
Data Integration and Large-scale Analysis (DIA)
12 Distributed Stream Processing

Prof. Dr. Matthias Boehm
Technische Universität Berlin
Berlin Institute for the Foundations of Learning and Data
Big Data Engineering (DAMS Lab)

Last update: Jan 25, 2024

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing2

Announcements / Administrative Items

▪ #1 Video Recording
▪ Hybrid lectures: in-person H 0107, zoom live streaming, video recording

▪ https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

▪ #2 Exam Registration
▪ Time slots: Feb 08, 4pm or Feb 15, 4pm (start 4.15pm, end 5.45pm, 48 seats per exam)

▪ Sign up for exam via ISIS (once you submitted the project/exercise), opens Jan 18

▪ [If more capacity needed, additional slots Feb 08, 6pm and Feb 15, 6pm]

▪ #3 Exam Preparation
▪ Walk-through previous exam at end of last lecture Feb 01

▪ Additional office hour: Feb 02, 4pm-5.30pm (in-person TEL 815, or virtually via zoom)

Feb 08: 33/48
Feb 15: 30/48

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing3

▪ #4 Elections

Announcements / Administrative Items, cont.

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing4

Course Outline Part B:
Large-Scale Data Management and Analysis

08 Cloud Computing Fundamentals

09 Cloud Resource Management and Scheduling

10 Distributed Data Storage

11 Distributed Data-Parallel Computation

12 Distributed Stream
Processing

13 Distributed Machine
Learning Systems

Compute/
Storage

Infra

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing5

▪ Data Stream Processing

▪ Distributed Stream Processing

▪ Data Stream Mining

Agenda

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing6

Data Stream Processing

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing7

▪ Ubiquitous Data Streams
▪ Event and message streams (e.g., click stream, twitter, etc)

▪ Sensor networks, IoT, and monitoring (traffic, env, networks)

▪ Stream Processing Architecture
▪ Infinite input streams, often with window semantics

▪ Continuous queries

(standing queries)

Stream Processing Terminology

DBMS

Queries

Stored Data

“data at
rest”

Stored (Continuous)
Queries

Input
Stream

Output
Stream

Stream Processing Engines

“data in
motion”

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing8

▪ Use Cases
▪ Monitoring and alerting (notifications on events / patterns)

▪ Real-time reporting (aggregate statistics for dashboards)

▪ Real-time ETL and event-driven data updates

▪ Real-time decision making (fraud detection)

▪ Data stream mining (summary statistics w/ limited memory)

▪ Data Stream
▪ Unbounded stream of data tuples S = (s1, s2, …) with si = (ti, di)

▪ See DM 10 NoSQL Systems (time series)

▪ Real-time Latency Requirements
▪ Real-time: guaranteed task completion by a given deadline (30 fps)

▪ Near Real-time: few milliseconds to seconds

▪ In practice, used with much weaker meaning

Stream Processing Terminology, cont.

Continuously
active

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing9

▪ 2000s
▪ Data stream management systems (DSMS, mostly academic prototypes):

STREAM (Stanford’01), Aurora (Brown/MIT/Brandeis’02) → Borealis (‘05),

NiagaraCQ (Wisconsin), TelegraphCQ (Berkeley’03), and many others

➔ but mostly unsuccessful in industry/practice

▪ Message-oriented middleware and Enterprise Application Integration (EAI):

IBM Message Broker, SAP eXchange Infra., MS Biztalk Server, TransConnect

▪ 2010s
▪ Distributed stream processing engines, and “unified” batch/stream processing

▪ Proprietary systems: Google Cloud Dataflow, MS StreamInsight /

Azure Stream Analytics, IBM InfoSphere Streams / Streaming Analytics, AWS Kinesis

▪ Open-source systems: Apache Spark Streaming (Databricks),

Apache Flink (Data Artisans), Apache Kafka (Confluent), Apache Storm

History of Stream Processing Systems

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing10

▪ Basic System Architecture
▪ Data flow graphs (potentially w/ multiple consumers)

▪ Nodes: asynchronous operations w/ state

(e.g., separate threads)

▪ Edges: data dependencies (tuple/message streams)

