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Announcements / Administrative Items

= #1 Video Recording

= Hybrid lectures: in-person H 0107, zoom live streaming, video recording zoom
" https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SCI9BOU10cFdmem9zT202UT09

= #2 Exercises/Projects
= Reminder: exercise/project submissions by Jan 30 (no extensions)
= Make use of virtual office hours Wed 4.30pm-6pm

= #3 Lecture Dec 05
= FONDA Il CRC (Foundations of Workflows for Large-Scale Scientific Data Analysis) retreat Dec 04 — 06
= Virtual lecture on Dec 05, 4pm (start 4.15pm) from hotel room
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https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

Agenda

= Motivation and Terminology
= Data Provenance

= Data Catalogs
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Motivation and Terminology
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Excursus: FAIR Data Principles i : JEAZAIR

[https://www.go-fair.org/fair-principles/]

1 /]

#1 Findable
= Metadata and data have globally unique persistent identifiers
= Data describes w/ rich meta data; registered/indexes and searchable

#2 Accessible
= Metadata and data retrievable via open, free and universal commnication protocols
= Metadata accessible even when data no longer available

#3 Interoperable
= Metadata and data use a formal, accessible, and broadly applicable format
= Metadata and data use FAIR vocabularies and qualified references

#4 Reusable
= Metadata and data described with plurality of accurate and relevant attributes
= (Clear license, associated with provenance, meets community standards
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Terminology of Provenance/Lineage

1 /]

= Data Provenance
* Track and understand data origins and transformations of data

(where?, when?, T - . Model Model
easure ata ata ode ode

ho?, why?, how? . . o M .
W why w?) / Acquire Cleaning Prep Training Serving

= Contains meta data, context, and modifications (transform, enrichment)
= Synonyms: data provenance (arts) data lineage (royals), data pedigree (horses)

= Blockchain
= Data structure logging transactions in verifiable and permanent way

= Data Catalogs (curation/governance)
= Directory of datasets including data provenance (meta data, artifacts)
= Rawj/original, curated datasets, derived data products
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Application and Goals of Provenance

a) High-Level Goals
= #1 Versioning and Reproducibility (analogy experiments)

= #2 Explainability, Interpretability, Verification

b) Low-Level Goals

#3 Full and Partial Reuse of Intermediates

#4 Incremental Maintenance of MatViews, Models, etc

#5 Tape/log of Executed Operations = Auto Differentiation

#6 Recomputation for Caching / Fault Tolerance SpQFIQZ

#7 Debugging via Lineage Query Processing
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Data Provenance
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Overview Data Provenance

= Def Data Provenance

= |Information about the origin and creation process of data m
= Example A | 7620
B 120

= Debugging suspicious query results
C 130

SELECT Customer, sum(O.Quantity*P.Price) D 75
FROM Orders O, Products P ‘
WHERE O.PID = P.PID

oA 00 | customer | _Date | Quantity | PiD | mmm
BNV 100

2019-06-22 ﬂ_-
nnmn n-
2019-06-23
5 D 2019-06-23 1 4
6 C 2019-06-23 1 1
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Overview Data Provenance, cont.

= An Abstract View

= Data: schema, structure = data items

= Data composition (granularity): attribute, tuple, relation

= Transformation: consumes inputs, produces outputs
Hierarchical transformations: query w/ views, query block, operators
Additional: env context (OS, libraries, env variables, state), users

= Goal: Tracing of Derived Results
" |nputs and parameters
= Steps involved in creating the result
=» Store and query data & provenance
= General Data Protection

. Read filel
. Sort rows
. Compute median

AwN PR

Regulation (GDPR)?
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. Write to file2
74

1 /]

[Boris Glavic: CS595 Data Provenance —
Introduction to Data Provenance, Illinois
Institute of Technology, 2012]

[Zachary G. Ives: Data Provenance: Challenges,
Benefits, Research, NIH Webinar 2016]
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Classification of Data Provenance

= Overview
= Base query Q(D) = O with database D = {R, ..., R,;}
= Forward lineage query: L(R.”, O’) from subset of input relation to output
= Backward lineage query: L, (O, R)) from subset of outputs to base tables

= #1 Lazy Lineage Query Evaluation
= Rewrite (invert) lineage queries as relational queries over input relations
= No runtime overhead but slow lineage query processing

= }#2 Eager Lineage Query Evaluation
» Materialize annotations (data/transforms) during base query evaluation

= Runtime overhead but fast lineage query processing [Fotis Psallidas, Eugene Wu: | —
= Lineage capture: Logical (relational) Ii::::‘zt:is;”;ir:é”i‘:ltg‘sz%elgg

vs physical (instrumented physical ops)
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[Boris Glavic: CS595 Data Provenance —

Why-Provenance e |

Provenance Models and Systems, lllinois
Institute of Technology, 2012]

1 /]

= Overview Why
= Goal: Which input tuples contributed to an output tuple t in query Q
= Representation: Set of witnesses w for tuple t (set semantics!)

