

Data Integration and Large-scale Analysis (DIA) 09 Cloud Resource Management and Scheduling

Prof. Dr. Matthias Boehm

Technische Universität Berlin Berlin Institute for the Foundations of Learning and Data Big Data Engineering (DAMS Lab)

Announcements / Administrative Items

#1 Video Recording

- Hybrid lectures: in-person H 0107, zoom live streaming, video recording
- https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

#2 Exercises/Projects

- Reminder: exercise/project submissions by Jan 30 (no extensions)
- Make use of virtual office hours Wed 4.30pm-6pm

#3 Course Evaluations

DIA not part of this evaluation this semester

Course Outline Part B: Large-Scale Data Management and Analysis

12 Distributed Stream Processing

13 Distributed Machine Learning Systems

Compute/ Storage 11 Distributed Data-Parallel Computation

10 Distributed Data Storage

Infra

09 Cloud Resource Management and Scheduling

08 Cloud Computing Fundamentals

Agenda

- Motivation, Terminology, and Fundamentals
- Resource Allocation, Isolation, and Monitoring
- Task Scheduling and Elasticity

Motivation, Terminology, and Fundamentals

Recap: Motivation Cloud Computing

Definition Cloud Computing

- On-demand, remote storage and compute resources, or services
- User: computing as a utility (similar to energy, water, internet services)
- Cloud provider: computation in data centers / multi-tenancy

Service Models

- laaS: Infrastructure as a service (e.g., storage/compute nodes)
- PaaS: Platform as a service (e.g., distributed systems/frameworks)
- SaaS: Software as a Service (e.g., email, databases, office, github)

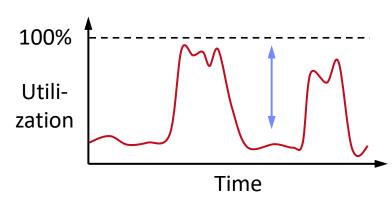
→ Transforming IT Industry/Landscape

- Since ~2010 increasing move from on-prem to cloud resources
- System software licenses become increasingly irrelevant
- Few cloud providers dominate laaS/PaaS/SaaS markets (w/ 2018 revenue):
 Microsoft Azure Cloud (\$ 32.2B), Amazon AWS (\$ 25.7B), Google Cloud (N/A), IBM Cloud (\$ 19.2B),
 Oracle Cloud (\$ 5.3B), Alibaba Cloud (\$ 2.1B)

"Computing as a Utility"

Recap: Motivation Cloud Computing, cont.

- Argument #1: Pay as you go
 - No upfront cost for infrastructure
 - Variable utilization → over-provisioning
 - Pay per use or acquired resources



- Argument #2: Economies of Scale
 - Purchasing and managing IT infrastructure at scale → lower cost
 (applies to both HW resources and IT infrastructure/system experts)
 - Focus on scale-out on commodity HW over scale-up → lower cost
- Argument #3: Elasticity
 - Assuming perfect scalability, work done in constant time * resources
 - Given virtually unlimited resources allows to reduce time as necessary

100 days @ 1 node

 \approx

1 day @ 100 nodes

(but beware Amdahl's law: max speedup sp = 1/s)

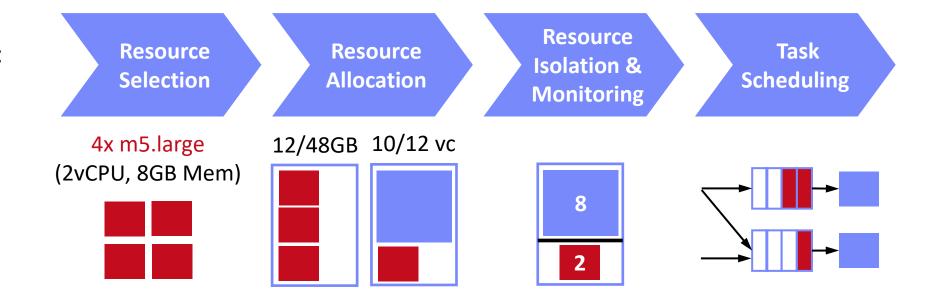
Overview Resource Management & Scheduling

Scheduling is a fundamental computer science technique (at many different levels)

Resource Bundles

- Logical containers (aka nodes/instances) of different resources (vcores, mem)
- Disk capacity, disk and network bandwidth
- Accelerator devices (GPUs, FPGAs), etc

ResourceManagement

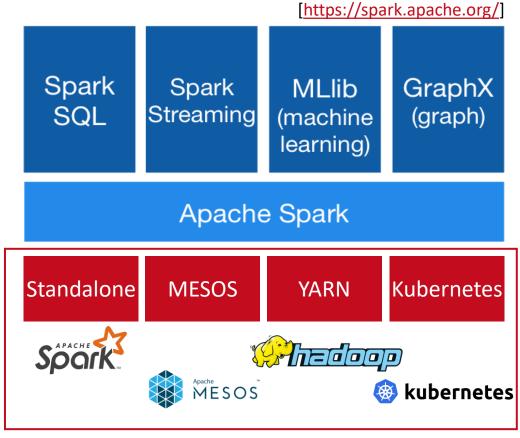


Overview Resource Management & Scheduling, cont.

