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Announcements / Administrative Items

▪ #1 Video Recording
▪ Hybrid lectures: in-person H 0107, zoom live streaming, video recording

▪ https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

▪ #2 Exercises/Projects
▪ Reminder: exercise/project submissions by Jan 30 (no extensions)

▪ Make use of virtual office hours Wed 4.30pm-6pm

▪ #3 Lecture Dec 05
▪ FONDA II CRC (Foundations of Workflows for Large-Scale Scientific Data Analysis) retreat Dec 04 – 06

▪ Virtual lecture on Dec 05, 4pm (start 4.15pm) from hotel room

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
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▪ Motivation and Terminology

▪ Data Provenance

▪ Data Catalogs

Agenda
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Motivation and Terminology
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▪ #1 Findable 
▪ Metadata and data have globally unique persistent identifiers

▪ Data describes w/ rich meta data; registered/indexes and searchable

▪ #2 Accessible
▪ Metadata and data retrievable via open, free and universal commnication protocols

▪ Metadata accessible even when data no longer available

▪ #3 Interoperable
▪ Metadata and data use a formal, accessible, and broadly applicable format

▪ Metadata and data use FAIR vocabularies and qualified references 

▪ #4 Reusable
▪ Metadata and data described with plurality of accurate and relevant attributes

▪ Clear license, associated with provenance, meets community standards

Excursus: FAIR Data Principles
[https://www.go-fair.org/fair-principles/]

https://www.go-fair.org/fair-principles/
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▪ Data Provenance 
▪ Track and understand data origins and transformations of data

(where?, when?, 

who?, why?, how?)

▪ Contains meta data, context, and modifications (transform, enrichment)

▪ Synonyms: data provenance (arts) data lineage (royals), data pedigree (horses)

▪ Blockchain
▪ Data structure logging transactions in verifiable and permanent way

▪ Data Catalogs (curation/governance)
▪ Directory of datasets including data provenance (meta data, artifacts)

▪ Raw/original, curated datasets, derived data products

Terminology of Provenance/Lineage

Measure 
/ Acquire

Data 
Cleaning

Data 
Prep 

Model 
Training

Model 
Serving

M
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a) High-Level Goals

▪ #1 Versioning and Reproducibility (analogy experiments)

▪ #2 Explainability, Interpretability, Verification

b) Low-Level Goals

▪ #3 Full and Partial Reuse of Intermediates

▪ #4 Incremental Maintenance of MatViews, Models, etc

▪ #5 Tape/log of Executed Operations → Auto Differentiation

▪ #6 Recomputation for Caching / Fault Tolerance

▪ #7 Debugging via Lineage Query Processing

Application and Goals of Provenance
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Data Provenance
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▪ Def Data Provenance
▪ Information about the origin and creation process of data

▪ Example
▪ Debugging suspicious query results

Overview Data Provenance

OID Customer Date Quantity PID

1 A 2019-06-22 3 2

2 B 2019-06-22 1 3

3 A 2019-06-22 101 4

4 C 2019-06-23 2 2

5 D 2019-06-23 1 4

6 C 2019-06-23 1 1

PID Product Price

1 X 100

2 Y 15

4 Z 75

3 W 120

OID Customer Date Quantity PID

1 A 2019-06-22 3 2

2 B 2019-06-22 1 3

3 A 2019-06-22 101 4

4 C 2019-06-23 2 2

5 D 2019-06-23 1 4

6 C 2019-06-23 1 1

PID Product Price

1 X 100

2 Y 15

4 Z 75

3 W 120

Customer Sum

A 7620

B 120

C 130

D 75SELECT Customer, sum(O.Quantity*P.Price)
FROM Orders O, Products P
WHERE O.PID = P.PID
GROUP BY Customer
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▪ An Abstract View
▪ Data: schema, structure → data items

▪ Data composition (granularity): attribute, tuple, relation

▪ Transformation: consumes inputs, produces outputs

▪ Hierarchical transformations: query w/ views, query block, operators

▪ Additional: env context (OS, libraries, env variables, state), users

▪ Goal: Tracing of Derived Results
▪ Inputs and parameters

▪ Steps involved in creating the result

➔ Store and query data & provenance

▪ General Data Protection 

Regulation (GDPR)?