= w C | (subset of all tuples in instance I)
" t € Q(w) (tuple in result of query over w)

coonr|_oue Lo Wil oot

= Example Witnesses 2019-06-22 pl X
02 B 2019-06-22 3 p2 2 Y

SELECT Customer, Product o3 A 2019-06-22 2 p3 4 7
FROM Orders O, Products P 3 W

Y i
Witnesses for t1:
W= {oLp2}, w2 = {03,p2). | Customer | Product _

t1 A Y
t2 B W

WHERE O.PID=P.PID

w3 ={01,03,p2}, ..., wn =
Minimal witnesses for t1:
wl ={o1,p2}, w2 ={03,p2}
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[Boris Glavic: CS595 Data Provenance —

HOW'Provenance Provenance Models and Systems, lllinois L
Institute of Technology, 2012]

= Overview
= Model how tuples where combined in the computation
= Alternative use: need one of the tuples (e.g., union/projection)
= Conjunctive use: need all tuples together (e.g., join)

= Provenance Polynomials
= Semi-ring annotations to model provenance (N[I], +,%, 0,1)

= Examples
2 | b » e
1

" q =1,(R) r1 1 2
r2 1 3

Provenance
EELCEDIN - - B - - " potmomiak
ri[f e s1jisi i » o rlxsl

s2
r2 2 G Sl G (r2 x s2) + (r2 x s3)
3 M s3 W 2

ri1+r2
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How-Provenance, cont.

= Example Exam Question:
Given below tables R and S (with tuples r, and s;), query Q and results O,
specify the provenance polynomials for every tuple in O. [3 points]

r
rs

rs

N e

S SELECT DISTINCT S.D
FROM R, S
B C D ’
WHERE R.B=5.C O Provenance Polynomials?
1 S1 1 A A
2 So 2 B //.
84 2 (i""’”’,,a”"’,,,aff””,””’E; ,///, T
A:rlxsl+r3xsl+r2xs3
(equivalent: (r1 +r3) x s1 +r2 x s3)
B:r2 xs2 C:r2xs4
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Why Not?-Provenance [Adriane Chapman, H. V. Jagadish:

Why not? SIGMOD 2009] l
= Overview . :

) ) Author Title Price  Publisher
= Why are items not in the results Epic of Gilgamesh $150  Hesperus
= Example Problem: Euripides Medea $16 Free Press

_ _ Homer Iliad $18 Penguin
“Window-display-books < $20” <=20$? Homer Odyssey $49  Vintage
- Hrotsvit Basilius $20 Harper
2 (Eurlpldes’ Medea)' Not in Longfellow  Wreck of the Hesperus ~ $89 Penguin
> Why not (Hrotsvit, Basilius)? book 5 Shakespeare  Coriolanus $70 Penguin
ook store: Sophocles Antigone $48 Free Press
Bug in the Virgil Aeneid $92 Vintage

query / system?

= Evaluation Strategies
= Given a user question (why no tuple satisfies predicate S),
dataset D, result set R, and query Q, leverage why lineage
= #1 Bottom-Up: from leafs in topological order to find last op eliminatingd € S
= #2 Top-Down: from result top down to find last op, requires stored lineage
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Provenance for ML Pipelines (fine-grained)

1 /]

= DEX: Dataset Versioning

= Versioning of datasets, stored with delta encoding [Amit Chavan, Amol Deshpande: DEX:
) ) i ) Query Execution in a Delta-based
= Checkout, intersection, union queries over deltas Storage System. SIGMOD 2017]

= Query optimization for finding efficient plans

= MISTIQUE: Intermediates of ML Pipelines [Manasi Vartak et al: MISTIQUE: A System to
= Capturing, storage, querying of intermediates Store and Query Model Intermediates for
Model Diagnosis. SIGMOD 2018]