High-Level Architecture

- Different language bindings: Scala, Java, Python, R
- Different libraries: SQL, ML, Stream, Graph
- Spark core (incl RDDs)
- Different file systems/formats, and data sources: HDFS, S3, DBs, NoSQL
- Different cluster managers:
 Standalone, Mesos, Yarn, Kubernetes

→ Separation of concerns: resource allocation vs task scheduling



Scheduling Problems

[Eleni D. Karatza: Cloud Performance Resource Allocation and Scheduling Issue, **Aristotle University of Thessaloniki 2018**]

Bag-of-Tasks Scheduling

- Job of independent (embarrassingly parallel) tasks
- Examples: EC2 instances, map tasks

Gang Scheduling

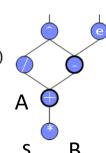
- Job of frequently communicating parallel tasks
- **Examples:** MPI programs, parameter servers

DAG Scheduling

- Job of tasks with precedence constraints (e.g., data dependencies)
- Examples: Op scheduling Spark, TensorFlow, SystemDS

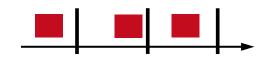
$$= A + s * B$$

= $(C/2)^{(C-1)}$
= $exp(C-1)$



Real-Time Scheduling

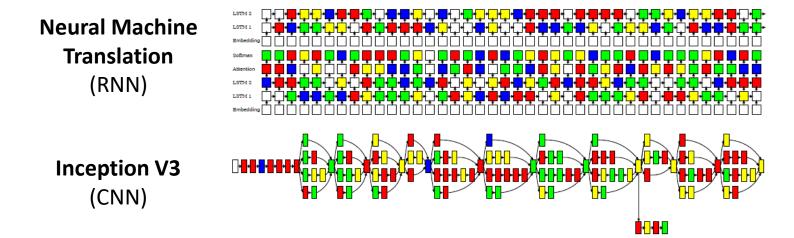
- Job or task with associated deadline (soft/hard)
- Examples: rendering, car control



Scheduling Problems, cont.

- Operator-Device Placement
 - Given neural network, multiple devices → operator placement (parallelism, data transfer)
 - Sequence-to-sequence model to predict which operations should run on which device
 - Example: ML Workloads
 - white: CPU; colors: different GPU devices

[Azalia Mirhoseini et al: Device Placement Optimization with Reinforcement Learning. ICML 2017]



Basic Scheduling Metrics and Algorithms

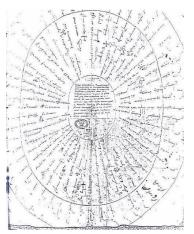
Common Metrics

- Mean time to completion (total runtime for job), and max-stretch (completion/work relative slowdown)
- Mean response time (job waiting time for resources);
 Throughput (jobs per time unit)
- Constraints / SLOs: max monetary costs, max latency, deadline
- #1 FIFO (first-in, first-out)
 - Simple queueing and processing in order
 - Problem: Single long-running job can stall many short jobs
- #2 SJF (shortest job first)
 - Sort jobs by expected runtime and execute in order ascending
 - Problem: Starvation of long-running jobs
- #3 Round-Robin (FAIR)
 - Allocate similar time (tasks, time slices) to all jobs

Service Level Agreements (SLA)

- → Service Level Objectives (SLO)
- → Service Level Indicators (SLI)

[Credit: https://en.wikipedia.org (French "ruban rond" – English round ribbon)]



Resource Allocation, Isolation, and Monitoring

Resource Selection

Resource Allocation

Resource Isolation & Monitoring

Task Scheduling

Resource Selection

- #1 Manual Selection
 - Rule of thumb (I/O, mem, CPU characteristics of app)
 - Data characteristics, and framework configurations, experience
- ExampleSpark Submit

```
export HADOOP_CONF_DIR=/etc/hadoop/conf
SPARK_HOME=../spark-2.4.0-bin-hadoop2.7

$SPARK_HOME/bin/spark-submit \
    --master yarn --deploy-mode client \
    --driver-java-options "-server -Xms40g -Xmn4g" \
    --driver-memory 40g \
    --num-executors 10 \
    --executor-memory 100g \
    --executor-cores 32 \
    SystemDS.jar -f test.dml -stats -explain -args ...
```


Resource Selection, cont.

