
Programmierpraktikum: Datensysteme
03 Background Transaction Processing

Prof. Dr. Matthias Boehm
Technische Universität Berlin
Berlin Institute for the Foundations of Learning and Data
Big Data Engineering (DAMS Lab)

Last update: Nov 10, 2023

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 2

▪ #1 Video Recording
▪ Hybrid lectures: in-person H 0111, zoom live streaming, video recording

▪ https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

▪ #2 Project Progress
▪ How many teams already started the project work?

▪ Any problems or blocking technical issues?

▪ Reminder: team work – avoid discriminating assignments of tasks

Announcements / Administrative Items

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 3

▪ Overview Transaction Processing

▪ Locking and Concurrency Control

▪ Logging and Recovery

Agenda

Additional Literature:

[Jim Gray, Andreas Reuter: Transaction Processing: Concepts and
Techniques. Morgan Kaufmann 1993]

[Gerhard Weikum, Gottfried Vossen: Transactional Information Systems:
Theory, Algorithms, and the Practice of Concurrency Control and Recovery.
Morgan Kaufmann 2002]

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 4

Overview Transaction Processing

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 5

▪ Goal: Basic Understanding of Transaction Processing
▪ Transaction processing from user perspective

▪ Locking and concurrency control to ensure #1 correctness

▪ Logging and recovery to ensure #2 reliability

Transaction (TX) Processing

DBMS

DBs

DBS

User 1
User 2

User 3

#1 Multiple users
➔ Correctness?

#2 Various failures
(TX, system, media)
➔ Reliability?

read/write TXs

Disk failure
Crash/power

failure

Network
failure

Constraint
violations

Deadlocks

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 6

▪ Database Transaction
▪ A transaction (TX) is a series of steps that brings a database from

a consistent state into another (not necessarily different) consistent state

▪ ACID properties (atomicity, consistency, isolation, durability)

▪ Terminology
by Example

Terminology of Transactions

START TRANSACTION ISOLATION LEVEL SERIALIZABLE;
 UPDATE Account SET Balance=Balance-100
 WHERE AID = 107;
 UPDATE Account SET Balance=Balance+100
 WHERE AID = 999;

 SELECT Balance INTO lbalance
 FROM Account WHERE AID=107;
 IF lbalance < 0 THEN
 ROLLBACK TRANSACTION;
 END IF
COMMIT TRANSACTION;

#2 Start/begin of TX (BOT/BT)

#4 Abort/rollback TX
(unsuccessful end of
transaction, EOT/ET) #5 Commit TX

(successful end of
transaction, EOT/ET)

#1 Isolation level (defined
by addressed anomalies)

#3 Reads and writes of
data objects

#6 Savepoints
(checkpoint for
partial rollback)

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 7

▪ Online Transaction Processing (OLTP)
▪ Write-heavy database workloads, primarily with point lookups/accesses

▪ Applications: financial, commercial, travel, medical, and governmental ops

▪ Benchmarks: e.g., TPC-C, TPC-E, AuctionMark, SEATS (Airline), Voter

▪ Example TPC-C
▪ 45% New-Order

▪ 43% Payment

▪ 4% Order Status

▪ 4% Delivery

▪ 4% Stock Level

Example OLTP Benchmarks

New Order Transaction:
1) Get records describing a
 warehouse (tax), customer, district
2) Update the district to increment
 next available order number
3) Insert record into Order and NewOrder
4) For All Items
 a) Get item record (and price)
 b) Get/update stock record
 c) Insert OrderLine record
5) Update total amount of order

[http://www.tpc.org/tpc_do
cuments_current_versions/
pdf/tpc-c_v5.11.0.pdf]

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 8

▪ Atomicity
▪ A transaction is executed atomically (completely or not at all)

▪ If the transaction fails/aborts no changes are made to the database (UNDO)

▪ Consistency
▪ A successful transaction ensures that all consistency constraints are met

(referential integrity, semantic/domain constraints)

▪ Isolation
▪ Concurrent transactions are executed in isolation of each other

▪ Appearance of serial transaction execution

▪ Durability
▪ Guaranteed persistence of all changes made by a successful transaction

▪ In case of system failures, the database is recoverable (REDO)

ACID Properties [Theo Härder, Andreas Reuter: Principles of
Transaction-Oriented Database Recovery.