= Lossy deduplication and compression

= Adaptive querying/materialization for finding efficient plans

= Linear Algebra Provenance

A
= Provenance propagation by decomposition
= Annotate parts w/ provenance polynomials (contributing inputs + impact)
[Zhepeng Yan, Val Tannen, Zachary G. Ives: A=S,BT, +S,CT, S¢Sy
Fine-grained Provenance for Linear Algebra _|_SyDTu + SyETv
Operators. TaPP 2016] T




Provenance for ML Pipelines (coarse-grained)

1 /]

[Credit: https://databricks.com/

= MLflow import mlflow blog/2018/06/05 |
= Programmatic API for tracking parameters, mlflow.log param("num_dimensions", 8)
experiments, and results mlflow.log_param("regularization", 0.1)
e mlflow.log metric("accuracy", 0.1)
= autolog() for specific params mlflow.log_artifact("roc.png")

= Flor (on Ground)
= DSL embedded in python for managing the workflow development
phase of the ML Iifecycle [Joseph M. Hellerstein et al: Ground: A
) i ) Data Context Service. CIDR 2017]
= DAGs of actions, artifacts, and literals
= Data context generated by activities in Ground

https://rise.cs.berkeley.edu/projects/jarvis/

= Vision: Dataset Relationship Management

. Zachary G. lves, Yi Zhang, Soonbo Han, | —
= Reuse, reveal, revise, retarget, reward [ Y & .

Nan Zheng,: Dataset Relationship
= Code-to-data relationships (data provenance) Management. CIDR 2019]

= Data-to-code relationships (potential transforms)
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Provenance for ML Pipelines (coarse-grained), cont.

|
HELIX [Doris Xin, Stephen Macke, Litian Ma, Jialin Liu, Shuchen
= Goal: focus on iterative development w/ small Song, Aditya G. Parameswaran: Helix: Holistic Optimization
modifications (trial & error) for Accelerating Iterative Machine Learning. PVLDB 2018]

= Caching, reuse, and recomputation . load
S @
= Reuse as Max-Flow problem ’

SP Sp
- NP-hard = heuristics Q? é . recompute
= Materialization to disk for future reuse : ’\ /( :
S @ S 90

= Collaborative Optimizer @ St
| [Behrouz Derakhshan, Alireza Rezaei Mahdiraji,

- " 0 @
Ziawasch Abedjan, Tilmann Rabl, Volker Markl:

Optimizing Machine Learning Workloads in v @
Collaborative Environments. SIGMOD 2020]

o«o—»b«
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Lineage Tracing & Reuse in SystemDS [cIDbr’20, siGMOD"21a,
EDBT’25]

= Problem

= Exploratory data science (data preprocessing, model configurations)
= Reproducibility and explainability of trained models (data, parameters, prep)

=» Lineage/Provenance as Key Enabling Technique: [Arnab Phani, Benjamin Rath,
.. . . . . Matthias Boehm: LIMA: Fine-grained
Model versioning, reuse of intermediates, incremental maintenance, Lineage Tracing and Reuse in Machine
auto differentiation, and debugging (query processing over lineage) Learning Systems, SIGMOD 2021]
= Efficient Lineage Tracing Runtime trace  _ Lineage serialize Lineage
= Tracing of inputs, literals, Program “econstruct  Graph L ™ gegerialize Log

and non-determinism S @) croa 2
" Trace lineage of r W@
logical operations compare Q
= Deduplication for loops/functions

= Program/output reconstruction

“NBIFOLD
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Multi-level, Lineage-based Reuse
= Lineage trace uniquely identifies intermediates

Lineage Tracing & Reuse in SystemDS, cont. ﬁ . 3 ’ ﬂg

= Reuse intermediates at function / block / operation level

. FUII Reuse Of IntermEdiates -For-( i in 1:numModels )
= Before executing instruction, probe output lineage in cache R[,1i] = Im(X, y, lambda[i,], ...)
Map<Lineage, MatrixBlock>

m_1mDS = function(...) {

= Cost-based/heuristic caching and eviction decisions 1 = matrix(reg,ncol(X),1)
. . A = t(X) %*% X + diag(l)
(compiler-assisted) b = t(X) %*% y

beta = solve(A, b) ...} 7

= Partial Reuse of Intermediates
= Problem: Often partial result overlap
= Reuse partial results via dedicated rewrites (compensation plans)
= Example: steplm

m_steplm = function(...) {
while( continue ) {
parfor( i in 1:n ) {
if( !fixed[1,i] ) {
m>>n Xi = cbind(Xg, X[,i])
B[,i] = Im(Xi, vy, ...)

