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Announcements / Administrative Items

▪ #1 Video Recording
▪ Hybrid lectures: in-person H 0107, zoom live streaming, video recording

▪ https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

▪ #2 Exam Registration
▪ Time slots: Feb 08, 4pm or Feb 15, 4pm (start 4.15pm, end 5.45pm, 48 seats per exam) 

▪ Sign up for exam via ISIS (once you submitted the project/exercise), opens Jan 18

▪ [If more capacity needed, additional slots Feb 08, 6pm and Feb 15, 6pm]

▪ #3 Exam Preparation
▪ Walk-through previous exam at end of last lecture Feb 01

▪ Additional office hour: Feb 02, 4pm-5.30pm (in-person TEL 815, or virtually via zoom) 

Feb 08: 33/48
Feb 15: 30/48

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
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▪ #4 Elections

Announcements / Administrative Items, cont.
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Course Outline Part B:
Large-Scale Data Management and Analysis

08 Cloud Computing Fundamentals

09 Cloud Resource Management and Scheduling

10 Distributed Data Storage

11 Distributed Data-Parallel Computation

12 Distributed Stream
Processing

13 Distributed Machine 
Learning Systems

Compute/
Storage

Infra
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▪ Data Stream Processing

▪ Distributed Stream Processing

▪ Data Stream Mining

Agenda
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Data Stream Processing
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▪ Ubiquitous Data Streams
▪ Event and message streams (e.g., click stream, twitter, etc)

▪ Sensor networks, IoT, and monitoring (traffic, env, networks)

▪ Stream Processing Architecture
▪ Infinite input streams, often with window semantics

▪ Continuous queries

(standing queries)

Stream Processing Terminology

DBMS

Queries

Stored Data

“data at 
rest”

Stored (Continuous) 
Queries

Input 
Stream

Output 
Stream

Stream Processing Engines

“data in 
motion”
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▪ Use Cases
▪ Monitoring and alerting (notifications on events / patterns)

▪ Real-time reporting (aggregate statistics for dashboards)

▪ Real-time ETL and event-driven data updates 

▪ Real-time decision making (fraud detection)

▪ Data stream mining (summary statistics w/ limited memory)

▪ Data Stream
▪ Unbounded stream of data tuples S = (s1, s2, …) with si = (ti, di)

▪ See DM 10 NoSQL Systems (time series) 

▪ Real-time Latency Requirements
▪ Real-time: guaranteed task completion by a given deadline (30 fps)   

▪ Near Real-time: few milliseconds to seconds 

▪ In practice, used with much weaker meaning

Stream Processing Terminology, cont.

Continuously 
active
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▪ 2000s 
▪ Data stream management systems (DSMS, mostly academic prototypes):

STREAM (Stanford’01), Aurora (Brown/MIT/Brandeis’02) → Borealis (‘05), 

NiagaraCQ (Wisconsin), TelegraphCQ (Berkeley’03), and many others

➔ but mostly unsuccessful in industry/practice

▪ Message-oriented middleware and Enterprise Application Integration (EAI):

IBM Message Broker, SAP eXchange Infra., MS Biztalk Server, TransConnect

▪ 2010s
▪ Distributed stream processing engines, and “unified” batch/stream processing 

▪ Proprietary systems: Google Cloud Dataflow, MS StreamInsight / 

Azure Stream Analytics, IBM InfoSphere Streams / Streaming Analytics, AWS Kinesis

▪ Open-source systems: Apache Spark Streaming (Databricks), 

Apache Flink (Data Artisans), Apache Kafka (Confluent), Apache Storm

History of Stream Processing Systems
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▪ Basic System Architecture
▪ Data flow graphs (potentially w/ multiple consumers)

▪ Nodes: asynchronous operations w/ state

(e.g., separate threads)

▪ Edges: data dependencies (tuple/message streams)

▪ Push model: data production controlled by source

▪ Operator Model
▪ Read from input queue

▪ Write to potentially 

many output queues

▪ Example Selection σA=7

System Architecture – Native Streaming

while( !stopped ) {
r = in.dequeue(); // blocking
if( pred(r.A) )   // A==7

for( Queue o : out )
o.enqueue(r); // blocking

}

Archive

State



Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing11

▪ Multi-Query Optimization
▪ Given set of continuous queries (deployed), compile minimal DAG w/o redundancy 