ACM Comput. Surv. 15(4) 1983]

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 9

▪ Problem: Write-write dependency

▪ Solution: Exclusive lock on write

Anomalies – Lost Update

Time

SELECT Pts INTO :points
 FROM Students WHERE Sid=789;

points += 23.5;

UPDATE Students SET Pts=:points
 WHERE Sid=789;
COMMIT TRANSACTION;

TA1 updates points for
Exercise 1

TA2 updates points for
Exercise 2

SELECT Pts INTO :points
 FROM Students WHERE Sid=789;

points += 24.0;

UPDATE Students SET Pts=:points
 WHERE Sid=789;
COMMIT TRANSACTION;

Student received 24
instead of 47.5 points

(lost update 23.5)

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 10

▪ Problem: Write-read dependency

▪ Solution: Read only committed changes; otherwise, cascading abort

Anomalies – Dirty Read

Time

UPDATE Students SET Pts=100
 WHERE Sid=789;

ROLLBACK TRANSACTION;

TA1 updates points for
Exercise 1

Student received 124
instead of 24 points

TA2 updates points for
Exercise 2

SELECT Pts INTO :points
 FROM Students WHERE Sid=789;

points += 24.0;

UPDATE Students SET Pts=:points
 WHERE Sid=789;
COMMIT TRANSACTION;

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 11

▪ Problem: Read-write dependency

▪ Solution: TA works on consistent snapshot of touched records

Anomalies – Unrepeatable Read

Time

START TRANSACTION;
 UPDATE Students SET Pts=Pts+23.5
 WHERE Sid=789;
COMMIT TRANSACTION;

TA1 updates points for
Exercise 1

TA2 sees only committed
data but analysis corrupted

as p1!=p2

TA2 runs statistics for
Exercise 1

SELECT Pts INTO :p1
 FROM Students WHERE Sid=789;

...

SELECT Pts INTO :p2
 FROM Students WHERE Sid=789;
...
COMMIT TRANSACTION;

modified
value

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 12

▪ Similar to non-repeatable read but at set level
(snapshot of accessed data objects not sufficient)

Anomalies – Phantom

Time

START TRANSACTION;
 INSERT INTO Students
 VALUES (999, ..., 0);
COMMIT TRANSACTION;

TA1 inserts missing
student

TA2 sees only committed
data but analysis corrupted

as p1!=p2

TA2 runs statistics for
Exercise 1

SELECT Avg(Pts) INTO :p1
 FROM Students WHERE Sid<1000;

...

SELECT Avg(Pts) INTO :p2
 FROM Students WHERE Sid<1000;
...
COMMIT TRANSACTION;

added row
(harder to track because

new database object)

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 13

▪ Different Isolation Levels
▪ Tradeoff Isolation vs performance per session/TX

▪ SQL standard requires guarantee against lost updates for all

▪ SQL Standard Isolation Levels

▪ Serializable with

highest guarantees

(pseudo-serial execution)

▪ How can we enforce these isolation levels?
▪ User: set default/transaction isolation level (mixed TX workloads possible)

▪ System: dedicated concurrency control strategies + scheduler

Isolation Levels

Isolation Level Lost
Update

Dirty
Read (P1)

Unrepeatable
Read (P2)

Phantom
Read (P3)

READ UNCOMMITTED No* Yes Yes Yes

READ COMMITTED No* No Yes Yes

REPEATABLE READ No* No No Yes

[SERIALIZABLE] No* No No No

SET TRANSACTION
 ISOLATION LEVEL
 READ COMMITTED

* Lost update potentially w/
different semantics in standard

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 14

▪ Summary
▪ Criticism: SQL standard isolation levels are

ambiguous (strict/broad interpretations)

▪ Additional anomalies: dirty write, cursor lost update,

fuzzy read, read skew, write skew

▪ Additional isolation levels: cursor stability and snapshot isolation

▪ Snapshot Isolation (< Serializable)
▪ Type of optimistic concurrency control via multi-version concurrency control

▪ TXs reads data from a snapshot of committed data when TX started

▪ TXs never blocked on reads, other TXs data invisible

▪ TX T1 only commits if no other TX wrote the same data items in the time interval of T1

▪ Current Status?
▪ “SQL standard that fails to accurately define database isolation levels and

database vendors that attach liberal and non-standard semantics

Excursus: A Critique of SQL Isolation Levels

[Hal Berenson, Philip A. Bernstein, Jim Gray,
Jim Melton, Elizabeth J. O'Neil, Patrick E.