. . . pe }}
Next Steps: multi-backend, unified mem mgmt - ¥ 2dd best to Xg (ALC)
}} 74




Recap: Database (Transaction) Log , User2

= Database Architecture DBMS
= Page-oriented storage on disk and in memory (DB buffer)
= Dedicated eviction algorithms
= Modified in-memory pages marked as P7 = P3’
dirty, flushed by cleaner thread
= Log: append-only TX changes

DB Buffer

Buffer

= Data/log often placed on different devices
and periodically archived (backup + truncate) P1 P7QP3
Data Log
= Write-Ahead Logging (WAL)
» The log records of changes to some (dirty) data page must be [C. Mohan, Donald J. Haderle, Bruce G. Lindsay,
. Hamid Pirahesh, Peter M. Schwarz: ARIES: A
on stable storage b(.efore the data page (UNDO - ?’Fom|C|ty) Transaction Recovery Method Supporting Fine-
= Force-log on commit or full buffer (REDO - durability) Granularity Locking and Partial Rollbacks Using
= Recovery: forward (REDO) and backward (UNDO) processing Write-Ahead Logging. TODS 1992]

= Log sequence number (LSN)

“NBIFOLD
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[Satoshi Nakamoto: Bitcoin: A | —
Peer-to-Peer Electronic Cash |
System, White paper 2008] |

Bitcoin and Blockchain Fundamentals

= Motivation
= Peer-to-peer (decentralized, anonymous) electronic cash/payments

= Non-reversible transactions w/o need for trusted third party

] Statistics Market Price (USD) Average Block Size Transactions per Day Mempool Size [httpS//WWW blOCkChain .

com/charts]

Nov 21 2015: $7,862.72 1.16 303,921 11,304,890
usD Megabytes Transactions Bytes
Nov 19 2020: $17,975.24 1.29 310,424 19,920,773
o oo e e Transaction Transaction Transaction
= Transaction Overview Sl Sz
= Electronic coin defined as chain of digital signatures ?E ﬁ ﬁ
. N . . Hash Hash Hash
= Transfer by signing hash of previous TX and public key of next owner I oy I oy ‘
= Double-spending problem (without global verification) Qurer 05 pEE EER
. . . . ¢ s
= Permissioned/Private Blockchains A A |
Private Key Prvate Key Private Key

= Blockchain as shared, replicated, permissioned ledger (TX log):
consensus, provenance, immutability
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BlOCkChain Data Structu re [Satoshi Nakamoto: Bitcoin: A

Peer-to-Peer Electronic Cash |
System, White paper 2008] |

= Timestamp Server
= Decentralized timestamp server: chain of hashes =» public ledger

Enforces order
dependency

=» No double-
spending

Block

™ TX TX

= Proof-of-Work
= Scanning for value (nonce) whose SHA-256 hash begins with a number of
zero bits = exponential in number of zeros
= # zero bits determined by moving average of avg blocks/hour
= Hard to recompute for chain, easy to check ™ X X
= Majority decision: CPU time, longest chain

00110111

Prev hash nonce

Merkel tree (hash tree)

“NBIFOLD
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Blockchain Data Structure, cont.

= Bitcoin Mining
= HW: from CPU to GPUs/FPGAs/ASICs (10-70 TH/s @ 2-3KW)
= Usually mining pools 2 “mining cartels”

= Hash Rate of Bitcoin Network
= ~10 min per block (144 blocks per day)

200m

180 EH

~160 EH

150m

~494 EH

100m

Hash Rate TH/s

~776 EH

wom [https://www.blockchain.com/en/charts/hash-rate?
daysAverageString=7&timespan=180days, Nov 12 2021]

<7 Blockchain I
2019 2020 2021

@) matthias Boehm | FG DAMS | DIA WiSe 2024/25 — 07 Data Provenance and Data Catalogs

Nov 12, 2021:
Nov 25, 2023:

Nov 25, 2024:

@Malaysia
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https://www.blockchain.com/en/charts/hash-rate?daysAverageString=7&timespan=180days

Blockchain Consensus Mechanisms ~ “means of showing that one
invested a non-trivial amount of

effort related to some statement”

1 /]

= Proof of Work (PoW)
= Validation by performing work, existence of HW resources
= High HW cost of attacks
= Wasted work, resources, energy (only first block, no real outcome, e-waste)

= Proof of Stake (PoS)
= Validation by stake-weighted random node selection
= |ntrinsic coin cost, less HW resources/energy
= Untested attack mitigation?