#2 Application-Agnostic, Reactive

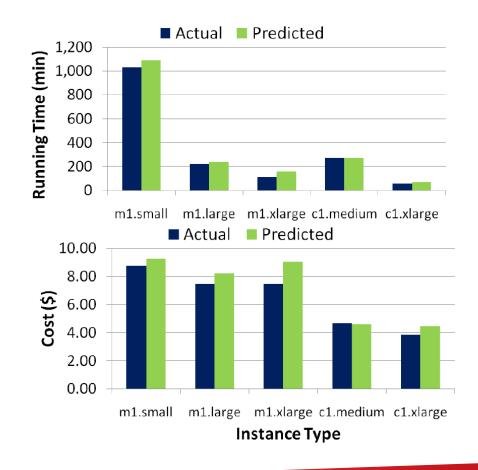
- Dynamic allocation based on workload characteristics
- Examples: Spark dynamic allocation, Databricks AutoScaling

#3 Application-Aware, Proactive

- Estimate time/costs of job under different configurations (what-if scenario analysis)
- Min \$costs under time constraint
- Min runtime under \$cost constraint

[Herodotos Herodotou, Fei Dong, Shivnath Babu: No one (cluster) size fits all: automatic cluster sizing for data-intensive analytics. **SoCC 2011**]

(fixed MR job w/ 6 nodes)



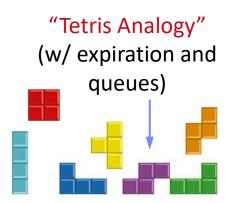
Resource Negotiation and Allocation

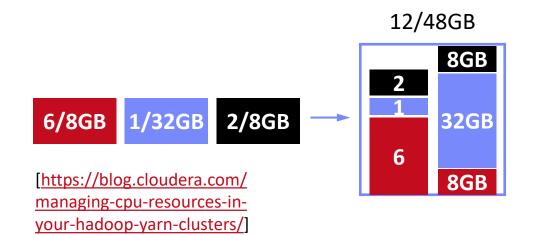
Problem Formulation

- N nodes with memory and CPU constraints
- Stream of jobs with memory and CPU requirements
- Assign jobs to nodes (or to minimal number of nodes)
- → Knapsack problem (bin packing problem)

In Practice: Heuristics

- Major concern: scheduling efficiency (online, cluster bottleneck)
- Approach: Sample queues, best/next-fit selection
- Multiple metrics: dominant resource calculator





Slurm Workload Manager

Slurm Overview

- Simple Linux Utility for Resource Management (SLURM)
- Heavily used in HPC clusters (e.g., MPI gang scheduling)

Scheduler Design

- Allocation/placement of requested resources
- Considers nodes, sockets, cores, HW threads, memory, GPUs, file systems, SW licenses
- Job submit options:

sbatch (async job script), **salloc** (interactive); **srun** (sync job submission and scheduling)

- Configuration: cluster, node count (ranges), task count, mem, etc
- Constraints via filters: sockets-per-node, cores-per-socket, threads-per-core mem, mem-per-cpu, mincpus, tmp min-disk-space
- Elasticity via re-queueing

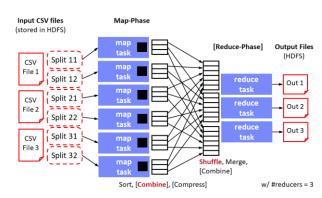
Background: Hadoop JobTracker (anno 2012)

Overview

- Hadoop cluster w/ fixed configuration of n map slots, m reduce slots (fixed number and fixed memory config map/reduce tasks)
- JobTracker schedules map and reduce tasks to slots
- FIFO and FAIR schedulers, account for data locality

Data Locality

- Levels: data local, rack local, different rack
- Delay scheduling (with FAIR scheduler)
 wait 1-3s for data local slot



[Matei Zaharia et al: Delay scheduling: a simple technique for achieving locality and fairness in cluster scheduling. **EuroSys 2010**]

Problem

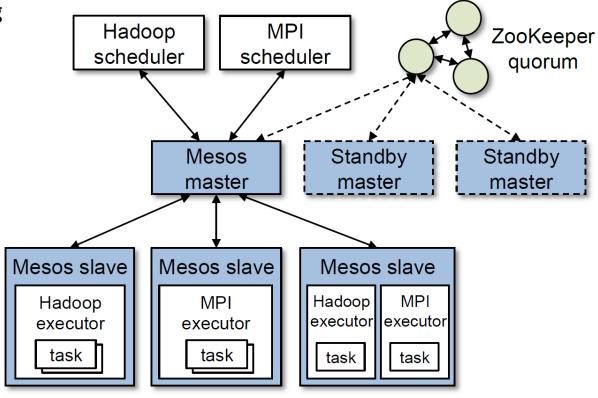
- Intermixes resource allocation and task scheduling → Scalability problems in large clusters
- Forces every application into MapReduce programming model

Mesos Resource Management

[Benjamin Hindman et al: Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center. **NSDI 2011**]