Overview Data Provenance, cont.

1. Read file1
2. Sort rows
3. Compute median
4. Write to file2 Prov.

[Zachary G. Ives: Data Provenance: Challenges, 
Benefits, Research, NIH Webinar 2016]

[Boris Glavic: CS595 Data Provenance –
Introduction to Data Provenance, Illinois 

Institute of Technology, 2012]
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▪ Overview
▪ Base query Q(D) = O with database D = {R1, …, Rn}

▪ Forward lineage query: Lf(Ri”, O’) from subset of input relation to output

▪ Backward lineage query: Lb(O’, Ri) from subset of outputs to base tables 

▪ #1 Lazy Lineage Query Evaluation
▪ Rewrite (invert) lineage queries as relational queries over input relations

▪ No runtime overhead but slow lineage query processing

▪ #2 Eager Lineage Query Evaluation
▪ Materialize annotations (data/transforms) during base query evaluation

▪ Runtime overhead but fast lineage query processing

▪ Lineage capture: Logical (relational) 

vs physical (instrumented physical ops)

Classification of Data Provenance

[Fotis Psallidas, Eugene Wu: 
Smoke: Fine-grained Lineage at 
Interactive Speed. PVLDB 2018]
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▪ Overview Why
▪ Goal: Which input tuples contributed to an output tuple t in query Q

▪ Representation: Set of witnesses w for tuple t (set semantics!)

▪ 𝑤 ⊆ 𝐼 (subset of all tuples in instance I)
▪ 𝑡 ∈ 𝑄(𝑤) (tuple in result of query over w)

▪ Example Witnesses

Why-Provenance
[Boris Glavic: CS595 Data Provenance –

Provenance Models and Systems, Illinois 
Institute of Technology, 2012]

Customer Date PID

A 2019-06-22 2

B 2019-06-22 3

A 2019-06-22 2SELECT Customer, Product
FROM Orders O, Products P
WHERE O.PID=P.PID

PID Product

1 X

2 Y

4 Z

3 W

Customer Product

A Y

B W

t1
t2

o1
o2
o3

p1
p2
p3
p4

Witnesses for t1:
w1 = {o1,p2}, w2 = {o3,p2},
w3 = {o1,o3,p2}, …, wn = I

Minimal witnesses for t1:
w1 = {o1,p2}, w2 = {o3,p2}
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▪ Overview
▪ Model how tuples where combined in the computation

▪ Alternative use: need one of the tuples (e.g., union/projection)

▪ Conjunctive use: need all tuples together (e.g., join)  

▪ Provenance Polynomials
▪ Semi-ring annotations to model provenance (ℕ 𝐼 ,+,×, 0,1)

▪ Examples
▪ 𝑞 = 𝜋𝑎(𝑅)

▪ 𝑞 = 𝜋𝑏(𝑅 ⋈ 𝑆)

How-Provenance
[Boris Glavic: CS595 Data Provenance –

Provenance Models and Systems, Illinois 
Institute of Technology, 2012]

a b

1 2

1 3
r1
r2

a

1 r1 + r2

Provenance 
Polynomialsa b

1 P

2 G

3 M

c a

S 1

S 2

W 2

b

P

G

r1 x s1r1

r2

s1
s2

s3
(r2 x s2) + (r2 x s3)
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▪ Example Exam Question:
Given below tables R and S (with tuples ri and si), query Q and results O, 
specify the provenance polynomials for every tuple in O. [3 points]

How-Provenance, cont.

A: r1 x s1 + r3 x s1 + r2 x s3
(equivalent: (r1 + r3) x s1 + r2 x s3)

B: r2 x s2 C: r2 x s4
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▪ Overview
▪ Why are items not in the results 

▪ Example Problem:

“Window-display-books < $20”

→ (Euripides, Medea). 