Ethereum 2.0 e
- PoS/sharding
over time

= Proof of Space/Capacity
= Upfront creation of “plot files”, store nonces+hashes,

[https://www.chia.net/]

. . . . . [Stefan Dziembowski, Sebastian Faust,
find solutions, occasional validation . ) _
Vladimir Kolmogorov, Krzysztof Pietrzak:

= HW costs of attacks, use of unused space Proofs of Space. IACR Cryptol. 2013]
= Moderate adoption
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Discussion Blockchain

Data Management [Sujaya Maiyya, Victor Zakhary, Mohammad Javad Amiri,
Divyakant Agrawal, Amr El Abbadi: Database and Distributed
Computing Foundations of Blockchains. SIGMOD 2019]
transactions
DM
ledger/ logs . .
03 MoM & Replication
10/11 Distributed Storage/Compute
) & o Distributed Systems
© & & i i
%&/ S & 3§ Many established techniques
=5 L 3 & . . .
%, % ¢« SotA toward scalable/efficient blockchains
%(rad(\\\ & "@p (especially for permissioned blockchains)
o)
Q’i,
N

=» Recommendation: Investigate business requirements/context,
decide on technical properties and acceptable trade-offs
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Data Catalogs

Matthias Boehm | FG DAMS | DIA WiSe 2024/25 — 07 Data Provenance and Data Catalogs \‘ BI FOLD




Recap: Complementary System Architectures

#1 Information System N
Pyramid

N

DSS

Strategic
Systems
e %Em

wdl W

Analytlcal Systems

Operational Systems

Vertical
Integration
(e.g., ETL)

e T

*\1 il Material

A

1 /]

Distributed
Computation
Frameworks

DATA LAKE

eCommerce

#2 Data
Lake

v

N

Horizontal Integration (e.g., EAI)
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Audio, Image, Video,
Text, Streams, Logs

Distributed
Data Stores

Amazon S3
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Overview Data Catalogs .

= Data Catalogs [Alon Y. Halevy et al: Goods: Organizing
= Data curation in repositories for finding datasets in data lakes Google's Datasets. SIGMOD 2016]
" Metadata and provenance [Dan Brickley, Matthew Burgess, Natasha
= Augment data with open and linked data sources F. Noy: Google Dataset Search: Building a

search engine for datasets in an open
Web ecosystem. WWW 2019]

= Examples

[Omar Benjelloun, Shiyu Chen, Natasha Noy:
SAP Data Hub Google Dataset Search Google Dataset Search by the Numbers,
Dataset Organzing Taos https://arxiv.org/pdf/2006.06894]

Provenance

i | Search | | Dashboards | Visualization Annotation
____________________________________________________________ Category Number % of  Sample formats
of datasets total
A Tables T.822K 37% CSV, XLS
Structured 6,312K 30%  JSON, XML, OWL, RDF
Documents 2.27TTK 11%  PDF, DOC, HTML
Dataset Catalog Images 1.027TK 5% JPEG. PNG, TIFF
Metadata Additional Sources of Metadata Archives 659K 3%  ZIP. TAR, RAR
Pathildentifier - = o ’ Text 623K 3% TXT, AsClI
Size | Pr Sch - Source code repository . i ) .
- User and group membership database Geospatial 3T6K 2%  SHP, GEOJSON, KML
Ibigtable/foo/bar 100G | written_by: job_A proto:foo. Bar - g:::;:rn:nz:w::lr:zi?::s Computational biology 110K <1% SBML, BIOPAX2, SBGN
fgfsinluffoo 10G read_by: job_B, proto:nlu.Schema B Contributed gy usersiteams through Andio 27K <1% WAV, NP3, OGG
written_by: job_C GOODS API Video oK <1% AVI, MPG
Presentations K <1% PPTX
Medical imaging 4K <1% NII, DCM

Other categories 2.245K 11%
[SAP Sapphire Now 2019] o | [rwsman] "_" 500K > 30M datasets