O'Neil: A Critique of ANSI SQL Isolation
Levels. SIGMOD 1995]

[http://dbmsmusings.blogspot.com/
2019/05/introduction-to-

transaction-isolation.html]

http://dbmsmusings.blogspot.com/2019/05/introduction-to-transaction-isolation.html
http://dbmsmusings.blogspot.com/2019/05/introduction-to-transaction-isolation.html
http://dbmsmusings.blogspot.com/2019/05/introduction-to-transaction-isolation.html

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 15

▪ Default and Maximum Isolation Levels
for “ACID” and “NewSQL” DBs
[as of 2013]
▪ 3/18 SERIALIZABLE

by default

▪ 8/18 did not provide

SERIALIZABLE at all

Excursus: Isolation Levels in Practice

Beware of defaults, even though
the SQL standard says

SERIALIZABLE is the default

[Peter Bailis, Alan Fekete, Ali Ghodsi,
Joseph M. Hellerstein, Ion Stoica: HAT,
Not CAP: Towards Highly Available
Transactions. HotOS 2013]

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 16

Locking and Concurrency Control

(Consistency and Isolation)

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 17

▪ Terminology
▪ Lock: logical synchronization of TXs access to database objects (row, table, etc)

▪ Latch: physical synchronization of access to shared data structures

▪ #1 Pessimistic Concurrency Control
▪ Locking schemes (lock-based database scheduler)

▪ Full serialization of transactions

▪ #2 Optimistic Concurrency Control (OCC)
▪ Optimistic execution of operations, check of conflicts (validation)

▪ Optimistic and timestamp-based database schedulers

▪ #3 Mixed Concurrency Control (e.g., PostgreSQL)
▪ Combines locking and OCC

▪ Might return synchronization errors

Overview Concurrency Control

ERROR: could not serialize access
 due to concurrent update
ERROR: deadlock detected

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 18

▪ Operations of Transaction Tj

▪ Read and write operations of A by Tj: rj(A) wj(A)

▪ Abort of transaction Tj: aj (unsuccessful termination of Tj)

▪ Commit of transaction Tj: cj (successful termination of Tj)

▪ Schedule S
▪ Operations of a transaction Tj are executed in order

▪ Multiple transactions may be executed concurrently

➔ Schedule describes the total ordering of operations

▪ Equivalence of Schedules S1 and S2
▪ Read-write, write-read, and write-write

dependencies on data object A

executed in same order:

Serializability Theory

𝑟𝑖 𝐴 <𝑆1 𝑤𝑗(𝐴) ⇔ 𝑟𝑖 𝐴 <𝑆2 𝑤𝑗(𝐴)

𝑤𝑖 𝐴 <𝑆1 𝑟𝑗(𝐴) ⇔ 𝑤𝑖 𝐴 <𝑆2 𝑟𝑗(𝐴)

𝑤𝑖 𝐴 <𝑆1 𝑤𝑗(𝐴) ⇔ 𝑤𝑖 𝐴 <𝑆2 𝑤𝑗(𝐴)

Ti Tj

S

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 19

▪ Example Serializable Schedules
▪ Input TXs

▪ Serial execution

▪ Equivalent schedules

▪ Wrong schedule

▪ Serializability Graph (conflict graph)
▪ Operation dependencies (read-write, write-read, write-write) aggregated

▪ Nodes: transactions; edges: transaction dependencies

▪ Transactions are serializable (via topological sort) if the graph is acyclic

▪ Beware: Serializability Theory considers only successful transactions, which disregards

anomalies like dirty read that might happen in practice

Serializability Theory, cont.