Overview Mesos

- Fine-grained, multi-framework cluster sharing
- Scalable and efficient scheduling
 - → delegated to frameworks
- Resource offers

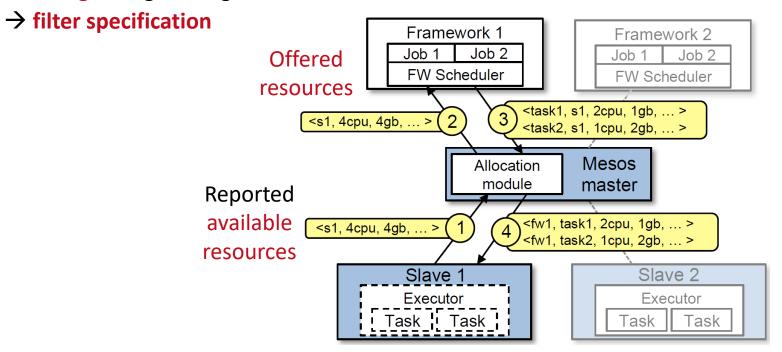


Mesos Resource Management, cont.

[Benjamin Hindman et al: Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center. **NSDI 2011**]

Resource Offers

- Mesos master decides how many resources to offer
- Framework scheduler decides which offered resources to accept/reject
- Challenge: long waiting times, lots of offers



Mesosphere Marathon:

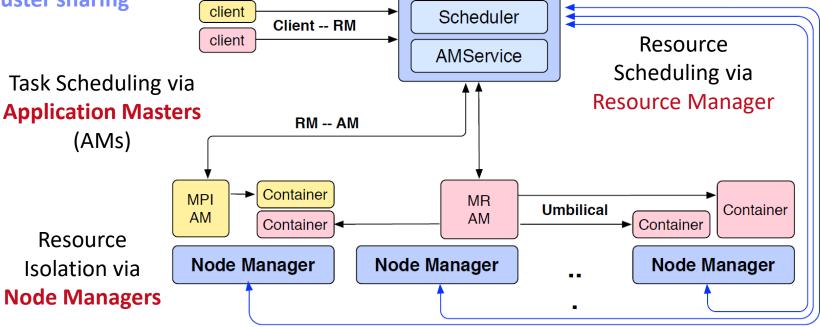
container orchestration (e.g., Docker)

YARN Resource Management

RM -- NodeManager

Overview YARN

- Hadoop 2 decoupled resource scheduler (negotiator)
- Independent of programming model, multi-framework cluster sharing
- Resource Requests



ResourceManager

YARN Resource Management, cont.

Example Apache
 SystemML AM
 Submission
 (anno 2014)

```
// Set up the container launch context for the application master
ContainerLaunchContext amContainer =
         Records.newRecord(ContainerLaunchContext.class);
amContainer.setCommands(Collections.singletonList(command));
amContainer.setLocalResources(constructLocalResourceMap(yconf));
amContainer.setEnvironment(constructEnvionmentMap(yconf));
// Set up resource type requirements for ApplicationMaster
Resource capability = Records.newRecord(Resource.class);
capability.setMemory((int)computeMemoryAllocation(memHeap));
capability.setVirtualCores(numCores);
// Finally, set-up ApplicationSubmissionContext for the application
String qname = _dmlConfig.getTextValue(DMLConfig.YARN APPQUEUE);
appContext.setApplicationName(APPMASTER NAME); // application name
appContext.setAMContainerSpec(amContainer);
appContext.setResource(capability);
appContext.setQueue(qname); // queue (w/ min/max capacity constraints)
// Submit application (non-blocking)
yarnClient.submitApplication(appContext);
```


YARN Resource Management, cont.

Capacity Scheduler

- Hierarchy of queues w/ shared resource among sub queues
- Soft (and optional hard) [min, max]
 constraints of max resources
- Default queue-user mapping
- No preemption during runtime (only redistribution over queues)

root

data science

Fair Scheduler

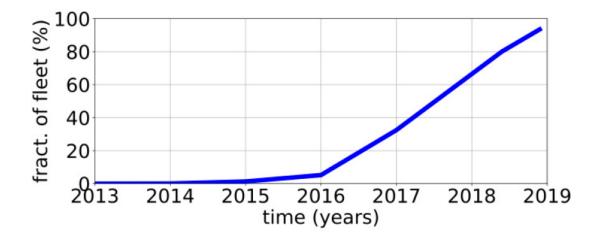
- All applications get same resources over time
- Fairness decisions on memory requirements,
 but dominant resource fairness possible too

Hydra: Federated RM @ Microsoft

Overview Hydra

- Federated RM for internal MS big-data cluster
- Leverage sub-clusters w/ YARN RM + router
- AM-RM proxy (communication across sub clusters)
- Global policy generator + state store for runtime adaptation

DeploymentStatistics



[Carlo Curino et al.: Hydra: a federated resource manager for data-center scale analytics. **NSDI 2019**]