(see DM 08 Physical Design MV) ➔ subexpression elimination

▪ Operator and Queue Sharing
▪ Operator sharing: complex ops w/ multiple predicates for adaptive reordering

▪ Queue sharing: avoid duplicates in output queues via masks

System Architecture – Sharing 

SAS SUS SEU

σa σb σc

∪

T1

⋈A=B

SUS SEU

σb σc

∪

T2

Ad

σd

⋈A=B

SUS SEU

σb σc

∪

T2

Ad

σd

SAS

σa

∪

T1
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▪ #1 Back Pressure
▪ Graceful handling of overload w/o data loss

▪ Slow down sources

▪ E.g., blocking queues

▪ #2 Load Shedding
▪ #1 Random-sampling-based load shedding 

▪ #2 Relevance-based load shedding

▪ #3 Summary-based load shedding (synopses)

▪ Given SLA, select queries and shedding placement

that minimize error and satisfy constraints

▪ #3 Distributed Stream Processing (see next part)
▪ Data flow partitioning (distribute the query)

▪ Key range partitioning (distribute the data stream)

System Architecture – Handling Overload

B CA

Self-adjusting operator scheduling
Pipeline runs at rate of slowest op

2ms9ms3ms

[Nesime Tatbul et al: Load 
Shedding in a Data Stream 

Manager. VLDB 2003]
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▪ Event Time
▪ Real time when the event/data item was created

▪ Ingestion Time
▪ System time when the data item was received

▪ Processing Time
▪ System time when the data item is processed

▪ In Practice
▪ Delayed and unordered data items

▪ Use of heuristics (e.g., water marks = delay threshold)

▪ Use of more complex triggers (speculative and late results)

Time (Event, System, Processing)

Event Time

Processing 
Time

skew ideal



Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing14

▪ #1 At Most Once
▪ “Send and forget”, ensure data is never counted twice

▪ Might cause data loss on failures

▪ #2 At Least Once
▪ “Store and forward” or acknowledgements from receiver, 

replay stream from a checkpoint on failures

▪ Might create incorrect state (processed multiple times)

▪ #3 Exactly Once
▪ “Store and forward” w/ guarantees regarding state updates and sent msgs

▪ Often via dedicated transaction mechanisms 

Durability and Delivery Guarantees

03 Message-oriented 
Middleware, EAI, and 

Replication
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▪ Windowing Approach
▪ Many operations like joins/aggregation undefined over unbounded streams

▪ Compute operations over windows of (a) time or (b) elements counts

▪ #1 Tumbling Window
▪ Every data item is only part of a single window

▪ Aka Jumping window

▪ #2 Sliding Window
▪ Time- or tuple-based sliding windows

▪ Insert new and expire old data items

Window Semantics

12:05 12:07 12:09

size = 2min

12:05 12:07 12:09

size = 2min, step = 1min 
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▪ Basic Stream Join
▪ Tumbling window: use classic join methods

▪ Sliding window (symmetric for both R and S) 

▪ Applies to arbitrary join pred
▪ See DM 08 Query Processing (NLJ)

▪ Excursus: How Soccer Players Would do Stream Joins
▪ Handshake-join w/ 2-phase forwarding

Stream Joins

For each new r in R:
1. Scan window of stream S 

to find match tuples
2. Insert new r into window 

of stream R 
3. Invalidate expired tuples 

in window of stream R 

[Jens Teubner, René Müller: How 
soccer players would do stream 

joins. SIGMOD 2011]
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▪ Double-Pipelined Hash Join
▪ Join of bounded streams (or unbounded w/ invalidation)

▪ Equi join predicate, symmetric and non-blocking

▪ For every incoming tuple (e.g. left): 

probe (right)+emit, and build (left)

Stream Joins, cont.
[Zachary G. Ives, Daniela Florescu, Marc 

Friedman, Alon Y. Levy, Daniel S. Weld: An 
Adaptive Query Execution System for Data 

Integration. SIGMOD 1999]

⋈RID=SID
HR,RID HS,SID

1 ab

2 cd

1 ef

7 gh

7 zy

1 xw

7 vu

HR,RID

1, 2

HR,RID

1, 2, 7

HS,SID

7

HS,SID

1, 7

Stream 
R

Stream 
S

emit 1(abxw) 

emit 1(efxw) 

emit 7(ghzy) 

emit 7(ghvu) 