“NBIFOLD
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GAIA-X Initiative & Integration ~ [BMWi GAIAX: Driver of digital

innovation in Europe — Featuring the next
generation of data infrastructure, 2020]

| -
GAIA-X Data Ecosystem
Arc h itect ure Advanced Smart Services
(Cross-) Sector Innovation/ ‘ . . .
Overview
3 ] | o
Data Spaces
Interoperable & portable (Cross-) Sector °1 (o]
D ata data-sets and services
Platform
GAIA-X Federation services
Federated & distributed for
interoperability Trust & Sovereignty
services
Portability, Interoperability &
Interconnectivity
D . e I Technical: Architecture of Standards Network/ CSP Sector
Ig I ta Commercial: Policies Interconn. (e-g- Regional, (e.g. research...) SPECiﬁC
Providers ket clouds
Platform LS
Compliance
Legal: Regulation & Policies Infra structure Ecosystem
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Example Delta Lake (and Lakehouse Architecture)

DWH Data Lake Lakehouse
& G el @ & &« 6@ &
Data Machine Data Machine
Reports Reports Science Learning Bl Reports  science Learning

@@4‘ |
=S N

Data Warehouses

b0 4 7
T ' "% <1 Datalake '®°' ‘e .
4 . .
888 B om0 B Open Formats @ 5 @ O g Versioning
Structured Data Structured, Semi-structured & Unstructured Data Structured, Semi-structured & Unstructured Data
[Michael Armbrust et al: Delta — [Michael Armbrust, Ali Ghodsi, Reynold Xin, — | [Alexander Behm: Photon: A
Lake: High-Performance ACID | Matei Zaharia: Lakehouse: A New Generation High—Performancé Query Engine
Table Storage over Cloud Object | of Open Platforms that Unify Data Ware- for the Lakehouse, CIDR 2022]
Stores. PVLDB 13(12) 2020] housing and Advanced Analytics, CIDR 2021] ’
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Key Features of a Data Catalog

#1 Dictionary of Datasets
= Basic overview, links, and curation of available datasets
= Rawj/original, curated datasets, derived data products

#2 Rich Meta Data Collection
= Format, schema, and access information of datasets
= Data profiling, data validation results, and data quality scores

#3 Lineage/Provenance
= Coarse- or fine-grained lineage, incl applied data integration and cleaning process
= QOptionally artifacts to reproduce datasets from sources

#4 Data DiSCOVEfV Goverhance. and Sharing [Sonia Castelo, Rémi Rampin, Aécio S. R. Santos,
’ ’ Aline Bessa, Fernando Chirigati, Juliana Freire:

= Find related “joinable” datasets (e.g., over spatial-temporal keys) Auctus: A Dataset Search Engine for Data
= Efficient discovery and sharing of federated data sources Discovery and Augmentation. PVLDB 2021]
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Apache Atlas

= Apache Atlas Overview [https://atlas.apache.org]

" Metadata management and governance capabilities _A_t]_a_s
= Build catalog (data classification, cross-component lineage)

- Example luserfroot/test_t gad data inpath

= Configure Atlas hooks G- .0 -
w/ Hadoop components

= Automatic traCking of mysql —url jdbc SQOOP import —Co __ >@

lineage and side effects _ "'0 -

_lest_hive_table1 create table cur cur_hive_tabla1

[https://www.cloudera.com/tutorials/cross-component-lineage-with-
apache-atlas-across-apache-sqgoop-hive-kafka-storm/.html]
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https://www.cloudera.com/tutorials/cross-component-lineage-with-apache-atlas-across-apache-sqoop-hive-kafka-storm/.html
https://www.cloudera.com/tutorials/cross-component-lineage-with-apache-atlas-across-apache-sqoop-hive-kafka-storm/.html
https://atlas.apache.org/

Summary and Q&A

= Motivation and Terminology

Data Provenance

Data Catalogs

Next Lectures (Large-scale Data Management and Analysis)

08 Cloud Computing Fundamentals [Dec 05, virtual only]
09 Cloud Resource Management and Scheduling [Dec 12]
10 Distributed Data Storage [Dec 19]

11 Distributed, Data-Parallel Computation [Jan 09]

12 Distributed Stream Processing [Jan 16]

13 Distributed Machine Learning Systems [Jan 23]

HEY, LOOK, WE HAVE A BUNCH
OF DATAl I™ GONNA ANALYZE IT.

NO, YOU FooL! THAT WILL
ONLY CREATE MORE DATA!
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[https://xkcd.com/
2582/]
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