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▪ #1 Video Recording
▪ Hybrid lectures: in-person H 0111, zoom live streaming, video recording

▪ https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

▪ #2 Project Progress
▪ How many teams already started the project work?

▪ Any problems or blocking technical issues?

▪ Reminder: team work – avoid discriminating assignments of tasks

Announcements / Administrative Items

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
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▪ Overview Transaction Processing

▪ Locking and Concurrency Control

▪ Logging and Recovery

Agenda

Additional Literature:

[Jim Gray, Andreas Reuter: Transaction Processing: Concepts and 
Techniques. Morgan Kaufmann 1993]

[Gerhard Weikum, Gottfried Vossen: Transactional Information Systems: 
Theory, Algorithms, and the Practice of Concurrency Control and Recovery. 
Morgan Kaufmann 2002]
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Overview Transaction Processing
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▪ Goal: Basic Understanding of Transaction Processing
▪ Transaction processing from user perspective

▪ Locking and concurrency control to ensure #1 correctness

▪ Logging and recovery to ensure #2 reliability

Transaction (TX) Processing

DBMS

DBs

DBS

User 1
User 2

User 3

#1 Multiple users 
➔ Correctness?

#2 Various failures
(TX, system, media) 
➔ Reliability?

read/write TXs

Disk failure
Crash/power 

failure

Network 
failure

Constraint 
violations

Deadlocks
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▪ Database Transaction
▪ A transaction (TX) is a series of steps that brings a database from 

a consistent state into another (not necessarily different) consistent state

▪ ACID properties (atomicity, consistency, isolation, durability)

▪ Terminology 
by Example

Terminology of Transactions

START TRANSACTION ISOLATION LEVEL SERIALIZABLE;
   UPDATE Account SET Balance=Balance-100 
      WHERE AID = 107;
   UPDATE Account SET Balance=Balance+100 
      WHERE AID = 999;

   SELECT Balance INTO lbalance
      FROM Account WHERE AID=107;
   IF lbalance < 0 THEN
      ROLLBACK TRANSACTION;
   END IF
COMMIT TRANSACTION;

#2 Start/begin of TX (BOT/BT)

#4 Abort/rollback TX 
(unsuccessful end of 
transaction, EOT/ET) #5 Commit TX 

(successful end of 
transaction, EOT/ET)

#1 Isolation level (defined 
by addressed anomalies)

#3 Reads and writes of 
data objects

#6 Savepoints 
(checkpoint for 
partial rollback)
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▪ Online Transaction Processing (OLTP)
▪ Write-heavy database workloads, primarily with point lookups/accesses

▪ Applications: financial, commercial, travel, medical, and governmental ops

▪ Benchmarks: e.g., TPC-C, TPC-E, AuctionMark, SEATS (Airline), Voter

▪ Example TPC-C
▪ 45% New-Order

▪ 43% Payment

▪ 4% Order Status

▪ 4% Delivery

▪ 4% Stock Level

Example OLTP Benchmarks

New Order Transaction:
1) Get records describing a 
   warehouse (tax), customer, district
2) Update the district to increment 
   next available order number
3) Insert record into Order and NewOrder
4) For All Items
   a) Get item record (and price)
   b) Get/update stock record
   c) Insert OrderLine record
5) Update total amount of order

[http://www.tpc.org/tpc_do
cuments_current_versions/
pdf/tpc-c_v5.11.0.pdf] 

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
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▪ Atomicity
▪ A transaction is executed atomically (completely or not at all)

▪ If the transaction fails/aborts no changes are made to the database (UNDO)

▪ Consistency
▪ A successful transaction ensures that all consistency constraints are met

(referential integrity, semantic/domain constraints) 

▪ Isolation
▪ Concurrent transactions are executed in isolation of each other

▪ Appearance of serial transaction execution

▪ Durability
▪ Guaranteed persistence of all changes made by a successful transaction

▪ In case of system failures, the database is recoverable (REDO)

ACID Properties [Theo Härder, Andreas Reuter: Principles of 
Transaction-Oriented Database Recovery. 