→Why not (Hrotsvit, Basilius)?

▪ Evaluation Strategies
▪ Given a user question (why no tuple satisfies predicate S), 

dataset D, result set R, and query Q, leverage why lineage

▪ #1 Bottom-Up: from leafs in topological order to find last op eliminating 𝑑 ∈ 𝑆

▪ #2 Top-Down: from result top down to find last op, requires stored lineage

Why Not?-Provenance [Adriane Chapman, H. V. Jagadish: 
Why not? SIGMOD 2009]

<= 20$?

Not in 
book store?

Bug in the 
query / system?
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▪ DEX: Dataset Versioning
▪ Versioning of datasets, stored with delta encoding

▪ Checkout, intersection, union queries over deltas

▪ Query optimization for finding efficient plans

▪ MISTIQUE: Intermediates of ML Pipelines
▪ Capturing, storage, querying of intermediates

▪ Lossy deduplication and compression

▪ Adaptive querying/materialization for finding efficient plans

▪ Linear Algebra Provenance
▪ Provenance propagation by decomposition

▪ Annotate parts w/ provenance polynomials (contributing inputs + impact)

Provenance for ML Pipelines (fine-grained)

B C

D E

A

Sx Sy

Tu

Tv

[Amit Chavan, Amol Deshpande: DEX: 
Query Execution in a Delta-based 

Storage System. SIGMOD 2017]

[Manasi Vartak et al: MISTIQUE: A System to 
Store and Query Model Intermediates for 

Model Diagnosis. SIGMOD 2018]

𝐴 = 𝑆𝑥𝐵𝑇𝑢 + 𝑆𝑥𝐶𝑇𝑣
+𝑆𝑦𝐷𝑇𝑢 + 𝑆𝑦𝐸𝑇𝑣

[Zhepeng Yan, Val Tannen, Zachary G. Ives: 
Fine-grained Provenance for Linear Algebra 
Operators. TaPP 2016]
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▪ MLflow
▪ Programmatic API for tracking parameters, 

experiments, and results

▪ autolog() for specific params

▪ Flor (on Ground)
▪ DSL embedded in python for managing the workflow development 

phase of the ML lifecycle

▪ DAGs of actions, artifacts, and literals

▪ Data context generated by activities in Ground 

▪ Vision: Dataset Relationship Management
▪ Reuse, reveal, revise, retarget, reward

▪ Code-to-data relationships (data provenance)

▪ Data-to-code relationships (potential transforms)

Provenance for ML Pipelines (coarse-grained)

import mlflow
mlflow.log_param("num_dimensions", 8)
mlflow.log_param("regularization", 0.1)
mlflow.log_metric("accuracy", 0.1)
mlflow.log_artifact("roc.png")

[Credit: https://databricks.com/
blog/2018/06/05 ]

https://rise.cs.berkeley.edu/projects/jarvis/

[Joseph M. Hellerstein et al: Ground: A 
Data Context Service. CIDR 2017]

[Zachary G. Ives, Yi Zhang, Soonbo Han, 
Nan Zheng,: Dataset Relationship 

Management. CIDR 2019]

https://databricks.com/blog/2018/06/05
https://databricks.com/blog/2018/06/05
https://rise.cs.berkeley.edu/projects/jarvis/
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▪ HELIX
▪ Goal: focus on iterative development w/ small 

modifications (trial & error)

▪ Caching, reuse, and recomputation

▪ Reuse as Max-Flow problem

→ NP-hard→ heuristics

▪ Materialization to disk for future reuse

▪ Collaborative Optimizer

Provenance for ML Pipelines (coarse-grained), cont.