HS,SID

1, 7, 7

HR,RID

1, 1, 2

HR,RID

1, 1, 2, 7
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Distributed Stream Processing
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▪ Example Use Case
▪ AT&T network monitoring with Gigascope (e.g., OC768 network)

▪ 2x40 Gbit/s traffic → 112M packets/s → 26 cycles/tuple on 3Ghz CPU

▪ Complex query sets (apps w/ ~50 queries) and massive data rates

▪ Baseline Query 
Execution Plan

Query-Aware Stream Partitioning
[Theodore Johnson, S. Muthu Muthukrishnan, 

Vladislav Shkapenyuk, Oliver Spatscheck: 
Query-aware partitioning for monitoring 

massive network data streams. SIGMOD 2008]

Query flows:
SELECT tb, srcIP, destIP, COUNT(*) AS cnt

FROM TCP WHERE ... 
GROUP BY time/60 AS tb,srcIP,destIP

Query heavy_flows:
SELECT tb,srcIP,max(cnt) as max_cnt

FROM flows
GROUP BY tb, srcIP

Query flow_pairs:
SELECT S1.tb, S1.srcIP, S1.max, S2.max

FROM heavy_flows S1, heavy_flows S2
WHERE S1.srcIP = S2.srcIP and S1.tb = S2.tb+1

γ1

σ

TCP

Low-level filtering

Low-level aggregation

γ2High-level aggregation

⋈tb=tb+1Self join
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▪ Optimized Query Execution Plan
▪ Distributed plan operators

▪ Pipeline and task parallelism

Query-Aware Stream Partitioning, cont.

σ

TCP

γ1

γ2

⋈tb=tb+1

γ2

⋈tb=tb+1

∪

Host 1

σ

TCP

σ

TCP

σ

TCP

Host 2 Host 3

Host 4

σ

TCP

Partitioning 
on srcIP

γ1 γ1 γ1

γ1
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▪ Large-Scale Stream Processing
▪ Limited pipeline parallelism and task parallelism (independent subqueries)

▪ Combine with data-parallelism over stream groups

▪ #1 Shuffle Grouping
▪ Tuples are randomly distributed across consumer tasks

▪ Good load balance

▪ #2 Fields Grouping
▪ Tuples partitioned by grouping attributes

▪ Guarantees order within keys, but load imbalance if skew

▪ #3 Partial Key Grouping
▪ Apply “power of two choices” to streaming

▪ Key splitting: select among 2 candidates per key (associative agg) 

▪ #4 Others: Global, None, Direct, Local

Stream Group Partitioning

[Md Anis Uddin Nasir et al: The 
power of both choices: Practical load 

balancing for distributed stream 
processing engines. ICDE 2015]

11 Distributed, Data-Parallel 
Computation
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▪ Example Topology DAG
▪ Spouts: sources of streams 

▪ Bolts: UDF compute ops 

▪ Tasks mapped to worker processes

and executors (threads)

Example Apache Storm

Spout 1

Bolt 1

Bolt 2

Bolt 3

Config conf = new Config();
conf.setNumWorkers(3);

topBuilder.setSpout("Spout1", new FooS1(), 2);
topBuilder.setBolt("Bolt1", new FooB1(), 3).shuffleGrouping("Spout1");
topBuilder.setBolt("Bolt2", new FooB2(), 2).shuffleGrouping("Spout1");
topBuilder.setBolt("Bolt3", new FooB3(), 2)

.shuffleGrouping("Bolt1").shuffleGrouping("Bolt2");

StormSubmitter.submitTopology(..., topBuilder.createTopology());
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▪ Motivation
▪ Heavy use of Apache Storm at Twitter

▪ Issues: debugging, performance, shared 

cluster resources, back pressure mechanism 

▪ Twitter Heron
▪ API-compatible distributed streaming engine

▪ De-facto streaming engine at Twitter since 2014

▪ Dhalion (Heron Extension)
▪ Automatically reconfigure Heron topologies 

to meet throughput SLO

▪ Now back pressure implemented in Apache Storm 2.0 (May 2019) 

Example Twitter Heron

Data per 
day

Cluster 
Size 

# of 
Topologies

# of Msgs
per day

[Credit: Karthik Ramasamy]

