k=32 
concurrent jobs 
and 200GB

Spark Task Scheduling, cont. 

FAIR:
Share 320 cores 

among 32 
concurrent jobs
→ ~10 tasks/job

Elapsed:
~40min
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▪ Fair Scheduler Configuration
▪ Pools with shares of cluster

▪ Scheduling modes: FAIR, FIFO

▪ weight: relative to equal share

▪ minShare: min numCores

▪ Spark on Kubernetes
▪ Run Spark in shared cluster 

with Docker container apps,

Distributed TensorFlow, etc

▪ Custom controller, and

shuffle service (dynAlloc)

Spark Task Scheduling, cont.  

<allocations>
<pool name=“data_science">

<schedulingMode>FAIR</schedulingMode>
<weight>1</weight> <minShare>6</minShare>

</pool>
<pool name=“indexing">

<schedulingMode>FIFO</schedulingMode>
<weight>2</weight> <minShare>8</minShare>

</pool>
</allocations>

$SPARK_HOME/bin/spark-submit \
--master k8s://https://<k8s-api>:<k8s-api-port> \
--deploy-mode cluster
--driver-java-options "-server -Xms40g -Xmn4g" \
--driver-memory 40g \
--num-executors 10 \
--executor-memory 100g \
--executor-cores 32 \
--conf spark.kubernetes.container.image=<sparkimg> \
SystemDS.jar -f test.dml -stats -explain -args …
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▪ Configuration for YARN/Mesos
▪ Set spark.dynamicAllocation.enabled = true

▪ Set spark.shuffle.service.enabled = true (robustness w/ stragglers)

▪ Executor Addition/Removal
▪ Approach: look at task pressure (pending tasks / idle executors)

▪ Increase exponentially (add 1, 2, 4, 8) if 

pending tasks for spark.dynamicAllocation.schedulerBacklogTimeout

▪ Decrease executors they are idle for spark.dynamicAllocation.executorIdleTimeout

Spark Dynamic Allocation [https://spark.apache.org/docs/
latest/job-scheduling.html]

spark-submit \
--conf spark.shuffle.service.enabled=true \
--conf spark.dynamicAllocation.enabled=true \
--conf spark.dynamicAllocation.minExecutors=0 \
--conf spark.dynamicAllocation.initialExecutors=1 \
--conf spark.dynamicAllocation.maxExecutors=20 

https://spark.apache.org/docs/latest/job-scheduling.html
https://spark.apache.org/docs/latest/job-scheduling.html
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▪ Sparrow Overview
▪ Decentralized, randomized task scheduling with constraints, fair sharing

▪ Problems: Low latency, quality placement, fault tolerance, high throughput

▪ Approach
▪ Baselines: Random, Per-task (power of two choices)

▪ New Techniques: Batch Scheduling, Late Binding

Sparrow Task Scheduling [Kay Ousterhout, Patrick Wendell, Matei
Zaharia, Ion Stoica: Sparrow: distributed, 

low latency scheduling. SOSP 2013]

Baseline: Per-task sampling Batch sampling w/ late binding
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▪ Resource Optimizer for ML Workloads
▪ Optimize ML program resource configurations via online what-if analysis and plan generation

▪ Minimize cost w/o unnecessary overprovisioning, program-aware enumeration (e.g., mem estimates)

▪ Deployment
▪ Initial Compilation

▪ Dynamic 

Recompilation 

during Runtime

Resource Elasticity in SystemML

Data 
& 

Script

[Botong Huang et al.: Resource 
Elasticity for Large-Scale Machine 

Learning. SIGMOD 2015]
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▪ Definition Serverless
▪ FaaS: functions-as-a-service (event-driven, stateless input-output mapping)

▪ Infrastructure for deployment and auto-scaling of APIs/functions

▪ Examples: Amazon Lambda, Microsoft Azure Functions, etc

▪ Example

Serverless Computing (FaaS)

Event Source 
(e.g., cloud 

services)

Lambda Functions

Other APIs 
and Services

Auto scaling 
Pay-per-request 

(1M x 100ms = 0.2$)

[Joseph M. Hellerstein et al: Serverless
Computing: One Step Forward, Two 

Steps Back. CIDR 2019]

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

public class MyHandler implements RequestHandler<Tuple, MyResponse> {
@Override
public MyResponse handleRequest(Tuple input, Context context) {

return expensiveModelScoring(input); // with read-only model
}

}
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▪ Motivation, Terminology, and Fundamentals

▪ Resource Allocation, Isolation, and Monitoring

▪ Task Scheduling and Elasticity

▪ Next Lectures (Large-scale Data Management and Analysis)
▪ Happy Holidays

▪ 10 Distributed Data Storage [Jan 11]

▪ 11 Distributed, Data-Parallel Computation [Jan 18]

▪ 12 Distributed Stream Processing [Jan 25]

▪ 13 Distributed Machine Learning Systems [Feb 01]

Summary and Q&A
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