▪ Push model: data production controlled by source

▪ Operator Model
▪ Read from input queue

▪ Write to potentially

many output queues

▪ Example Selection σA=7

System Architecture – Native Streaming

while(!stopped) {
r = in.dequeue(); // blocking
if(pred(r.A)) // A==7

for(Queue o : out)
o.enqueue(r); // blocking

}

Archive

State

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing11

▪ Multi-Query Optimization
▪ Given set of continuous queries (deployed), compile minimal DAG w/o redundancy

(see DM 08 Physical Design MV) ➔ subexpression elimination

▪ Operator and Queue Sharing
▪ Operator sharing: complex ops w/ multiple predicates for adaptive reordering

▪ Queue sharing: avoid duplicates in output queues via masks

System Architecture – Sharing

SAS SUS SEU

σa σb σc

∪

T1

⋈A=B

SUS SEU

σb σc

∪

T2

Ad

σd

⋈A=B

SUS SEU

σb σc

∪

T2

Ad

σd

SAS

σa

∪

T1

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing12

▪ #1 Back Pressure
▪ Graceful handling of overload w/o data loss

▪ Slow down sources

▪ E.g., blocking queues

▪ #2 Load Shedding
▪ #1 Random-sampling-based load shedding

▪ #2 Relevance-based load shedding

▪ #3 Summary-based load shedding (synopses)

▪ Given SLA, select queries and shedding placement

that minimize error and satisfy constraints

▪ #3 Distributed Stream Processing (see next part)
▪ Data flow partitioning (distribute the query)

▪ Key range partitioning (distribute the data stream)

System Architecture – Handling Overload

B CA

Self-adjusting operator scheduling
Pipeline runs at rate of slowest op

2ms9ms3ms

[Nesime Tatbul et al: Load
Shedding in a Data Stream

Manager. VLDB 2003]

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing13

▪ Event Time
▪ Real time when the event/data item was created

▪ Ingestion Time
▪ System time when the data item was received

▪ Processing Time
▪ System time when the data item is processed

▪ In Practice
▪ Delayed and unordered data items

▪ Use of heuristics (e.g., water marks = delay threshold)

▪ Use of more complex triggers (speculative and late results)

Time (Event, System, Processing)

Event Time

Processing
Time

skew ideal

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing14

▪ #1 At Most Once
▪ “Send and forget”, ensure data is never counted twice

▪ Might cause data loss on failures

▪ #2 At Least Once
▪ “Store and forward” or acknowledgements from receiver,

replay stream from a checkpoint on failures

▪ Might create incorrect state (processed multiple times)

▪ #3 Exactly Once
▪ “Store and forward” w/ guarantees regarding state updates and sent msgs

▪ Often via dedicated transaction mechanisms

Durability and Delivery Guarantees

03 Message-oriented
Middleware, EAI, and

Replication

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing15

▪ Windowing Approach
▪ Many operations like joins/aggregation undefined over unbounded streams

▪ Compute operations over windows of (a) time or (b) elements counts

▪ #1 Tumbling Window
▪ Every data item is only part of a single window

▪ Aka Jumping window

▪ #2 Sliding Window
▪ Time- or tuple-based sliding windows

▪ Insert new and expire old data items

Window Semantics

12:05 12:07 12:09

size = 2min

12:05 12:07 12:09

size = 2min, step = 1min

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing16

▪ Basic Stream Join
▪ Tumbling window: use classic join methods

▪ Sliding window (symmetric for both R and S)

▪ Applies to arbitrary join pred
▪ See DM 08 Query Processing (NLJ)

▪ Excursus: How Soccer Players Would do Stream Joins
▪ Handshake-join w/ 2-phase forwarding

Stream Joins

For each new r in R:
1. Scan window of stream S

to find match tuples
2. Insert new r into window

of stream R
3. Invalidate expired tuples

in window of stream R

[Jens Teubner, René Müller: How
soccer players would do stream

joins. SIGMOD 2011]

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing17

▪ Double-Pipelined Hash Join
▪ Join of bounded streams (or unbounded w/ invalidation)

▪ Equi join predicate, symmetric and non-blocking

▪ For every incoming tuple (e.g. left):

probe (right)+emit, and build (left)

Stream Joins, cont.
[Zachary G. Ives, Daniela Florescu, Marc

Friedman, Alon Y. Levy, Daniel S. Weld: An
Adaptive Query Execution System for Data

Integration. SIGMOD 1999]