[https://www.youtube.com/watch?v=k X13YamZXY&feature=emb_logo]

>250K servers

>500K daily jobs

>1 ZB data processed

>1T tasks scheduled (~2G tasks daily)

>70K QPS (scheduling)

~60% avg CPU util

Kubernetes Container Orchestration

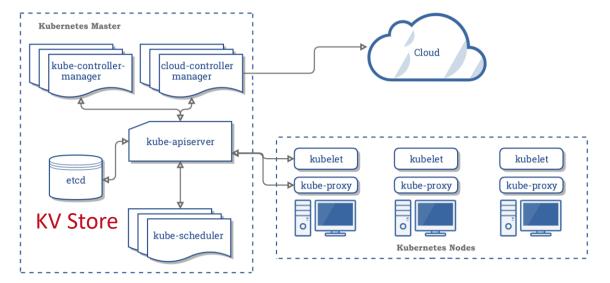
Overview Kubernetes

- Open-source system for automating, deployment, and management of containerized applications
- Container: resource isolation and application image

→ from machine- to application-oriented scheduling

System Architecture

- Pod: 1 or more containers w/ individual IP
- Kubelet: node manager
- Controller: app master
- API Server + Scheduler
- Namespaces, quotas, access control, auth., logging & monitoring
- Wide variety of applications



[https://kubernetes.io/docs/concepts/ overview/components/]

Kubernetes Container Orchestration, cont.

- Pod Scheduling (Placement)
 - Default scheduler: kube-scheduler, custom schedulers possible
 - #1 Filtering: finding feasible nodes for pod (resources, free ports, node selector, requested volumes, mem/disk pressure)
 - #2 Scoring: score feasible nodes → select highest score (spread priority, inter-pod affinity, requested priority, image locality)
 - Tuning: # scored nodes: max(50, percentageOfNodesToScore [1,100]) (sample taken round robin across zones)
 - → Binding: scheduler notifies API server

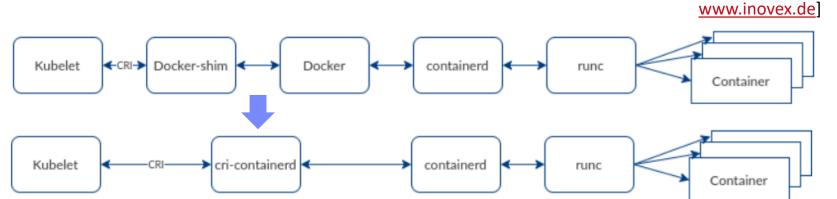
Container Runtime

Container Stack

- Docker as stack of development and runtime services
- containerd: high-level daemon for image management
- runc: low-level container runtime

[https://www.inovex.de/blog/containers-docker-containerd-nabla-kata-firecracker/]

[Credit:



- Kubernetes deprecated Docker (as of 12/2020)
 - Container Runtime Interface (CRI)
 - Integrate other runtimes: cri-containerd, cri-o (Open Container Initiative)

[https://kubernetes.io/blog/ 2016/12/container-runtimeinterface-cri-in-kubernetes/]

Resource Isolation

Overview Key Primitives

- Platform-dependent resource isolation primitives → container runtime
- Linux namespaces: restricting visibility
- Linux cgroups: restricting usage

Linux Containers

(e.g., basis of Docker)

Cgroups (Control Groups)

- Developed by Google engineers → Kernel 2.6.24 (2008)
- Resource metering and limiting (memory, CPU, block I/O, network)
- Each subsystem has a hierarchy (tree) with each node = group of processes
- Soft and hard limits on groups
 - Mem hard limit → triggers OOM killer (physical, kernel, total)
 - CPU → set weights (time slices)/no limits, cpuset to pin groups to CPUs

[Jérôme Petazzoni: Cgroups, namespaces and beyond: What are containers made from? DockerConEU 2015.]

[https://www.youtube.com/watch?v=sK5i-N34im8&feature=youtu.be]

Resource Isolation, cont.

Example YARN

- Set max CPU time per node manager
- Container weights: cores/total cores
- OOM killer if mem w/ overhead exceeded

Lesson Learned

- "The resource isolation provided by containers has enabled Google to drive utilization significantly higher than industry norms. [..] Borg uses containers to co-locate batch jobs with latency-sensitive, user-facing jobs on the same physical machines."
- "The isolation is not perfect, though: containers cannot prevent interference in resources that the operating-system kernel doesn't manage, such as level 3 processor caches and memory bandwidth [...]"