ACM Comput. Surv. 15(4) 1983]
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▪ Problem: Write-write dependency

▪ Solution: Exclusive lock on write

Anomalies – Lost Update

Time

SELECT Pts INTO :points
   FROM Students WHERE Sid=789;

points += 23.5;

UPDATE Students SET Pts=:points
   WHERE Sid=789;
COMMIT TRANSACTION;

TA1 updates points for 
Exercise 1

TA2 updates points for 
Exercise 2

SELECT Pts INTO :points
   FROM Students WHERE Sid=789;

points += 24.0;

UPDATE Students SET Pts=:points
   WHERE Sid=789;
COMMIT TRANSACTION;

Student received 24 
instead of 47.5 points

(lost update 23.5)
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▪ Problem: Write-read dependency

▪ Solution: Read only committed changes; otherwise, cascading abort

Anomalies – Dirty Read

Time

UPDATE Students SET Pts=100
   WHERE Sid=789;

ROLLBACK TRANSACTION;

TA1 updates points for 
Exercise 1

Student received 124 
instead of 24 points

TA2 updates points for 
Exercise 2

SELECT Pts INTO :points
   FROM Students WHERE Sid=789;

points += 24.0;

UPDATE Students SET Pts=:points
   WHERE Sid=789;
COMMIT TRANSACTION;
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▪ Problem: Read-write dependency

▪ Solution: TA works on consistent snapshot of touched records

Anomalies – Unrepeatable Read

Time

START TRANSACTION;
  UPDATE Students SET Pts=Pts+23.5
    WHERE Sid=789;
COMMIT TRANSACTION;

TA1 updates points for 
Exercise 1

TA2 sees only committed 
data but analysis corrupted 

as p1!=p2

TA2 runs statistics for 
Exercise 1

SELECT Pts INTO :p1 
   FROM Students WHERE Sid=789;

...

SELECT Pts INTO :p2 
   FROM Students WHERE Sid=789;
...
COMMIT TRANSACTION;

modified 
value
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▪ Similar to non-repeatable read but at set level
(snapshot of accessed data objects not sufficient)

Anomalies – Phantom 

Time

START TRANSACTION;
  INSERT INTO Students
    VALUES (999, ..., 0);
COMMIT TRANSACTION;

TA1 inserts missing  
student

TA2 sees only committed 
data but analysis corrupted 

as p1!=p2 

TA2 runs statistics for 
Exercise 1

SELECT Avg(Pts) INTO :p1 
   FROM Students WHERE Sid<1000;

...

SELECT Avg(Pts) INTO :p2 
   FROM Students WHERE Sid<1000;
...
COMMIT TRANSACTION;

added row
(harder to track because 

new database object)
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▪ Different Isolation Levels
▪ Tradeoff Isolation vs performance per session/TX

▪ SQL standard requires guarantee against lost updates for all

▪ SQL Standard Isolation Levels

▪ Serializable with 

highest guarantees 

(pseudo-serial execution)

▪ How can we enforce these isolation levels?
▪ User: set default/transaction isolation level (mixed TX workloads possible)

▪ System: dedicated concurrency control strategies + scheduler

Isolation Levels

Isolation Level Lost 
Update

Dirty 
Read (P1)

Unrepeatable 
Read (P2)

Phantom 
Read (P3)

READ UNCOMMITTED No* Yes Yes Yes

READ COMMITTED No* No Yes Yes

REPEATABLE READ No* No No Yes

[SERIALIZABLE] No* No No No

SET TRANSACTION 
   ISOLATION LEVEL  
   READ COMMITTED

* Lost update potentially w/ 
different semantics in standard
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▪ Summary
▪ Criticism: SQL standard isolation levels are

ambiguous (strict/broad interpretations)

▪ Additional anomalies: dirty write, cursor lost update, 

fuzzy read, read skew, write skew

▪ Additional isolation levels: cursor stability and snapshot isolation

▪ Snapshot Isolation (< Serializable)
▪ Type of optimistic concurrency control via multi-version concurrency control

▪ TXs reads data from a snapshot of committed data when TX started

▪ TXs never blocked on reads, other TXs data invisible

▪ TX T1 only commits if no other TX wrote the same data items in the time interval of T1

▪ Current Status?
▪ “SQL standard that fails to accurately define database isolation levels and 

database vendors that attach liberal and non-standard semantics

Excursus: A Critique of SQL Isolation Levels

[Hal Berenson, Philip A. Bernstein, Jim Gray, 
Jim Melton, Elizabeth J. O'Neil, Patrick E. 