⋈RID=SID
HR,RID HS,SID

1 ab

2 cd

1 ef

7 gh

7 zy

1 xw

7 vu

HR,RID

1, 2

HR,RID

1, 2, 7

HS,SID

7

HS,SID

1, 7

Stream
R

Stream
S

emit 1(abxw)

emit 1(efxw)

emit 7(ghzy)

emit 7(ghvu)

HS,SID

1, 7, 7

HR,RID

1, 1, 2

HR,RID

1, 1, 2, 7

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing18

Distributed Stream Processing

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing19

▪ Example Use Case
▪ AT&T network monitoring with Gigascope (e.g., OC768 network)

▪ 2x40 Gbit/s traffic → 112M packets/s → 26 cycles/tuple on 3Ghz CPU

▪ Complex query sets (apps w/ ~50 queries) and massive data rates

▪ Baseline Query
Execution Plan

Query-Aware Stream Partitioning
[Theodore Johnson, S. Muthu Muthukrishnan,

Vladislav Shkapenyuk, Oliver Spatscheck:
Query-aware partitioning for monitoring

massive network data streams. SIGMOD 2008]

Query flows:
SELECT tb, srcIP, destIP, COUNT(*) AS cnt

FROM TCP WHERE ...
GROUP BY time/60 AS tb,srcIP,destIP

Query heavy_flows:
SELECT tb,srcIP,max(cnt) as max_cnt

FROM flows
GROUP BY tb, srcIP

Query flow_pairs:
SELECT S1.tb, S1.srcIP, S1.max, S2.max

FROM heavy_flows S1, heavy_flows S2
WHERE S1.srcIP = S2.srcIP and S1.tb = S2.tb+1

γ1

σ

TCP

Low-level filtering

Low-level aggregation

γ2High-level aggregation

⋈tb=tb+1Self join

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing20

▪ Optimized Query Execution Plan
▪ Distributed plan operators

▪ Pipeline and task parallelism

Query-Aware Stream Partitioning, cont.

σ

TCP

γ1

γ2

⋈tb=tb+1

γ2

⋈tb=tb+1

∪

Host 1

σ

TCP

σ

TCP

σ

TCP

Host 2 Host 3

Host 4

σ

TCP

Partitioning
on srcIP

γ1 γ1 γ1

γ1

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing21

▪ Large-Scale Stream Processing
▪ Limited pipeline parallelism and task parallelism (independent subqueries)

▪ Combine with data-parallelism over stream groups

▪ #1 Shuffle Grouping
▪ Tuples are randomly distributed across consumer tasks

▪ Good load balance

▪ #2 Fields Grouping
▪ Tuples partitioned by grouping attributes

▪ Guarantees order within keys, but load imbalance if skew

▪ #3 Partial Key Grouping
▪ Apply “power of two choices” to streaming

▪ Key splitting: select among 2 candidates per key (associative agg)

▪ #4 Others: Global, None, Direct, Local

Stream Group Partitioning

[Md Anis Uddin Nasir et al: The
power of both choices: Practical load

balancing for distributed stream
processing engines. ICDE 2015]

11 Distributed, Data-Parallel
Computation

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing22

▪ Example Topology DAG
▪ Spouts: sources of streams

▪ Bolts: UDF compute ops

▪ Tasks mapped to worker processes

and executors (threads)

Example Apache Storm

Spout 1

Bolt 1

Bolt 2

Bolt 3

Config conf = new Config();
conf.setNumWorkers(3);

topBuilder.setSpout("Spout1", new FooS1(), 2);
topBuilder.setBolt("Bolt1", new FooB1(), 3).shuffleGrouping("Spout1");
topBuilder.setBolt("Bolt2", new FooB2(), 2).shuffleGrouping("Spout1");
topBuilder.setBolt("Bolt3", new FooB3(), 2)

.shuffleGrouping("Bolt1").shuffleGrouping("Bolt2");

StormSubmitter.submitTopology(..., topBuilder.createTopology());

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing23

▪ Motivation
▪ Heavy use of Apache Storm at Twitter

▪ Issues: debugging, performance, shared

cluster resources, back pressure mechanism

▪ Twitter Heron
▪ API-compatible distributed streaming engine

▪ De-facto streaming engine at Twitter since 2014

▪ Dhalion (Heron Extension)
▪ Automatically reconfigure Heron topologies

to meet throughput SLO

▪ Now back pressure implemented in Apache Storm 2.0 (May 2019)