[Abhishek Verma et al. Large-scale cluster management at Google with Borg. **EuroSys 2015**]

[Malte Schwarzkopf et al.: Omega: flexible, scalable schedulers for large compute clusters. **EuroSys 2013**]

[Brendan Burns et al.: Borg, Omega, and Kubernetes. ACM Queue 14(1): 10 (2016)]

Task Scheduling and Elasticity

Resource Selection

Resource Allocation

Resource Isolation & Monitoring

Task Scheduling

Task Scheduling Overview

Problem Formulation

- Given computation job and set of resources (servers, threads)
- Distribute job in pieces across resources

#1 Job-Task Partitioning

Split job into sequence of N tasks

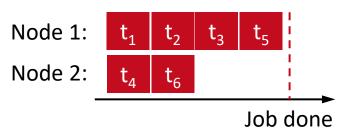
#2 Task Placement / Execution

Assign tasks to K resources for execution

Computation Job t₁ t₂ t₃ t₄ t₅ t₆ Node 1 Node 2

Goal: Min Job Completion Time

 Beware: Max runtime per resource determines job completion time



31

Task Scheduling – Partitioning

Example Hyper-param Tuning parfor(i in 1:800)

R[i,] = lm(X,y,reg[i])

Static Partitioning

- M = K tasks, task size ceil(N/K)
- Low overhead, poor load balance

Fixed Partitioning

- M = N/d tasks, task size d
- E.g., # iterations, # tuples to process

Self-Scheduling

- Exponentially decreasing task sizes d
 → M = log N tasks (w/ min task size)
- Low overhead and good load balance at end
- Guided self scheduling
- Factoring: waves of task w/ equal size

400

400

100	100	100	100	1	00
100	10	0	100		

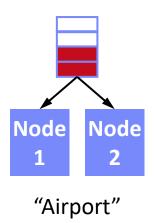
200	100	50	50		
200	100	50	50		

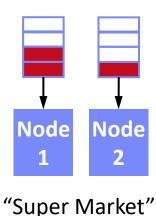
[Susan Flynn Hummel, Edith Schonberg, Lawrence E. Flynn: Factoring: a practical and robust method for scheduling parallel loops. **SC 1991**]

Task Scheduling – Placement

Task Queues

- Sequence of tasks in FIFO queue
- #1 Single Task Queue (self-balancing, but contention)
- #2 Per-Worker Task Queue (work separation, and preparation)





Work Stealing

- On empty worker queue, probe other queues and "steal" tasks
- More common in multi-threading, difficult in distributed systems

Excursus: Power of 2 Choices

- Choose d bins at random, task in least full bin
- Reduce max load from $\frac{\log M}{\log \log M}$ to $\frac{\log \log M}{\log M}$

[Michael D. Mitzenmacher: The Power of Two Choices in Randomized Load Balancing, PhD Thesis UC Berkeley 1996]

Spark Task Scheduling

Overview

- Schedule job DAGs in stages (shuffle barriers)
- Default task scheduler: FIFO; alternative: FAIR

SystemDS Example (80GB):

X = rand(rows=1e7,cols=1e3)
parfor(i in 1:4)
 for(j in 1:10000)
 print(sum(X)) #spark job

FIFO

Stage Id ▼	Description		Submitted	Duration	Tasks: Succeeded/Total	Input	Output	Shuffle Rea
37	fold at RDDAggregateUtils.java:150 +deta	ils (kill)	2019/12/12 23:48:07	Unknown	0/596			
36	fold at RDDAggregateUtils.java:150 +deta	ils (kill)	2019/12/12 23:48:06	0.7 s	391/596 (23 running)	48.9 GB		
35	fold at RDDAggregateUtils.java:150 +deta	ils (kill)	2019/12/12 23:48:05	1 s	424/596 (20 running)	53.0 GB		
34	fold at RDDAggregateUtils.java:150 +deta	ils (kill)	2019/12/12 23:48:05	2 s	504/596 (20 running)	63.0 GB		

Fair Scheduler Pools (5)

FAIR

Pool Name	Minimum Share	Pool Weight	Active Stages	Running Tasks	SchedulingMode
default	0	1	0	0	FIFO
parforPool2	0	1	1	38	FIFO
parforPool1	0	1	1	16	FIFO
parforPool3	0	1	1	3	FIFO
parforPool0	0	1	1	43	FIFO

Active Stages (4)

Stage Id ▼	Pool Name	Description	Submitted	Duration	Tasks: Succeeded/Total	Input	Output	Shuffle Read	
206	parforPool0	fold at RDDAggregateUtils.java:150	+details (kill)	2019/12/12 23:14:20	1.0 s	368/596 (67 running)	46.0 GB		
205	parforPool2	fold at RDDAggregateUtils.java:150	+details (kill)	2019/12/12 23:14:20	1 s	432/596 (43 running)	54.0 GB		
204	parforPool1	fold at RDDAggregateUtils.java:150	+details (kill)	2019/12/12 23:14:19	2 s	561/596 (11 running)	70.1 GB		
203	parforPool3	fold at RDDAggregateUtils.java:150	+details (kill)	2019/12/12 23:14:19	2 s	590/596 (6 running)	73.7 GB		

Spark Task Scheduling, cont.

