
Data Integration and Large-scale Analysis (DIA)
01 Introduction and Overview

Prof. Dr. Matthias Boehm
Technische Universität Berlin
Berlin Institute for the Foundations of Learning and Data
Big Data Engineering (DAMS Lab)

Last update: Oct 17, 2024

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview2

▪ Since 09/2022 TU Berlin, Germany
▪ University professor for Big Data Engineering (DAMS)

▪ 2018-2022 TU Graz, Austria
▪ BMK endowed chair for data management + research area manager

▪ Data management for data science (DAMS), SystemDS & DAPHNE

▪ 2012-2018 IBM Research – Almaden, CA, USA
▪ Declarative large-scale machine learning

▪ Optimizer and runtime of Apache SystemML

▪ 2007-2011 PhD TU Dresden, Germany
▪ Cost-based optimization of integration flows

▪ Time series forecasting / in-memory indexing & query processing

FG Big Data Engineering (DAMS Lab) – About Me

DB group

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview3

FG Big Data Engineering (DAMS Lab) – Teaching

Data Management /
Databases

(DM, SS+WS)

Architecture of
Database Systems

(ADBS, WS)

Architecture of
ML Systems
(AMLS, SS)

Data Integration and
Large-Scale Analysis

(DIA, WS)

Master

Bachelor

Data management from
user/application perspective

Distributed
Data Management

ML system internals,
data science lifecycle
+ prog. project

DB system
internals
+ prog. project

Intro to Scientific
Methods (WS)

SE/PR Large-scale
Data Engineering
(LDE, SoSe+WiSe)

Architecture of
ML Systems

(AMLS, SoSe)

Data Integration and
Large-Scale Analysis

(DIA, WiSe)

PP Prog.-Practicals
Data Systems

(PPDS, SoSe+WiSe)

SE Joint ML and DM
(MLDM, SoSe+WiSe)

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview4

▪ Course Organization

▪ Course Motivation and Goals

▪ Course Outline and Projects/Exercise

▪ Excursus: Apache SystemDS

Agenda

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview5

Course Organization

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview6

▪ Staff
▪ Lecturer: Prof. Dr. Matthias Boehm, DAMS

▪ Teaching Assistant: M.Tech. Arnab Phani, DAMS

▪ Language
▪ Lectures and slides: English

▪ Communication and examination: English/German

▪ Course Format
▪ VL/UE 3/2 SWS, 6 ECTS (3 ECTS + 3 ECTS), bachelor/master; no capacity restrictions

▪ Weekly lectures (Thu 4.15pm sharp, in-person & zoom livestreaming/recording), optional attendance

▪ Mandatory exercises or programming project (3 ECTS), office hour Wed 5pm-6pm (sharp)

▪ Recommended papers for additional reading on your own

▪ Prerequisites
▪ Basic understanding of SQL / RA (or willingness to fill gaps)

▪ Basic programming skills (Python, R, Java, C++)

Course Logistics

219 Reg (as of Oct 17)

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview7

▪ Website / ISIS Course / Zoom
▪ https://mboehm7.github.io/teaching/ws2425_dia/index.htm (public)

▪ https://isis.tu-berlin.de/course/view.php?id=39740 (TUB-internal)

▪ https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

▪ Communication
▪ Informal language (first name is fine); immediate feedback welcome

▪ ISIS Forum for offline Q&A on projects/exercises as well as

▪ TA Office hours: TBD second week

▪ Academic Honesty / No Plagiarism (incl LLMs like ChatGPT)

▪ Exam
▪ Exam Prerequisite: Completed exercises or project (checked by teaching assistants)

▪ Final written exam (oral exam if <35 students take the exam): Feb 06, 4pm / Feb 13, 4pm

▪ Grading (project/exercises pass/fail, 100% exam) → 5 extra points in exam if exercises with >= 90%

Course Logistics, cont.

https://mboehm7.github.io/teaching/ws2425_dia/index.htm
https://isis.tu-berlin.de/course/view.php?id=39740
https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview8

▪ Bachelor study programs computer science, information systems management,
computer engineering, and electrical engineering

▪ Master study programs computer science, information systems management,
computer engineering, and electrical engineering
▪ Data and software engineering

▪ Cognitive systems

▪ Distributed systems and networks

▪ Free subject course in any other study program or university

▪ (currently reorganization StuPO WS25/26 bachelor computer science
→ DIA in ”Data Systems” catalog)

▪ Different than “Data Integration: Algorithms and Systems (DI)”

Course Applicability

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview9

Course Motivation and Goals

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview10

▪ Terminology
▪ Integration (Latin integer = whole): consolidation of data objects / sources