[Doris Xin, Stephen Macke, Litian Ma, Jialin Liu, Shuchen
Song, Aditya G. Parameswaran: Helix: Holistic Optimization 

for Accelerating Iterative Machine Learning. PVLDB 2018]

recompute

load

[Behrouz Derakhshan, Alireza Rezaei Mahdiraji, 
Ziawasch Abedjan, Tilmann Rabl, Volker Markl: 
Optimizing Machine Learning Workloads in 
Collaborative Environments. SIGMOD 2020]
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▪ Problem
▪ Exploratory data science (data preprocessing, model configurations)

▪ Reproducibility and explainability of trained models (data, parameters, prep)

➔ Lineage/Provenance as Key Enabling Technique:

Model versioning, reuse of intermediates, incremental maintenance,

auto differentiation, and debugging (query processing over lineage)

▪ Efficient Lineage Tracing
▪ Tracing of inputs, literals, 

and non-determinism

▪ Trace lineage of 

logical operations

▪ Deduplication for loops/functions

▪ Program/output reconstruction

Lineage Tracing & Reuse in SystemDS

[Arnab Phani, Benjamin Rath, 
Matthias Boehm: LIMA: Fine-grained 

Lineage Tracing and Reuse in Machine 
Learning Systems, SIGMOD 2021]

[CIDR’20, SIGMOD’21a, 
EDBT’25]
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▪ Multi-level, Lineage-based Reuse
▪ Lineage trace uniquely identifies intermediates

▪ Reuse intermediates at function / block / operation level

▪ Full Reuse of Intermediates
▪ Before executing instruction, probe output lineage in cache 

Map<Lineage, MatrixBlock>

▪ Cost-based/heuristic caching and eviction decisions 

(compiler-assisted)

▪ Partial Reuse of Intermediates
▪ Problem: Often partial result overlap

▪ Reuse partial results via dedicated rewrites (compensation plans)

▪ Example: steplm

▪ Next Steps: multi-backend, unified mem mgmt

Lineage Tracing & Reuse in SystemDS, cont.

for( i in 1:numModels ) 
R[,i] = lm(X, y, lambda[i,], ...)

m_lmDS = function(...) {
l = matrix(reg,ncol(X),1)
A = t(X) %*% X + diag(l)
b = t(X) %*% y
beta = solve(A, b) ...}

m_steplm = function(...) {
while( continue ) {
parfor( i in 1:n ) {

if( !fixed[1,i] ) {
Xi = cbind(Xg, X[,i])
B[,i] = lm(Xi, y, ...)

} }
# add best to Xg (AIC)

} }

X

t(X)

m>>n
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▪ Database Architecture 
▪ Page-oriented storage on disk and in memory (DB buffer)

▪ Dedicated eviction algorithms

▪ Modified in-memory pages marked as 

dirty, flushed by cleaner thread

▪ Log: append-only TX changes 

▪ Data/log often placed on different devices

and periodically archived (backup + truncate)

▪ Write-Ahead Logging (WAL)
▪ The log records of changes to some (dirty) data page must be 

on stable storage before the data page (UNDO - atomicity)

▪ Force-log on commit or full buffer (REDO - durability)

▪ Recovery: forward (REDO) and backward (UNDO) processing

▪ Log sequence number (LSN)

Recap: Database (Transaction) Log

[C. Mohan, Donald J. Haderle, Bruce G. Lindsay, 
Hamid Pirahesh, Peter M. Schwarz: ARIES: A 

Transaction Recovery Method Supporting Fine-
Granularity Locking and Partial Rollbacks Using 

Write-Ahead Logging. TODS 1992]

DBMS

DB Buffer Log 
Buffer

User 1
User 2

User 3

P1

P7 P3’

Data Log

P7 P3
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▪ Motivation
▪ Peer-to-peer (decentralized, anonymous) electronic cash/payments

▪ Non-reversible transactions w/o need for trusted third party

▪ Statistics

Nov 21 2019:

Nov 19 2020:

▪ Transaction Overview
▪ Electronic coin defined as chain of digital signatures

▪ Transfer by signing hash of previous TX and public key of next owner

▪ Double-spending problem (without global verification)

▪ Permissioned/Private Blockchains
▪ Blockchain as shared, replicated, permissioned ledger (TX log):

consensus, provenance, immutability

Bitcoin and Blockchain Fundamentals [Satoshi Nakamoto: Bitcoin: A 
Peer-to-Peer Electronic Cash 