 FAIR scheduling w/k=32 concurrent jobs and 200GB

FAIR:

Share 320 cores among 32 concurrent jobs

→ ~10 tasks/job

Active Stages (32)

Stage Id •	Pool Name	Description		Submitted	Duration	Tasks: Succeeded/Total	Input	Output	Shuffle Read	Shuffle Write
663	parforPool7	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:58	0.3 s	48/1490 (25 running)	6.0 GB			
662	parforPool9	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:57	0.7 s	186/1490 (25 running)	23.3 GB			
661	parforPool10	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:57	0.7 s	221/1490 (24 running)	27.6 GB			
660	parforPool11	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:57	0.8 s	327/1490 (25 running)	40.9 GB			
659	parforPool21	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:57	2 s	506/1490 (9 running)	63.3 GB			
658	parforPool6	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:56	2 s	518/1490 (9 running)	64.8 GB			
657	parforPool1	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:56	2 s	572/1490 (10 running)	71.5 GB			
656	parforPool24	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:56	3 s	603/1490 (9 running)	75.4 GB			
655	parforPool13	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:55	3 s	684/1490 (10 running)	85.5 GB			
654	parforPool20	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:54	4 s	736/1490 (10 running)	92.0 GB			
653	parforPool4	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:54	4 s	750/1490 (9 running)	93.8 GB			
652	parforPool23	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:54	5 s	797/1490 (7 running)	99.6 GB			
651	parforPool15	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:53	5 s	847/1490 (9 running)	105.9 GB			
650	parforPool29	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:53	5 s	808/1490 (9 running)	101.0 GB			
649	parforPool2	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:52	6 s	926/1490 (9 running)	115.8 GB			
648	parforPool26	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:52	6 s	917/1490 (9 running)	114.6 GB			
647	parforPool31	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:52	6 s	913/1490 (9 running)	114.1 GB			
646	parforPool19	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:51	7 s	1023/1490 (9 running)	127.9 GB			
645	parforPool5	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:51	7 s	1011/1490 (7 running)	126.4 GB			
644	parforPool30	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:50	8 s	1036/1490 (9 running)	129.5 GB			
643	parforPool3	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:49	9 s	1056/1490 (8 running)	132.0 GB			
642	parforPool17	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:49	9 s	1125/1490 (9 running)	140.6 GB			
641	parforPool16	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:49	9 s	1158/1490 (9 running)	144.7 GB			
640	parforPool18	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:49	9 s	1124/1490 (9 running)	140.5 GB			
639	parforPool0	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:48	10 s	1287/1490 (9 running)	160.9 GB			
638	parforPool28	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:48	10 s	1251/1490 (9 running)	156.4 GB			
637	parforPool12	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:48	11 s	1341/1490 (9 running)	167.6 GB			
636	parforPool27	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:47	12 s	1309/1490 (9 running)	163.6 GB			
635	parforPool8	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:47	12 s	1299/1490 (8 running)	162.4 GB			
634	parforPool14	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:46	12 s	1413/1490 (9 running)	176.6 GB			
633	parforPool25	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:46	12 s	1343/1490 (9 running)	167.9 GB			
632	parforPool22	fold at RDDAggregateUtils.java:148 +details ((kill)	2021/11/27 15:51:46	12 s	1415/1490 (7 running)	176.9 GB			

	RDD	Storage	Disk		Active	Failed	Complete	Total	Task Time (GC		Shuffle	Shuffle	
A	Blocks	Memory	Used	Cores 🍦	Tasks	Tasks 🖕	Tasks	Tasks 🖕	Time)		Read 🖕	Write	Blacklisted
Active(11)	1490	200 GB / 595.3 GB	0.0 B	320	329	0	8714054	8714383	218.4 h (57 min)	1.2 PB	0.0 B	0.0 B	0
Dead(0)	0	0.0 B / 0.0 B	0.0 B	0	0	0	0	0	0 ms (0 ms)	0.0 B	0.0 B	0.0 B	0
Total(11)	1490	200 GB / 595.3 GB	0.0 B	320	329	0	8714054	8714383	218.4 h (57 min)	1.2 PB	0.0 B	0.0 B	0

Spark Task Scheduling, cont.

berlin

Fair Scheduler Configuration

- Pools with shares of cluster
- Scheduling modes: FAIR, FIFO
- weight: relative to equal share
- minShare: min numCores