Example Twitter Heron

Data per
day

Cluster
Size

of
Topologies

of Msgs
per day

[Credit: Karthik Ramasamy]

[Sanjeev Kulkarni et al: Twitter
Heron: Stream Processing at

Scale. SIGMOD 2015]

[Avrilia Floratou et al: Dhalion: Self-
Regulating Stream Processing in

Heron. PVLDB 2017]

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing24

▪ Motivation
▪ Fault tolerance (low overhead, fast recovery)

▪ Combination w/ distributed batch analytics

▪ Discretized Streams (DStream)
▪ Batching of input tuples (100ms – 1s) based on ingest time

▪ Periodically run distributed jobs of stateless, deterministic tasks→ DStreams

▪ State of all tasks materialized as RDDs, recovery via lineage

▪ Criticism: High latency, required for batching

Discretized Stream (Batch) Computation

[Matei Zaharia et al: Discretized
streams: fault-tolerant streaming

computation at scale. SOSP 2013]

Sequence of immutable,
partitioned datasets (RDDs)

Batch
Computation

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing25

▪ Apache Spark Streaming (Databricks)
▪ Micro-batch computation with exactly-once guarantee

▪ Back-pressure and water mark mechanisms

▪ Structured streaming via SQL (2.0), continuous streaming (2.3)

▪ Apache Flink (Data Artisans, now Alibaba)
▪ Tuple-at-a-time with exactly-once guarantee

▪ Back-pressure and water mark mechanisms

▪ Batch processing viewed as special case of streaming

▪ Google Cloud Dataflow
▪ Tuple-at-a-time with exactly-once guarantee

▪ MR → FlumeJava→MillWheel→ Dataflow (managed batch/stream service)

➔ Apache Beam (API+SDK from Dataflow)
▪ Abstraction for Spark, Flink, Dataflow w/ common API, etc

▪ Individual runners for the different runtime frameworks

Unified Batch/Streaming Engines

[https://flink.apache.org/news/
2019/02/13/unified-batch-

streaming-blink.html]

[T. Akidau et al.: The Dataflow Model: A Practical
Approach to Balancing Correctness, Latency, and
Cost in Massive-Scale, Unbounded, Out-of-Order

Data Processing. PVLDB 2015]

https://flink.apache.org/news/2019/02/13/unified-batch-streaming-blink.html
https://flink.apache.org/news/2019/02/13/unified-batch-streaming-blink.html
https://flink.apache.org/news/2019/02/13/unified-batch-streaming-blink.html

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing26

▪ #1 Static
▪ Static, operator-level key partitioning

▪ #2 Resource-Centric
▪ Dynamic, operator-level key partitioning

▪ Global synchronization for

key repartitioning and state migration

▪ #3 Executor-Centric
▪ Static, operator-level key partitioning

▪ CPU core reassignments

via local and remote tasks

Resource Elasticity [Li Wang, Tom Z. J. Fu, Richard T. B. Ma, Marianne
Winslett, Zhenjie Zhang: Elasticutor: Rapid Elasticity for

Realtime Stateful Stream Processing. SIGMOD 2019]

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing27

Data Stream Mining

Selected Example Algorithms

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing28

▪ Streaming Analysis Model
▪ Independent of actual storage model and processing system

▪ Unbounded stream of data item S = (s1, s2, …)

▪ Evaluate function f(S) as aggregate over stream or window of stream

▪ Standing vs ad-hoc queries

▪ Recap: Classification of Aggregates
▪ Additive aggregation functions (SUM, COUNT)

▪ Semi-additive aggregation functions (MIN, MAX)

▪ Additively computable aggregation functions (AVG, STDDEV, VAR)

▪ Aggregation functions (MEDIAN, QUANTILES)→ approximations

➔ Selected Algorithms
▪ Higher-Order Statistics (e.g., STDDEV)

▪ Approximate # Distinct Items (e.g., KMV, HyperLogLog)

▪ Approximate Heavy Hitters (e.g. CountMin-Sketch)

Overview Stream Mining

02 Data Warehousing,
ETL, and SQL/OLAP

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing29

▪ Overview Order Statistics
▪ Many order statistics computable via pth central moment

▪ Examples: Variance 𝜎2, skewness, kurtosis

▪ Incremental Computation of Variance
▪ #1 Default 2-pass algorithm (mean, and squared diffs)