▪ Homogeneity (Greek homo/homoios = same): similarity

▪ Heterogeneity: dissimilarity, different representation / meaning

▪ Heterogeneous IT Infrastructure
▪ Common enterprise IT infrastructure contains >100s of

heterogeneous and distributed systems and applications

▪ E.g., health care data management: 20 - 120 systems

▪ Multi-Modal Data (example health care)
▪ Structured patient data, patient records incl. prescribed drugs

▪ Knowledge base drug APIs (active pharmaceutical ingredients) + interactions

▪ Doctor notes (text), diagnostic codes, outcomes

▪ Radiology images (e.g., MRI scans), patient videos

▪ Time series (e.g., EEG, ECoG, heart rate, blood pressure)

Data Sources and Heterogeneity

[Credit: Albert Maier]

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview11

Recap: The Data Science Lifecycle
(aka KDD Process, aka CRISP-DM)

Data/SW
Engineer

DevOps
Engineer

Data Integration
Data Cleaning

Data Preparation

Model Selection
Training

Hyper-parameters

Validate & Debug
Deployment

Scoring & Feedback

Data
Scientist

Exploratory Process
(experimentation, refinements, ML pipelines)

Data Integration
Data Cleaning

Data Preparation

Data-centric View:
Application perspective
Workload perspective

System perspective

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview12

▪ Data Sourcing Effort
▪ Data scientists spend 80-90% time on finding, integrating, cleaning datasets

▪ Technical Debts in ML Systems

▪ Glue code, pipeline jungles, dead code paths

▪ Plain-old-data types (arrays), multiple languages, prototypes

▪ Abstraction and configuration debts

▪ Data testing, reproducibility, process management, and cultural debts

The 80% Argument

[D. Sculley et al.: Hidden
Technical Debt in Machine

Learning Systems. NeurIPS 2015]
ML

[Michael Stonebraker, Ihab F. Ilyas:
Data Integration: The Current
Status and the Way Forward.

IEEE Data Eng. Bull. 41(2) (2018)]

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview13

Complementary System Architectures

Operational Systems

Analytical Systems

Strategic
Systems

DSS

ERP

eCommerceSCM

CRM
Material

Horizontal Integration (e.g., EAI)

Vertical
Integration
(e.g., ETL)

DWH

#1 Information System
Pyramid

#2 Data
Lake

Audio, Image, Video,
Text, Streams, Logs

Distributed
Data Stores

Distributed
Computation
Frameworks

Catalogs

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview14

▪ Common Data and System Characteristics
▪ Heterogeneous data sources and formats, often distributed

▪ Large data collections → distributed data storage and analysis

▪ #1 Major data integration architectures

▪ #2 Key techniques for data integration and cleaning

▪ #3 Methods for large-scale data storage and analysis

Course Goals

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview15

Course Outline and Projects/Exercise

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview16

Data Integration Architectures

▪ 01 Introduction and Overview [Oct 17]

▪ 02 Data Warehousing, ETL, and SQL/OLAP [Oct 24]

▪ 03 Message-oriented Middleware, EAI, and Replication [Oct 31]

Key Integration Techniques

▪ 04 Schema Matching and Mapping [Nov 07]

▪ 05 Entity Linking and Deduplication [Nov 14]

▪ 06 Data Cleaning and Data Fusion [Nov 21]

▪ 07 Data Provenance and Catalogs [Nov 28]

Part A: Data Integration and Preparation

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview17

Cloud Computing

▪ 08 Cloud Computing Foundations [Dec 05]

▪ 09 Cloud Resource Management and Scheduling [Dec 12]

▪ 10 Distributed Data Storage [Dec 19]

Large-Scale Data Analysis

▪ 11 Distributed, Data-Parallel Computation [Jan 09]

▪ 12 Distributed Stream Processing [Jan 16]

▪ 13 Distributed Machine Learning Systems [Jan 23]

Part B: Large-Scale Data Management & Analysis

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview18

▪ Team
▪ 1-3 person teams (w/ clearly separated responsibilities)

▪ Objectives
▪ Non-trivial programming project in DIA context (3 ECTS → 80-90 hours)

▪ Preferred: Open source contribution to Apache SystemDS

https://github.com/apache/systemds (from HW to high-level scripting)

▪ https://issues.apache.org/jira/secure/

Dashboard.jspa?selectPageId=12335852#Filter-Results/12365413

▪ Alternative Exercise: “Streaming Full Text Search”

(ACM SIGMOD 2013 Programming Contest)

▪ Timeline
▪ Oct 31: Binding project/exercise selection (via email to matthias.boehm@tu-berlin.de)

▪ Jan 30: Project/exercise submission deadline

Overview Projects or Exercises

03 Replication and
Message-oriented Middleware

09 Cloud Resource Management
and Scheduling

11 Distributed Data-parallel
Computation

12 Distributed Stream Processing

https://github.com/apache/systemds
https://issues.apache.org/jira/secure/Dashboard.jspa?selectPageId=12335852#Filter-Results/12365413
mailto:matthias.boehm@tu-berlin.de

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview19

DIA Exercise (alternative to projects), cont.