O'Neil: A Critique of ANSI SQL Isolation 
Levels. SIGMOD 1995]

[http://dbmsmusings.blogspot.com/
2019/05/introduction-to-

transaction-isolation.html]

http://dbmsmusings.blogspot.com/2019/05/introduction-to-transaction-isolation.html
http://dbmsmusings.blogspot.com/2019/05/introduction-to-transaction-isolation.html
http://dbmsmusings.blogspot.com/2019/05/introduction-to-transaction-isolation.html
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▪ Default and Maximum Isolation Levels 
for “ACID” and “NewSQL” DBs 
[as of 2013]
▪ 3/18 SERIALIZABLE 

by default

▪ 8/18 did not provide

SERIALIZABLE at all

Excursus: Isolation Levels in Practice

Beware of defaults, even though 
the SQL standard says 

SERIALIZABLE is the default

[Peter Bailis, Alan Fekete, Ali Ghodsi, 
Joseph M. Hellerstein, Ion Stoica: HAT, 
Not CAP: Towards Highly Available 
Transactions. HotOS 2013]
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Locking and Concurrency Control

(Consistency and Isolation)
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▪ Terminology
▪ Lock: logical synchronization of TXs access to database objects (row, table, etc)

▪ Latch: physical synchronization of access to shared data structures

▪ #1 Pessimistic Concurrency Control
▪ Locking schemes (lock-based database scheduler)

▪ Full serialization of transactions

▪ #2 Optimistic Concurrency Control (OCC)
▪ Optimistic execution of operations, check of conflicts (validation)

▪ Optimistic and timestamp-based database schedulers

▪ #3 Mixed Concurrency Control (e.g., PostgreSQL)
▪ Combines locking and OCC

▪ Might return synchronization errors

Overview Concurrency Control

ERROR: could not serialize access
       due to concurrent update
ERROR: deadlock detected
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▪ Operations of Transaction Tj

▪ Read and write operations of A by Tj: rj(A) wj(A)

▪ Abort of transaction Tj: aj (unsuccessful termination of Tj)

▪ Commit of transaction Tj: cj (successful termination of Tj)

▪ Schedule S
▪ Operations of a transaction Tj are executed in order

▪ Multiple transactions may be executed concurrently

➔ Schedule describes the total ordering of operations

▪ Equivalence of Schedules S1 and S2
▪ Read-write, write-read, and write-write 

dependencies on data object A

executed in same order:

Serializability Theory

𝑟𝑖 𝐴 <𝑆1 𝑤𝑗(𝐴) ⇔ 𝑟𝑖 𝐴 <𝑆2 𝑤𝑗(𝐴)

𝑤𝑖 𝐴 <𝑆1 𝑟𝑗(𝐴) ⇔ 𝑤𝑖 𝐴 <𝑆2 𝑟𝑗(𝐴)

𝑤𝑖 𝐴 <𝑆1 𝑤𝑗(𝐴) ⇔ 𝑤𝑖 𝐴 <𝑆2 𝑤𝑗(𝐴)

Ti Tj

S
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▪ Example Serializable Schedules
▪ Input TXs

▪ Serial execution

▪ Equivalent schedules

▪ Wrong schedule

▪ Serializability Graph (conflict graph)
▪ Operation dependencies (read-write, write-read, write-write) aggregated

▪ Nodes: transactions; edges: transaction dependencies

▪ Transactions are serializable (via topological sort) if the graph is acyclic

▪ Beware: Serializability Theory considers only successful transactions, which disregards 

anomalies like dirty read that might happen in practice 

Serializability Theory, cont.