▪ #2 Textbook 1-pass algorithm (incrementally maintainable)

➔ numerically instable

▪ #3 Incremental update rules for mp

with Kahan addition (variance since 1979)

Higher-Order Statistics

𝑚𝑝 =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 − ҧ𝑥 𝑝

𝜎2 =
𝑛

𝑛 − 1
𝑚2

1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖
2 −

1

𝑛2
෍

𝑖=1

𝑛

𝑥𝑖

2

11 Distributed,
Data-Parallel
Computation

[Yuanyuan Tian, Shirish Tatikonda, Berthold
Reinwald: Scalable and Numerically Stable
Descriptive Statistics in SystemML. ICDE 2012]

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing30

▪ Problem
▪ Estimate # distinct items in a dataset / data stream w/ limited memory

▪ Support for set operations (union, intersect, difference)

▪ K-Minimum Values (KMV)
▪ Hash values 𝑑𝑖 to ℎ𝑖 ∈ [0,𝑀]

▪ Domain 𝑀 = 𝑂(𝐷2) to avoid

collisions → 𝐎(𝒌 𝒍𝒐𝒈 𝑫) space

▪ Store k minimum hash values

(e.g., via priority queue) in

normalized form ℎ𝑖 ∈ [0,1]

▪ Basic estimator:

▪ Unbiased estimator:

Number of Distinct Items

0 1

Duplicates yield
same hash!

U(k=4)=0.24

෡𝐷𝑘
𝐵𝐸 = 𝑘/𝑈(𝑘)

෡𝐷𝑘
𝑈𝐵 = (𝑘 − 1)/𝑈(𝑘)

Example:
16.67 vs 12.5

[Kevin S. Beyer, Peter J. Haas, Berthold Reinwald, Yannis
Sismanis, Rainer Gemulla: On synopses for distinct-value

estimation under multiset operations. SIGMOD 2007]

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing31

▪ KMV Set Operations
▪ Union and intersection directly

on partition synopses

▪ Difference via Augmented KMV

(AKMV) that include counters of

multiplicities of k-minimum values

▪ HyperLogLog
▪ Hash values and maintain maximum

of leading zeros p → ෡𝐷 = 2𝑝

▪ Stochastic averaging over m sub-streams

(p maintain in registers M)

▪ HyperLogLog++

Number of Distinct Items, cont.

0 1
𝐷 = 𝐴 ∪ 𝐵

𝐾𝑀𝑉(𝐷∪) ≡ 𝐾𝑀𝑉(𝐴) ⊕ 𝐾𝑀𝑉(𝐵)

[Stefan Heule, Marc Nunkesser, Alexander Hall:
HyperLogLog in practice: algorithmic engineering of a state

of the art cardinality estimation algorithm. EDBT 2013]

[P. Flajolet, Éric Fusy, O. Gandouet, and F. Meunier:
Hyperloglog: The analysis of a near-optimal

cardinality estimation algorithm. AOFA 2007]

11 Distributed, Data-Parallel
Computation

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing32

▪ Problem
▪ Summarize stream in sketch/synopsis w/ limited memory

▪ Finding quantiles, frequent items (heavy hitters), etc

▪ Count-Min (CM) Sketch
▪ Two-dimensional count array of width w and depth d

▪ d hash functions map {1 … n} → {1 … w}

▪ Update (si,ci): compute d hashes for si

and increase counts of all locations

▪ Point query (si): compute d hashes for si

and estimate frequency as min(count[j,hj(si)])

Stream Summarization

Unlikely similar
hash collisions

6 2 1

1 3 5

3 4 1 1

1 2 1 5

7 1 1

h1

h2

h3

h4

hd

[Graham Cormode, S. Muthukrishnan: An
Improved Data Stream Summary: The Count-Min

Sketch and Its Applications. LATIN 2004]

Matthias Boehm | FG DAMS | DIA WiSe 2023/24 – 12 Distributed Stream Processing33

▪ Data Stream Processing

▪ Distributed Stream Processing

▪ Data Stream Mining

▪ Next Lectures (Large-scale Data Management and Analysis)
▪ 13 Distributed Machine Learning Systems [Feb 01, 4pm]

▪ 14 Exam Preparation [Feb 01, 6pm]

Summary and Q&A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