[https://mboehm7.github.io/
teaching/ws2425_dia/
DIA_2024_Exercise.pdf]

https://mboehm7.github.io/teaching/ws2425_dia/DIA_2024_Exercise.pdf
https://mboehm7.github.io/teaching/ws2425_dia/DIA_2024_Exercise.pdf
https://mboehm7.github.io/teaching/ws2425_dia/DIA_2024_Exercise.pdf

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview20

Apache SystemDS: A Declarative ML System
for the End-to-End Data Science Lifecycle

https://github.com/apache/systemds

https://github.com/apache/systemds

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview21

What is an ML System?

Machine
Learning

(ML)
Statistics

Data
Mining

ML Applications
(entire KDD/DS

lifecycle)

Classification
Regression

Recommenders
Clustering

Dim Reduction
Neural Networks

ML System

HPC

Prog.
Language
Compilers

Compilation
TechniquesDistributed

Systems

Operating
Systems

Data
Management

Runtime Techniques
(Execution, Data Access)

HW
Architecture

Accelerators

Rapidly Evolving

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview22

▪ Existing ML Systems
▪ #1 Numerical computing frameworks

▪ #2 ML Algorithm libraries (local, large-scale)

▪ #3 Linear algebra ML systems (large-scale)

▪ #4 Deep neural network (DNN) frameworks

▪ #5 Model management, and deployment

▪ Exploratory Data-Science Lifecycle
▪ Open-ended problems w/ underspecified objectives

▪ Hypotheses, data integration, run analytics

▪ Unknown value → lack of system infrastructure

→ Redundancy of manual efforts and computation

▪ Data Preparation Problem
▪ 80% Argument: 80-90% time for finding, integrating, cleaning data

▪ Diversity of tools ➔ boundary crossing, lack of optimization

Landscape of ML Systems

“Take these datasets
and show value or

competitive advantage”

[NIPS 2015]
[DEBull 2018]

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview23

The Data Science Lifecycle
(aka KDD Process, aka CRISP-DM)

Data/SW
Engineer

DevOps
Engineer

Data Integration
Data Cleaning

Data Preparation

Model Selection
Training

Hyper-parameters

Validate & Debug
Deployment

Scoring & Feedback

Data
Scientist

Exploratory Process
(experimentation, refinements, ML pipelines)

Key observation: SotA data
integration/cleaning based on ML

Data extraction, schema alignment, entity
resolution, data validation, data cleaning, outlier

detection, missing value imputation, semantic type
detection, data augmentation, feature selection,

feature engineering, feature transformations

Data Integration
Data Cleaning

Data Preparation

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview24

Apache SystemDS [https://github.com/apache/systemds]

[SIGMOD’15,’17,’19,’21abc,’23abc,’24ab]
[PVLDB’14,’16ab,’18,’22]
[ICDE’11,’12,’15]
[EDBT’25]
[CIDR’17,’20]
[VLDBJ’18]
[CIKM’22]
[DEBull’14]
[PPoPP’15]

Hadoop or Spark Cluster
(scale-out)

In-Memory Single Node
(scale-up)

Runtime

Compiler

Language

DML Scripts

since 2010/11since 2012 since 2015

APIs: Command line, JMLC, Python
Spark MLContext, Spark ML,

(Scalable Algorithms + Primitives)

In-Progress:

GPU

since 2014/16

07/2020 Renamed to Apache SystemDS
05/2017 Apache Top-Level Project
11/2015 Apache Incubator Project
08/2015 Open Source Release

Write Once,
Run Anywhere

Federated
(LA progs, PS)

since 2019
Others:
Netezza

Apache Flink

https://github.com/apache/systemds

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview25

▪ Example:
Stepwise
Linear
Regression

Language Abstractions and APIs

X = read(‘features.csv’)
Y = read(‘labels.csv’)
[B,S] = steplm(X, Y,
icpt=0, reg=0.001)

write(B, ‘model.txt’)

User Script

m_steplm = function(...) {
while(continue) {

parfor(i in 1:n) {
if(!fixed[1,i]) {

Xi = cbind(Xg, X[,i])
B[,i] = lm(Xi, y, ...)