[Sanjeev Kulkarni et al: Twitter 
Heron: Stream Processing at 

Scale. SIGMOD 2015]

[Avrilia Floratou et al: Dhalion: Self-
Regulating Stream Processing in 

Heron. PVLDB 2017]



Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing24

▪ Motivation
▪ Fault tolerance (low overhead, fast recovery)

▪ Combination w/ distributed batch analytics

▪ Discretized Streams (DStream)
▪ Batching of input tuples (100ms – 1s) based on ingest time

▪ Periodically run distributed jobs of stateless, deterministic tasks→ DStreams

▪ State of all tasks materialized as RDDs, recovery via lineage

▪ Criticism: High latency, required for batching

Discretized Stream (Batch) Computation

[Matei Zaharia et al: Discretized 
streams: fault-tolerant streaming 

computation at scale. SOSP 2013]

Sequence of immutable, 
partitioned datasets (RDDs)

Batch 
Computation
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▪ Apache Spark Streaming (Databricks)
▪ Micro-batch computation with exactly-once guarantee

▪ Back-pressure and water mark mechanisms

▪ Structured streaming via SQL (2.0), continuous streaming (2.3)

▪ Apache Flink (Data Artisans, now Alibaba)
▪ Tuple-at-a-time with exactly-once guarantee

▪ Back-pressure and water mark mechanisms

▪ Batch processing viewed as special case of streaming

▪ Google Cloud Dataflow
▪ Tuple-at-a-time with exactly-once guarantee

▪ MR → FlumeJava→MillWheel→ Dataflow (managed batch/stream service)

➔ Apache Beam (API+SDK from Dataflow)
▪ Abstraction for Spark, Flink, Dataflow w/ common API, etc

▪ Individual runners for the different runtime frameworks

Unified Batch/Streaming Engines

[https://flink.apache.org/news/
2019/02/13/unified-batch-

streaming-blink.html]

[T. Akidau et al.: The Dataflow Model: A Practical 
Approach to Balancing Correctness, Latency, and 
Cost in Massive-Scale, Unbounded, Out-of-Order 

Data Processing. PVLDB 2015]

https://flink.apache.org/news/2019/02/13/unified-batch-streaming-blink.html
https://flink.apache.org/news/2019/02/13/unified-batch-streaming-blink.html
https://flink.apache.org/news/2019/02/13/unified-batch-streaming-blink.html


Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing26

▪ #1 Static
▪ Static, operator-level key partitioning

▪ #2 Resource-Centric
▪ Dynamic, operator-level key partitioning

▪ Global synchronization for 

key repartitioning and state migration

▪ #3 Executor-Centric
▪ Static, operator-level key partitioning

▪ CPU core reassignments 

via local and remote tasks 

Resource Elasticity [Li Wang, Tom Z. J. Fu, Richard T. B. Ma, Marianne 
Winslett, Zhenjie Zhang: Elasticutor: Rapid Elasticity for 

Realtime Stateful Stream Processing. SIGMOD 2019]
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Data Stream Mining

Selected Example Algorithms 
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▪ Streaming Analysis Model
▪ Independent of actual storage model and processing system

▪ Unbounded stream of data item S = (s1, s2, …)

▪ Evaluate function f(S) as aggregate over stream or window of stream

▪ Standing vs ad-hoc queries 

▪ Recap: Classification of Aggregates
▪ Additive aggregation functions (SUM, COUNT)

▪ Semi-additive aggregation functions (MIN, MAX)

▪ Additively computable aggregation functions (AVG, STDDEV, VAR)

▪ Aggregation functions (MEDIAN, QUANTILES)→ approximations

➔ Selected Algorithms
▪ Higher-Order Statistics (e.g., STDDEV)

▪ Approximate # Distinct Items (e.g., KMV, HyperLogLog)

▪ Approximate Heavy Hitters (e.g. CountMin-Sketch)

Overview Stream Mining

02 Data Warehousing, 
ETL, and SQL/OLAP
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▪ Overview Order Statistics
▪ Many order statistics computable via pth central moment

▪ Examples: Variance 𝜎2, skewness, kurtosis

▪ Incremental Computation of Variance
▪ #1 Default 2-pass algorithm (mean, and squared diffs)