T1: BOT r1(A)   w1(A)  r1(B) w1(B) c1 

T2: BOT r2(C) w2(C) r2(A) w2(A) c2 

r1(A) w1(A) r1(B) w1(B) c1 r2(C) w2(C) r2(A) w2(A) c2 

r1(A) r2(C) w1(A) w2(C) r1(B) r2(A) w1(B) w2(A) c1 c2 

r1(A) w1(A) r2(C) w2(C) r1(B) w1(B) r2(A) w2(A) c1 c2 

r1(A) r2(C) w2(C) r2(A) w1(A) r1(B) w1(B) w2(A) c1 c2 
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▪ Given two transactions T1 and T2, which pairs of the following three schedules are equivalent? 
Explain for each pair (S1-S2, S1-S3, S2-S3) why they are equivalent or non-equivalent. [5/100 points]
▪ T1 = {r1(a), r1(c), w1(a), w1(c)}

▪ T2 = {r2(b), w2(b), r2(c), w2(c)}

▪ Schedules
▪ S1 = {r1(a), r1(c), w1(a), w1(c), r2(b), w2(b), r2(c), w2(c)} = {T1, T2}

 

▪ S2 = {r1(a), r2(b), r1(c), w1(a), w2(b), w1(c), r2(c), w2(c)}

▪ S3 = {r1(a), r2(b), r1(c), w1(a), w2(b), r2(c), w1(c), w2(c)}

TEST YOURSELF: Serializable Schedules

➔ S1 ≡ S2 (equivalent, because r2(b), w2(b) independent of T1)

➔ S2 ≢ S3 (non-equivalent, because w1(c), r2(c) of c in different order)

➔ S1 ≢ S3 (transitive)
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▪ Compatibility of Locks
▪ X-Lock (exclusive/write lock)

▪ S-Lock (shared/read lock)

▪ Multi-Granularity Locking
▪ Hierarchy of DB objects

▪ Additional intentional IX and IS locks

Locking Schemes

None S X

S Yes Yes No

X Yes No No

Existing Lock

Requested 
Lock

IS

IS

IS

DB

Table

Page

Row

None S X IS IX

S Yes Yes No Yes No

X Yes No No No No

IS Yes Yes No Yes Yes

IX Yes No No Yes Yes

S
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▪ Overview
▪ 2PL is a concurrency protocol that guarantees SERIALIZABLE

▪ Expanding phase: acquire locks needed by the TX

▪ Shrinking phase: release locks acquired by the TX (can only start if all needed locks acquired)

Two-Phase Locking (2PL)

# of locks

Time
BOT EOT

Phase 1
Expanding

Phase 2
Shrinking
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▪ Strict 2PL (S2PL) and Strong Strict 2PL (SS2PL)
▪ Problem: Transaction rollback can cause (Dirty Read)

▪ Release all X-locks (S2PL) or X/S-locks (SSPL) at end of transaction (EOT)

▪ Strict 2PL w/ pre-claiming (aka conservative 2PL)
▪ Problem: incremental expanding can cause deadlocks for interleaved TXs

▪ Pre-claim all necessary locks (only possible if entire TX known + latches)

Two-Phase Locking, cont.

# of 
locks

Time
BOT EOT

Strict 2PL prevents 
dirty reads and thus 

cascading abort

# of 
locks

Time
BOT EOT

Strict 2PL w/ preclaiming 
prevents deadlocks
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▪ Deadlock Scenario
▪ Deadlocks of concurrent transactions

▪ Deadlocks happen due to cyclic dependencies 

without pre-claiming (wait for exclusive locks)

▪ #1 Deadlock Prevention
▪ Pre-claiming (guarantee if TX known upfront)

▪ #2 Deadlock Avoidance 
▪ Preemptive vs non-preemptive strategies

▪ NO_WAIT (if deadlock suspected wrt timestamp TS, abort lock-requesting TX)

▪ WOUND-WAIT (T1 locks something held by T2 → if T1<T2, restart T2)

▪ WAIT-DIE (T1 locks something held by T2 → if T1>T2, abort T1 but keep TS)

▪ #3 Deadlock Detection (DL_DETECT)
▪ Maintain a wait-for graph (WFG) of blocked TX (similar to serializability graph)

▪ Detection of cycles in graph (on timeout) → abort one or many TXs

Deadlocks

Time

lock R lock S 

TX1 TX2

lock R lock S 

blocks until TX2 
releases S

blocks until TX1 
releases R

DEADLOCK, as this 
will never happen
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▪ Synchronization Scheme
▪ Transactions get timestamp (or version number) TS(Tj) at BOT