T1: BOT r1(A) w1(A) r1(B) w1(B) c1

T2: BOT r2(C) w2(C) r2(A) w2(A) c2

r1(A) w1(A) r1(B) w1(B) c1 r2(C) w2(C) r2(A) w2(A) c2

r1(A) r2(C) w1(A) w2(C) r1(B) r2(A) w1(B) w2(A) c1 c2

r1(A) w1(A) r2(C) w2(C) r1(B) w1(B) r2(A) w2(A) c1 c2

r1(A) r2(C) w2(C) r2(A) w1(A) r1(B) w1(B) w2(A) c1 c2

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 20

▪ Given two transactions T1 and T2, which pairs of the following three schedules are equivalent?
Explain for each pair (S1-S2, S1-S3, S2-S3) why they are equivalent or non-equivalent. [5/100 points]
▪ T1 = {r1(a), r1(c), w1(a), w1(c)}

▪ T2 = {r2(b), w2(b), r2(c), w2(c)}

▪ Schedules
▪ S1 = {r1(a), r1(c), w1(a), w1(c), r2(b), w2(b), r2(c), w2(c)} = {T1, T2}

▪ S2 = {r1(a), r2(b), r1(c), w1(a), w2(b), w1(c), r2(c), w2(c)}

▪ S3 = {r1(a), r2(b), r1(c), w1(a), w2(b), r2(c), w1(c), w2(c)}

TEST YOURSELF: Serializable Schedules

➔ S1 ≡ S2 (equivalent, because r2(b), w2(b) independent of T1)

➔ S2 ≢ S3 (non-equivalent, because w1(c), r2(c) of c in different order)

➔ S1 ≢ S3 (transitive)

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 21

▪ Compatibility of Locks
▪ X-Lock (exclusive/write lock)

▪ S-Lock (shared/read lock)

▪ Multi-Granularity Locking
▪ Hierarchy of DB objects

▪ Additional intentional IX and IS locks

Locking Schemes

None S X

S Yes Yes No

X Yes No No

Existing Lock

Requested
Lock

IS

IS

IS

DB

Table

Page

Row

None S X IS IX

S Yes Yes No Yes No

X Yes No No No No

IS Yes Yes No Yes Yes

IX Yes No No Yes Yes

S

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 22

▪ Overview
▪ 2PL is a concurrency protocol that guarantees SERIALIZABLE

▪ Expanding phase: acquire locks needed by the TX

▪ Shrinking phase: release locks acquired by the TX (can only start if all needed locks acquired)

Two-Phase Locking (2PL)

of locks

Time
BOT EOT

Phase 1
Expanding

Phase 2
Shrinking

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 23

▪ Strict 2PL (S2PL) and Strong Strict 2PL (SS2PL)
▪ Problem: Transaction rollback can cause (Dirty Read)

▪ Release all X-locks (S2PL) or X/S-locks (SSPL) at end of transaction (EOT)

▪ Strict 2PL w/ pre-claiming (aka conservative 2PL)
▪ Problem: incremental expanding can cause deadlocks for interleaved TXs

▪ Pre-claim all necessary locks (only possible if entire TX known + latches)

Two-Phase Locking, cont.

of
locks

Time
BOT EOT

Strict 2PL prevents
dirty reads and thus

cascading abort

of
locks

Time
BOT EOT

Strict 2PL w/ preclaiming
prevents deadlocks

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 24

▪ Deadlock Scenario
▪ Deadlocks of concurrent transactions

▪ Deadlocks happen due to cyclic dependencies

without pre-claiming (wait for exclusive locks)

▪ #1 Deadlock Prevention
▪ Pre-claiming (guarantee if TX known upfront)

▪ #2 Deadlock Avoidance
▪ Preemptive vs non-preemptive strategies

▪ NO_WAIT (if deadlock suspected wrt timestamp TS, abort lock-requesting TX)

▪ WOUND-WAIT (T1 locks something held by T2 → if T1<T2, restart T2)

▪ WAIT-DIE (T1 locks something held by T2 → if T1>T2, abort T1 but keep TS)

▪ #3 Deadlock Detection (DL_DETECT)
▪ Maintain a wait-for graph (WFG) of blocked TX (similar to serializability graph)

▪ Detection of cycles in graph (on timeout) → abort one or many TXs

Deadlocks

Time

lock R lock S

TX1 TX2

lock R lock S

blocks until TX2
releases S

blocks until TX1
releases R

DEADLOCK, as this
will never happen

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 25

▪ Synchronization Scheme
▪ Transactions get timestamp (or version number) TS(Tj) at BOT