System, White paper 2008]

[https://www.blockchain.
com/charts]

https://www.blockchain.com/charts
https://www.blockchain.com/charts
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▪ Timestamp Server
▪ Decentralized timestamp server: chain of hashes ➔ public ledger

▪ Proof-of-Work
▪ Scanning for value (nonce) whose SHA-256 hash begins with a number of 

zero bits → exponential in number of zeros

▪ # zero bits determined by moving average of avg blocks/hour

▪ Hard to recompute for chain, easy to check

▪ Majority decision: CPU time, longest chain

Blockchain Data Structure [Satoshi Nakamoto: Bitcoin: A 
Peer-to-Peer Electronic Cash 

System, White paper 2008]

Block

TX TX TX

Hash

Block

TX TX

Hash
Enforces order 

dependency
➔ No double-

spending 

Hash

TX TX TX

noncePrev hash

00110111

Merkel tree (hash tree)
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▪ Bitcoin Mining
▪ HW: from CPU to GPUs/FPGAs/ASICs (10-70 TH/s @ 2-3KW)

▪ Usually mining pools → “mining cartels”

▪ Hash Rate of Bitcoin Network 
▪ ~10 min per block (144 blocks per day)

Blockchain Data Structure, cont.

@Malaysia

[https://www.blockchain.com/en/charts/hash-rate?
daysAverageString=7&timespan=180days, Nov 12 2021]

180 EH Nov 12, 2021: 
~160 EH

Nov 25, 2023: 
~494 EH

Nov 25, 2024: 
~776 EH

https://www.blockchain.com/en/charts/hash-rate?daysAverageString=7&timespan=180days
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▪ Proof of Work (PoW)
▪ Validation by performing work, existence of HW resources

▪ High HW cost of attacks

▪ Wasted work, resources, energy (only first block, no real outcome, e-waste)

▪ Proof of Stake (PoS)
▪ Validation by stake-weighted random node selection

▪ Intrinsic coin cost, less HW resources/energy

▪ Untested attack mitigation?

▪ Proof of Space/Capacity
▪ Upfront creation of “plot files”, store nonces+hashes, 

find solutions, occasional validation

▪ HW costs of attacks, use of unused space

▪ Moderate adoption

Blockchain Consensus Mechanisms

[https://www.chia.net/]

Ethereum 2.0
→ PoS/sharding

over time

[Stefan Dziembowski, Sebastian Faust, 
Vladimir Kolmogorov, Krzysztof Pietrzak: 

Proofs of Space. IACR Cryptol. 2013]

“means of showing that one 
invested a non-trivial amount of 

effort related to some statement”

https://www.chia.net/
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➔ Recommendation: Investigate business requirements/context,
decide on technical properties and acceptable trade-offs

Discussion Blockchain

[Sujaya Maiyya, Victor Zakhary, Mohammad Javad Amiri, 
Divyakant Agrawal, Amr El Abbadi: Database and Distributed 

Computing Foundations of Blockchains. SIGMOD 2019]

Many established techniques
SotA toward scalable/efficient blockchains

(especially for permissioned blockchains)

03 MoM & Replication 
10/11 Distributed Storage/Compute

DM
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Data Catalogs
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Recap: Complementary System Architectures

Operational Systems

Analytical Systems

Strategic 
Systems

DSS

ERP

eCommerceSCM

CRM
Material

Horizontal Integration (e.g., EAI) 

Vertical 
Integration 
(e.g., ETL) 

DWH

#1 Information System 
Pyramid

#2 Data 
Lake

Audio, Image, Video, 
Text, Streams, Logs

Distributed 
Data Stores

Distributed 
Computation
Frameworks

Catalogs
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▪ Data Catalogs
▪ Data curation in repositories for finding datasets in data lakes

▪ Metadata and provenance

▪ Augment data with open and linked data sources 

▪ Examples

Overview Data Catalogs

[Alon Y. Halevy et al: Goods: Organizing 
Google's Datasets. SIGMOD 2016]