▪ Each data object A has readTS(A) and writeTS(A)

▪ Use timestamp comparison to validate access, otherwise abort

▪ No locks but latches (physical synchronization)

▪ Read Protocol Tj(A)
▪ If TS(Tj) >= writeTS(A): allow read, set readTS(A) = max(TS(Tj), readTS(A))

▪ If TS(Tj) < writeTS(A): abort Tj (older than last modifying TX)

▪ Write Protocol Tj(A)
▪ If TS(Tj) >= readTS(A) AND TS(Tj) >= writeTS(A): allow write, set writeTS(A)=TS(Tj)

▪ If TS(Tj) < readTS(A): abort Tj (older than last reading TX)

▪ If TS(Tj) < writeTS(A): abort Tj (older than last modifying TX) 

▪ BEWARE: Timestamp Ordering requires handling of dirty reads,
and concurrent transactions (e.g., via abort or versions)

(Basic) Timestamp Ordering

Great, low overhead scheme if 
conflicts are rare (no hot spots)

[Philip A. Bernstein, Nathan Goodman: 
Concurrency Control in Distributed Database 

Systems. ACM Comput. Surv.  1981]

[Stephan Wolf et al: An Evaluation of Strict 
Timestamp Ordering Concurrency Control for Main-

Memory Database Systems. IMDM@ VLDB 2013 ]
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▪ Read Phase
▪ Initial reads from DB, repeated reads and writes into TX-local buffer

▪ Maintain ReadSet(Tj) and WriteSet(Tj) per transaction Tj

▪ TX seen as read-only transaction on database

▪ Validation Phase
▪ Check read/write and write/write conflicts, abort on conflicts

▪ BOCC (Backward-oriented concurrency control) – check all older TXs Ti that finished (EOT) 

while Tj was running (𝐸𝑂𝑇 𝑇𝑖 ≥ 𝐵𝑂𝑇(𝑇𝑗))

▪ Serializable: if 𝐸𝑂𝑇 𝑇𝑖 < 𝐵𝑂𝑇(𝑇𝑗) or 𝑊𝑆𝑒𝑡 𝑇𝑖 ∩ 𝑅𝑆𝑒𝑡 𝑇𝑗 = ∅

▪ Snapshot isolation: 𝐸𝑂𝑇 𝑇𝑖 < 𝐵𝑂𝑇(𝑇𝑗) or 𝑊𝑆𝑒𝑡 𝑇𝑖 ∩𝑊𝑆𝑒𝑡 𝑇𝑗 = ∅

▪ FOCC (Forward-oriented concurrency control) – check running TXs

▪ Write Phase
▪ Successful TXs: propagate TX-local buffer into the database and log

▪ Unsuccessful TXs: discard the TX-local buffer

Optimistic Concurrency Control (OCC)
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▪ Overview TX Processing
▪ Implements variant of basic timestamp ordering (w/ handling of dirty reads)

▪ TX log for UNDO of aborted transactions

▪ TIDs: __sync_fetch_and_add(&VAR,1)

▪ #1 Basic TO
▪ isReadable: TID >= WTS

▪ IsWriteable: TID >= max(WTS, RTS) 

▪ #2 Basic TO w/ Read Committed
▪ Basic TO w/ isReadable: TID >= WTS 

&& !(TID != WTS && scanTXTable(ix, WTS))

▪ #3 Basic TO w/ Serializable
▪ Basic TO w/ read committed

▪ Deleted bit, forced cleanup in epochs (∄ TS < max(RTS,WTS))

Excursus: Basic Timestamp Ordering in Project Reference Implementation

NUM_TXN_FAIL: 0
NUM_TXN_COMP: 16,000,000
Time to run:  15.394s.

NUM_TXN_FAIL: 0
NUM_TXN_COMP: 16,000,000
Time to run:  15.223s.