▪ Each data object A has readTS(A) and writeTS(A)

▪ Use timestamp comparison to validate access, otherwise abort

▪ No locks but latches (physical synchronization)

▪ Read Protocol Tj(A)
▪ If TS(Tj) >= writeTS(A): allow read, set readTS(A) = max(TS(Tj), readTS(A))

▪ If TS(Tj) < writeTS(A): abort Tj (older than last modifying TX)

▪ Write Protocol Tj(A)
▪ If TS(Tj) >= readTS(A) AND TS(Tj) >= writeTS(A): allow write, set writeTS(A)=TS(Tj)

▪ If TS(Tj) < readTS(A): abort Tj (older than last reading TX)

▪ If TS(Tj) < writeTS(A): abort Tj (older than last modifying TX)

▪ BEWARE: Timestamp Ordering requires handling of dirty reads,
and concurrent transactions (e.g., via abort or versions)

(Basic) Timestamp Ordering

Great, low overhead scheme if
conflicts are rare (no hot spots)

[Philip A. Bernstein, Nathan Goodman:
Concurrency Control in Distributed Database

Systems. ACM Comput. Surv. 1981]

[Stephan Wolf et al: An Evaluation of Strict
Timestamp Ordering Concurrency Control for Main-

Memory Database Systems. IMDM@ VLDB 2013]

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 26

▪ Read Phase
▪ Initial reads from DB, repeated reads and writes into TX-local buffer

▪ Maintain ReadSet(Tj) and WriteSet(Tj) per transaction Tj

▪ TX seen as read-only transaction on database

▪ Validation Phase
▪ Check read/write and write/write conflicts, abort on conflicts

▪ BOCC (Backward-oriented concurrency control) – check all older TXs Ti that finished (EOT)

while Tj was running (𝐸𝑂𝑇 𝑇𝑖 ≥ 𝐵𝑂𝑇(𝑇𝑗))

▪ Serializable: if 𝐸𝑂𝑇 𝑇𝑖 < 𝐵𝑂𝑇(𝑇𝑗) or 𝑊𝑆𝑒𝑡 𝑇𝑖 ∩ 𝑅𝑆𝑒𝑡 𝑇𝑗 = ∅

▪ Snapshot isolation: 𝐸𝑂𝑇 𝑇𝑖 < 𝐵𝑂𝑇(𝑇𝑗) or 𝑊𝑆𝑒𝑡 𝑇𝑖 ∩𝑊𝑆𝑒𝑡 𝑇𝑗 = ∅

▪ FOCC (Forward-oriented concurrency control) – check running TXs

▪ Write Phase
▪ Successful TXs: propagate TX-local buffer into the database and log

▪ Unsuccessful TXs: discard the TX-local buffer

Optimistic Concurrency Control (OCC)

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 27

▪ Overview TX Processing
▪ Implements variant of basic timestamp ordering (w/ handling of dirty reads)

▪ TX log for UNDO of aborted transactions

▪ TIDs: __sync_fetch_and_add(&VAR,1)

▪ #1 Basic TO
▪ isReadable: TID >= WTS

▪ IsWriteable: TID >= max(WTS, RTS)

▪ #2 Basic TO w/ Read Committed
▪ Basic TO w/ isReadable: TID >= WTS

&& !(TID != WTS && scanTXTable(ix, WTS))

▪ #3 Basic TO w/ Serializable
▪ Basic TO w/ read committed

▪ Deleted bit, forced cleanup in epochs (∄ TS < max(RTS,WTS))

Excursus: Basic Timestamp Ordering in Project Reference Implementation

NUM_TXN_FAIL: 0
NUM_TXN_COMP: 16,000,000
Time to run: 15.394s.

NUM_TXN_FAIL: 0
NUM_TXN_COMP: 16,000,000
Time to run: 15.223s.