[Dan Brickley, Matthew Burgess, Natasha 
F. Noy: Google Dataset Search: Building a 

search engine for datasets in an open 
Web ecosystem. WWW 2019]

SAP Data Hub Google Dataset Search

[SAP Sapphire Now 2019]

[Omar Benjelloun, Shiyu Chen, Natasha Noy: 
Google Dataset Search by the Numbers, 

https://arxiv.org/pdf/2006.06894]

500K → 30M datasets

https://arxiv.org/pdf/2006.06894
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▪ GAIA-X 
Architecture 
Overview

GAIA-X Initiative & Integration

Data 
Platform

Digital 
Platform

[BMWi: GAIA-X: Driver of digital 
innovation in Europe – Featuring the next 

generation of data infrastructure, 2020]
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Example Delta Lake (and Lakehouse Architecture)

DWH Data Lake Lakehouse

SQL Data Frames

Metadata APIs

Open Formats

TXs

Versioning

DCtlg

[Michael Armbrust, Ali Ghodsi, Reynold Xin, 
Matei Zaharia: Lakehouse: A New Generation 
of Open Platforms that Unify Data Ware-
housing and Advanced Analytics, CIDR 2021]

[Michael Armbrust et al: Delta 
Lake: High-Performance ACID 
Table Storage over Cloud Object 
Stores. PVLDB 13(12) 2020]

[Alexander Behm: Photon: A 
High-Performance Query Engine 
for the Lakehouse, CIDR 2022]
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▪ #1 Dictionary of Datasets
▪ Basic overview, links, and curation of available datasets

▪ Raw/original, curated datasets, derived data products

▪ #2 Rich Meta Data Collection
▪ Format, schema, and access information of datasets

▪ Data profiling, data validation results, and data quality scores 

▪ #3 Lineage/Provenance
▪ Coarse- or fine-grained lineage, incl applied data integration and cleaning process 

▪ Optionally artifacts to reproduce datasets from sources

▪ #4 Data Discovery, Governance, and Sharing
▪ Find related “joinable” datasets (e.g., over spatial-temporal keys)

▪ Efficient discovery and sharing of federated data sources

Key Features of a Data Catalog

[Sonia Castelo, Rémi Rampin, Aécio S. R. Santos, 
Aline Bessa, Fernando Chirigati, Juliana Freire: 

Auctus: A Dataset Search Engine for Data 
Discovery and Augmentation. PVLDB 2021]
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▪ Apache Atlas Overview
▪ Metadata management and governance capabilities

▪ Build catalog (data classification, cross-component lineage)

▪ Example
▪ Configure Atlas hooks 

w/ Hadoop components

▪ Automatic tracking of 

lineage and side effects 

Apache Atlas

[https://www.cloudera.com/tutorials/cross-component-lineage-with-
apache-atlas-across-apache-sqoop-hive-kafka-storm/.html]

[https://atlas.apache.org]

https://www.cloudera.com/tutorials/cross-component-lineage-with-apache-atlas-across-apache-sqoop-hive-kafka-storm/.html
https://www.cloudera.com/tutorials/cross-component-lineage-with-apache-atlas-across-apache-sqoop-hive-kafka-storm/.html
https://atlas.apache.org/


Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 07 Data Provenance and Data Catalogs34

▪ Motivation and Terminology

▪ Data Provenance

▪ Data Catalogs

▪ Next Lectures (Large-scale Data Management and Analysis)
▪ 08 Cloud Computing Fundamentals [Dec 05, virtual only]

▪ 09 Cloud Resource Management and Scheduling [Dec 12]

▪ 10 Distributed Data Storage [Dec 19]

▪ 11 Distributed, Data-Parallel Computation [Jan 09]

▪ 12 Distributed Stream Processing [Jan 16]

▪ 13 Distributed Machine Learning Systems [Jan 23]

Summary and Q&A

[https://xkcd.com/
2582/]

https://xkcd.com/2582/
https://xkcd.com/2582/
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