} }
add best to Xg
(AIC)

} }

Built-in Functions

m_lm = function(...) {
if(ncol(X) > 1024)
B = lmCG(X, y, ...)

else
B = lmDS(X, y, ...)

}

m_lmCG = function(...) {
while(i<maxi&nr2>tgt) {

q = (t(X) %*% (X %*% p))
+ lambda * p

beta = ... }
}

m_lmDS = function(...) {
l = matrix(reg,ncol(X),1)
A = t(X) %*% X + diag(l)
b = t(X) %*% y
beta = solve(A, b) ...}

Linear
Algebra

Programs

ML
Algorithms

Feature
Selection

Facilitates optimization
across data science

lifecycle tasks

Data Independence + Impl-Agnostic Ops
➔ “Separation of Concerns”

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview26

Basic HOP and LOP DAG Compilation

LinregDS (Direct Solve)

X = read($1);
y = read($2);
intercept = $3;
lambda = 0.001;
...

if(intercept == 1) {
ones = matrix(1, nrow(X), 1);
X = append(X, ones);

}

I = matrix(1, ncol(X), 1);
A = t(X) %*% X + diag(I)*lambda;
b = t(X) %*% y;
beta = solve(A, b);
...
write(beta, $4);

HOP DAG
(after rewrites)

LOP DAG
(after rewrites)

Cluster Config:
• driver mem: 20 GB
• exec mem: 60 GB

dg(rand)
(103x1,103)

r(diag)

X
(108x103,1011)

y
(108x1,108)

ba(+*) ba(+*)

r(t)

b(+)

b(solve)

write

Scenario:

X: 108 x 103, 1011

y: 108 x 1, 108

➔ Hybrid Runtime Plans:
• Size propagation / memory estimates
• Integrated CP / Spark runtime
• Dynamic recompilation during runtime

800MB

800GB

800GB
8KB

172KB

1.6TB

1.6TB

16MB
8MB

8KB

CP

SP

CP

CP

CP

SP
SP

CP

1.6GB

800MB

16KB

X

y

r’(CP)

mapmm(SP) tsmm(SP)

r’(CP)

(persisted in
MEM_DISK)

X1,1

X2,1

Xm,1

➔ Distributed Matrices
• Fixed-size matrix blocks
• Data-parallel operations

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview29

▪ Automatic Generation of Cleaning Pipelines
▪ Library of robust, parameterized data cleaning primitives,

▪ Enumeration of DAGs of primitives & hyper-parameter optimization (evolutionary, HB)

Data Cleaning Pipelines

P1: gmm → imputeFD→mergeDup → delML Pn: outlierBySd→mice → delDup → voting

LPn

PP1

LP2LP1

PPn PPnPPnPP1

O

PP1

…

…

……

Outlier Detection →MVI → Deduplication → Resolve Mislabels

Debugging

University Country

TU Graz Austria

TU Graz Austria

TU Graz Germany

IIT India

IIT IIT

IIT Pakistan

IIT India

SIBA Pakistan

SIBA null

SIBA null

University Country

TU Graz Austria

TU Graz Austria

TU Graz Austria

IIT India

IIT India

IIT India

IIT India

SIBA Pakistan

SIBA Pakistan

SIBA Pakistan

A B C D

0.77 0.80 1 1

0.96 0.12 1 1

0.66 0.09 null 1

0.23 0.04 17 1

0.91 0.02 17 null

0.21 0.38 17 1

0.31 null 17 1

0.75 0.21 20 1

null null 20 1

0.19 0.61 20 1

0.64 0.31 20 1

A B C D

0.77 0.80 1 1

0.96 0.12 1 1

0.66 0.09 17 1

0.23 0.04 17 1

0.91 0.02 17 1

0.21 0.38 17 1

0.31 0.29 17 1

0.75 0.21 20 1

0.41 0.24 20 1

0.19 0.61 20 1

0.64 0.31 20 1

Dirty Data After imputeFD(0.5) After MICE

Data
Samples

Target
App

Dirty Data

Rules/Objectives

Top-k
Pipelines

Data- and Task-parallel
ComputationLogical

Physical

[SIGMOD’24a] [WIP] WashHouse:
Data Cleaning Benchmark

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview30

▪ Problem Formulation
▪ Intuitive slice scoring function

▪ Exact top-k slice finding

▪ 𝑆 ≥ 𝜎 ∧ 𝑠𝑐 𝑆 > 0, 𝛼 ∈ (0,1]