./speed_test 1468 0 0 0 0 \
 4000 160000 100

NotImplementedException

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 28

Logging and Recovery

(Atomicity and Durability)

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 29

▪ Transaction Failures
▪ E.g., Violated integrity constraints, abort

➔ R1-Recovery: partial UNDO of this uncommitted TX

▪ System Failures (soft crash)
▪ E.g., HW or operating system crash, power outage

▪ Kills all in-flight transactions, but does not lose persistent data

➔ R2-Reovery: partial REDO of all committed TXs

➔ R3-Recovery: global UNDO of all uncommitted TXs

▪ Media Failures (hard crash)
▪ E.g., disk hard errors (non-restorable)

▪ Loses persistent data → need backup data (checkpoint)

➔ R4-Recovery: global REDO of all committed TXs

Failure Types and Recovery

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 30

▪ Database Architecture
▪ Page-oriented storage on disk and in memory (DB buffer)

▪ Dedicated eviction algorithms

▪ Modified in-memory pages marked as

dirty, flushed by cleaner thread

▪ Log: append-only TX changes

▪ Data/log often placed on different devices

and periodically archived (backup + truncate)

▪ Write-Ahead Logging (WAL)
▪ The log records of changes to some (dirty) data page must be

on stable storage before the data page (UNDO - atomicity)

▪ Force-log on commit or full buffer (REDO - durability)

▪ Recovery: forward (REDO) and backward (UNDO) processing

▪ Log sequence number (LSN)

Database (Transaction) Log

[C. Mohan, Donald J. Haderle, Bruce G. Lindsay,
Hamid Pirahesh, Peter M. Schwarz: ARIES: A

Transaction Recovery Method Supporting Fine-
Granularity Locking and Partial Rollbacks Using

Write-Ahead Logging. TODS 1992]

DBMS

DB Buffer Log
Buffer

User 1
User 2

User 3

P1

P7 P3’

Data Log

P7 P3

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 31

▪ #1 Logical (Operation) Logging
▪ REDO: log operation (not data) to construct after state

▪ UNDO: inverse operations (e.g., increment/decrement), not stored

▪ Non-determinism cannot be handled, more flexibility on locking

▪ #2 Physical (Value) Logging
▪ REDO: log REDO (after) image of record or page

▪ UNDO: log UNDO (before) image of record or page

▪ Larger space overhead (despite page diff) for set-oriented updates

▪ Restart Recovery (ARIES)
▪ Conceptually: take database checkpoint and replay log since checkpoint

▪ Operation and value locking; stores log seq. number (LSN, PageID, PrevLSN)

▪ Phase 1 Analysis: determine winner and loser transactions

▪ Phase 2 Redo: replay all TXs in order [repeating history] → state at crash

▪ Phase 3 Undo: replay uncommitted TXs (losers) in reverse order

Logging Types and Recovery

UPDATE Emp
 SET Salary=Salary+100
 WHERE Dep=‘R&D’;

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 32

▪ Background: Storage Class Memory (SCM)
▪ Byte-addressable, persistent memory with higher capacity,

but latency close to DRAM

▪ Examples: Resistive RAM, Magnetic RAM,

Phase-Change Memory (e.g., Intel 3D XPoint)

▪ SOFORT: DB Recovery on SCM
▪ Simulated DBMS prototype on SCM

▪ Instant recovery by trading TX throughput vs

recovery time (% of data structures on SCM)

▪ Write-Behind Logging (for hybrid SCM)
▪ Update persistent data (SCM) on commit,

log change metadata + timestamps ➔ 1.3x

Excursus: Recovery on Storage Class Memory

[Credit: https://
computerhope.com]

[Ismail Oukid, Wolfgang Lehner, Thomas Kissinger,
Thomas Willhalm, Peter Bumbulis: Instant Recovery
for Main Memory Databases. CIDR 2015]

[Joy Arulraj, Matthew Perron,
Andrew Pavlo: Write-Behind
Logging. PVLDB 2016]

https://www.computerhope.com/
https://www.computerhope.com/

Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 33

▪ Overview Transaction Processing

▪ Locking and Concurrency Control

▪ Logging and Recovery

▪ Next Lectures
▪ Nov 27: Experiments and Reproducibility

▪ Additional lectures / Q&A sessions on demand

▪ Feb 01: Project Submissions (virtual)

▪ Feb 12: Project Presentations (in-person)

Summary & QA

Thanks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