▪ #2 Textbook 1-pass algorithm (incrementally maintainable)

➔ numerically instable

▪ #3 Incremental update rules for mp

with Kahan addition (variance since 1979)

Higher-Order Statistics

𝑚𝑝 =
1

𝑛


𝑖=1

𝑛

𝑥𝑖 − ҧ𝑥 𝑝

𝜎2 =
𝑛

𝑛 − 1
𝑚2

1

𝑛


𝑖=1

𝑛

𝑥𝑖
2 −

1

𝑛2


𝑖=1

𝑛

𝑥𝑖

2

11 Distributed, 
Data-Parallel 
Computation

[Yuanyuan Tian, Shirish Tatikonda, Berthold 
Reinwald: Scalable and Numerically Stable 
Descriptive Statistics in SystemML. ICDE 2012]
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▪ Problem 
▪ Estimate # distinct items in a dataset / data stream w/ limited memory

▪ Support for set operations (union, intersect, difference)

▪ K-Minimum Values (KMV)
▪ Hash values 𝑑𝑖 to ℎ𝑖 ∈ [0,𝑀]

▪ Domain 𝑀 = 𝑂(𝐷2) to avoid 

collisions → 𝐎(𝒌 𝒍𝒐𝒈 𝑫) space

▪ Store k minimum hash values

(e.g., via priority queue) in

normalized form ℎ𝑖 ∈ [0,1]

▪ Basic estimator: 

▪ Unbiased estimator:

Number of Distinct Items

0 1

Duplicates yield 
same hash!

U(k=4)=0.24

𝐷𝑘
𝐵𝐸 = 𝑘/𝑈(𝑘)

𝐷𝑘
𝑈𝐵 = (𝑘 − 1)/𝑈(𝑘)

Example: 
16.67 vs 12.5

[Kevin S. Beyer, Peter J. Haas, Berthold Reinwald, Yannis
Sismanis, Rainer Gemulla: On synopses for distinct-value 

estimation under multiset operations. SIGMOD 2007]
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▪ KMV Set Operations
▪ Union and intersection directly

on partition synopses

▪ Difference via Augmented KMV 

(AKMV) that include counters of 

multiplicities of k-minimum values

▪ HyperLogLog
▪ Hash values and maintain maximum 

# of leading zeros p → 𝐷 = 2𝑝

▪ Stochastic averaging over m sub-streams

(p maintain in registers M)

▪ HyperLogLog++

Number of Distinct Items, cont.

0 1
𝐷 = 𝐴 ∪ 𝐵

𝐾𝑀𝑉(𝐷∪) ≡ 𝐾𝑀𝑉(𝐴) ⊕ 𝐾𝑀𝑉(𝐵)

[Stefan Heule, Marc Nunkesser, Alexander Hall: 
HyperLogLog in practice: algorithmic engineering of a state 

of the art cardinality estimation algorithm. EDBT 2013]

[P. Flajolet, Éric Fusy, O. Gandouet, and F. Meunier: 
Hyperloglog: The analysis of a near-optimal 

cardinality estimation algorithm. AOFA 2007]

11 Distributed, Data-Parallel 
Computation
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▪ Problem
▪ Summarize stream in sketch/synopsis w/ limited memory

▪ Finding quantiles, frequent items (heavy hitters), etc

▪ Count-Min (CM) Sketch
▪ Two-dimensional count array of width w and depth d

▪ d hash functions map {1 … n} → {1 … w}

▪ Update (si,ci): compute d hashes for si

and increase counts of all locations

▪ Point query (si): compute d hashes for si

and estimate frequency as min(count[j,hj(si)])

Stream Summarization

Unlikely similar 
hash collisions

6 2 1

1 3 5

3 4 1 1

1 2 1 5

7 1 1

h1

h2

h3

h4

hd

[Graham Cormode, S. Muthukrishnan: An 
Improved Data Stream Summary: The Count-Min 

Sketch and Its Applications. LATIN 2004]
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▪ Data Stream Processing

▪ Distributed Stream Processing

▪ Data Stream Mining

▪ Next Lectures (Large-scale Data Management and Analysis)
▪ 13 Distributed Machine Learning Systems [Feb 01, 4pm]

▪ 14 Exam Preparation [Feb 01, 6pm]

Summary and Q&A
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