▪ Properties & Pruning
▪ Monotonicity of slice sizes, errors

▪ Upper bound sizes/errors/scores

→ pruning & termination

▪ Linear-Algebra-based Slice Finding
▪ Recoded/binned matrix X, error vector e

▪ Vectorized implementation in linear algebra (join & eval via sparse-sparse matmult)

▪ Local and distributed task/data-parallel execution

SliceLine for Model Debugging
[Credit: sliceline,

Silicon Valley, HBO]

𝑠𝑐 = 𝛼
ҧ𝑒(𝑆)

ҧ𝑒(𝑋)
− 1 − 1 − 𝛼

𝑋

𝑆
− 1

= 𝛼
𝑋

𝑆
⋅
σ𝑖=1
|𝑆|

𝑒𝑠𝑖

σ
𝑖=1
|𝑋|

𝑒𝑖
− 1 − 1 − 𝛼

𝑋

𝑆
− 1

slice error slice size

𝑂(2𝑙 −෍
𝑗=1

𝑚

2𝑑𝑗 + 𝑙 + 𝑚)

[SIGMOD’21b]

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview31

▪ Lineage as Key Enabling Technique
▪ Trace lineage of ops (incl. non-determinism), dedup for loops/funcs

▪ Model versioning, data reuse, incr. maintenance, autodiff, debugging

▪ Full Reuse of Intermediates
▪ Before executing instruction, probe output lineage in cache

Map<Lineage, MatrixBlock>

▪ Cost-based/heuristic caching and eviction decisions

(compiler-assisted)

▪ Partial Reuse of Intermediates
▪ Problem: Often partial result overlap

▪ Reuse partial results via dedicated rewrites (compensation plans)

▪ Example: steplm

▪ Next Steps: multi-backend, unified mem mgmt

Multi-level Lineage Tracing & Reuse [CIDR’20, SIGMOD’21a,
EDBT’25]

for(i in 1:numModels)
R[,i] = lm(X, y, lambda[i,], ...)

m_lmDS = function(...) {
l = matrix(reg,ncol(X),1)
A = t(X) %*% X + diag(l)
b = t(X) %*% y
beta = solve(A, b) ...}

m_steplm = function(...) {
while(continue) {

parfor(i in 1:n) {
if(!fixed[1,i]) {

Xi = cbind(Xg, X[,i])
B[,i] = lm(Xi, y, ...)

} }
add best to Xg (AIC)

} }

X

t(X)

m>>n

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview32

▪ Lossless Matrix Compression
▪ Improved general applicability (adaptive compression time,

new compression schemes, new kernels, intermediates, workload-aware)

▪ Sparsity → Redundancy exploitation

(data redundancy, structural redundancy)

▪ Workload-aware Compression
▪ Workload summary

→ compression

▪ Compressed Representation

→ execution planning

▪ Next Steps
▪ Frame compression, compressed I/O

▪ Compressed feature transformations

▪ Morphing of compressed data

Compressed Linear Algebra Extended [PVLDB’16a, VLDBJ’18, SIGMOD’23a,
under submission]

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview33

▪ Federated Backend
▪ Federated data (matrices/frames) as meta data objects

▪ Federated linear algebra, (and federated parameter server)

Federated Learning [SIGMOD’21c, CIKM’22]

X = federated(addresses=list(node1, node2, node3),
ranges=list(list(0,0), list(40K,70), ..., list(80K,0), list(100K,70)));

Federated Requests:
READ, PUT, GET, EXEC_INST,
EXEC_UDF, CLEAR

➔ Design Simplicity:
(1) reuse instructions
(2) federation hierarchies

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview34

▪ Workloads and Baselines
▪ LM: linear regression, lmCG

▪ L2SVM: l2-regularized SVM

▪ MLogReg: multinomial logreg

▪ K-Means: Lloyd’s alg. w/ K-Means++ init

▪ PCA: principal component analysis

▪ FFN: fully-connected feed-forward NN

▪ CNN: convolutional NN

Federated Learning – Experiments Reproducible Results

Comparisons w/
Scikit-learn and

TensorFlow

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 01 Introduction and Overview35

▪ Course Goals
▪ #1 Major data integration architectures

▪ #2 Key techniques for data integration and cleaning

▪ #3 Methods for large-scale data storage and analysis

▪ Programming Projects
▪ Unique project in Apache SystemDS (teams or individuals), or

▪ Exercise on data engineering and ML pipeline

▪ Next Lectures
▪ 02 Data Warehousing, ETL, and SQL/OLAP [Oct 24]

▪ 03 Message-oriented Middleware, EAI, and Replication [Oct 31]

Summary and Q&A

Thanks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