./speed_test 1468 0 0 0 0 \
             4000 160000 100

NotImplementedException



Matthias Boehm | FG DAMS | PPDS WiSe 2023/24 – 03 Background Transaction Processing 28

Logging and Recovery

(Atomicity and Durability)
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▪ Transaction Failures
▪ E.g., Violated integrity constraints, abort

➔ R1-Recovery: partial UNDO of this uncommitted TX

▪ System Failures (soft crash)
▪ E.g., HW or operating system crash, power outage

▪ Kills all in-flight transactions, but does not lose persistent data

➔ R2-Reovery: partial REDO of all committed TXs

➔ R3-Recovery: global UNDO of all uncommitted TXs

▪ Media Failures (hard crash)
▪ E.g., disk hard errors (non-restorable)

▪ Loses persistent data → need backup data (checkpoint)

➔ R4-Recovery: global REDO of all committed TXs

Failure Types and Recovery
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▪ Database Architecture 
▪ Page-oriented storage on disk and in memory (DB buffer)

▪ Dedicated eviction algorithms

▪ Modified in-memory pages marked as 

dirty, flushed by cleaner thread

▪ Log: append-only TX changes 

▪ Data/log often placed on different devices

and periodically archived (backup + truncate)

▪ Write-Ahead Logging (WAL)
▪ The log records of changes to some (dirty) data page must be 

on stable storage before the data page (UNDO - atomicity)

▪ Force-log on commit or full buffer (REDO - durability)

▪ Recovery: forward (REDO) and backward (UNDO) processing

▪ Log sequence number (LSN)

Database (Transaction) Log

[C. Mohan, Donald J. Haderle, Bruce G. Lindsay, 
Hamid Pirahesh, Peter M. Schwarz: ARIES: A 

Transaction Recovery Method Supporting Fine-
Granularity Locking and Partial Rollbacks Using 

Write-Ahead Logging. TODS 1992]

DBMS

DB Buffer Log 
Buffer

User 1
User 2

User 3

P1

P7 P3’

Data Log

P7 P3
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▪ #1 Logical (Operation) Logging
▪ REDO: log operation (not data) to construct after state

▪ UNDO: inverse operations (e.g., increment/decrement), not stored

▪ Non-determinism cannot be handled, more flexibility on locking

▪ #2 Physical (Value) Logging
▪ REDO: log REDO (after) image of record or page

▪ UNDO: log UNDO (before) image of record or page

▪ Larger space overhead (despite page diff) for set-oriented updates

▪ Restart Recovery (ARIES)
▪ Conceptually: take database checkpoint and replay log since checkpoint

▪ Operation and value locking; stores log seq. number (LSN, PageID, PrevLSN)

▪ Phase 1 Analysis: determine winner and loser transactions

▪ Phase 2 Redo: replay all TXs in order [repeating history] → state at crash

▪ Phase 3 Undo: replay uncommitted TXs (losers) in reverse order

Logging Types and Recovery

UPDATE Emp 
  SET Salary=Salary+100
  WHERE Dep=‘R&D’;
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▪ Background: Storage Class Memory (SCM)
▪ Byte-addressable, persistent memory with higher capacity, 

but latency close to DRAM

▪ Examples: Resistive RAM, Magnetic RAM,

Phase-Change Memory (e.g., Intel 3D XPoint)

▪ SOFORT: DB Recovery on SCM
▪ Simulated DBMS prototype on SCM

▪ Instant recovery by trading TX throughput vs 

recovery time (% of data structures on SCM)

▪ Write-Behind Logging (for hybrid SCM)
▪ Update persistent data (SCM) on commit, 

log change metadata + timestamps ➔ 1.3x

Excursus: Recovery on Storage Class Memory

[Credit: https://
computerhope.com]

[Ismail Oukid, Wolfgang Lehner, Thomas Kissinger, 
Thomas Willhalm, Peter Bumbulis: Instant Recovery 
for Main Memory Databases. CIDR 2015]

[Joy Arulraj, Matthew Perron, 
Andrew Pavlo: Write-Behind 
Logging. PVLDB 2016]

https://www.computerhope.com/
https://www.computerhope.com/
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▪ Overview Transaction Processing

▪ Locking and Concurrency Control

▪ Logging and Recovery

▪ Next Lectures
▪ Nov 27: Experiments and Reproducibility

▪ Additional lectures / Q&A sessions on demand

▪ Feb 01: Project Submissions (virtual)

▪ Feb 12: Project Presentations (in-person)

Summary & QA

Thanks
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