Spark on Kubernetes

- Run Spark in shared cluster with Docker container apps, Distributed TensorFlow, etc
- Custom controller, and shuffle service (dynAlloc)

```
<allocations>
  <pool name="data science">
    <schedulingMode>FAIR</schedulingMode>
    <weight>1</weight> <minShare>6</minShare>
 </pool>
 <pool name="indexing">
    <schedulingMode>FIFO</schedulingMode>
    <weight>2</weight> <minShare>8</minShare>
 </pool>
</allocations>
$SPARK HOME/bin/spark-submit \
  --master k8s://https://k8s-api>:k8s-api-port> \
  --deploy-mode cluster
  --driver-java-options "-server -Xms40g -Xmn4g" \
  --driver-memory 40g \
  --num-executors 10 \
  --executor-memory 100g \
  --executor-cores 32 \
  --conf spark.kubernetes.container.image=<sparkimg> \
  SystemDS.jar -f test.dml -stats -explain -args ...
```


Spark Dynamic Allocation

Configuration for YARN/Mesos

- Set spark.dynamicAllocation.enabled = true
- Set spark.shuffle.service.enabled = true (robustness w/ stragglers)

Executor Addition/Removal

- Approach: look at task pressure (pending tasks / idle executors)
- Increase exponentially (add 1, 2, 4, 8) if pending tasks for spark.dynamicAllocation.schedulerBacklogTimeout
- Decrease executors they are idle for spark.dynamicAllocation.executorIdleTimeout

```
spark-submit \
   --conf spark.shuffle.service.enabled=true \
   --conf spark.dynamicAllocation.enabled=true \
   --conf spark.dynamicAllocation.minExecutors=0 \
   --conf spark.dynamicAllocation.initialExecutors=1 \
   --conf spark.dynamicAllocation.maxExecutors=20
```


Sparrow Task Scheduling

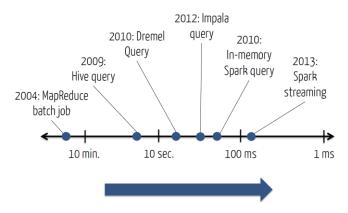
[Kay Ousterhout, Patrick Wendell, Matei Zaharia, Ion Stoica: Sparrow: distributed, low latency scheduling. SOSP 2013]

Sparrow Overview

- Decentralized, randomized task scheduling with constraints, fair sharing
- Problems: Low latency, quality placement, fault tolerance, high throughput

Approach

- Baselines: Random, Per-task (power of two choices)
- New Techniques: Batch Scheduling, Late Binding



Worker

Worker

Worker

Worker

Worker

Worker

Baseline: Per-task sampling

Scheduler Scheduler Worker Scheduler Worker Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler

Batch sampling w/ late binding

Resource Elasticity in SystemML

[Botong Huang et al.: Resource Elasticity for Large-Scale Machine Learning. **SIGMOD 2015**]

Resource Optimizer for ML Workloads

- Optimize ML program resource configurations via online what-if analysis and plan generation
- Minimize cost w/o unnecessary overprovisioning, program-aware enumeration (e.g., mem estimates)

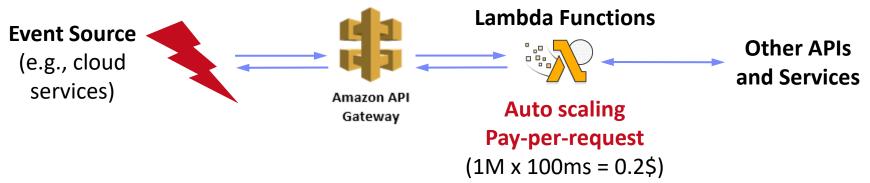
Master Thesis Deployment YARN Resource Lachezar Nikolov (2024): Initial Compilation Resource Manager request (1)**Cloud Resource Elasticity** Dynamic Cluster info in SystemDS Recompilation Resource Optimizer Cost Cost (6)during Runtime Grid Search Model estimate Program 2 Memory Runtime info config plan **▼** plan $(\mathbf{4})$ SystemML Compiler ML Program **Data** X = read()HOPs LOPs r Runtime while(...){ q = X % * pprogram Script

Serverless Computing (FaaS)

[Joseph M. Hellerstein et al: Serverless Computing: One Step Forward, Two Steps Back. CIDR 2019]

Definition Serverless

- FaaS: functions-as-a-service (event-driven, stateless input-output mapping)
- Infrastructure for deployment and auto-scaling of APIs/functions
- Examples: Amazon Lambda, Microsoft Azure Functions, etc



Example

```
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
public class MyHandler implements RequestHandler<Tuple, MyResponse> {
     @Override
    public MyResponse handleRequest(Tuple input, Context context) {
        return expensiveModelScoring(input); // with read-only model
    }
}
```

Summary and Q&A

- Motivation, Terminology, and Fundamentals
- Resource Allocation, Isolation, and Monitoring
- Task Scheduling and Elasticity
- Next Lectures (Large-scale Data Management and Analysis)
 - 10 Distributed Data Storage [Dec 19]
 - Holidays
 - 11 Distributed, Data-Parallel Computation [Jan 09]
 - 12 Distributed Stream Processing [Jan 16]
 - 13 Distributed Machine Learning Systems [Jan 23]

