

Data Integration and Large-scale Analysis (DIA) 12 Distributed Stream Processing

Prof. Dr. Matthias Boehm

Technische Universität Berlin Berlin Institute for the Foundations of Learning and Data Big Data Engineering (DAMS Lab)

2 Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 12 Distributed Stream Processing

Announcements / Administrative Items

- #1 Video Recording
 - Hybrid lectures: in-person H 0107, zoom live streaming, video recording
 - https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

#2 Exercise/Project Submission

- Submission deadline: Jan 30, 11.59pm
- Pull-requests submitted (not necessarily merged) by deadline

#3 Course Evaluation

- Lecture: <u>https://befragung.tu-berlin.de/evasys/online.php?pswd=JNXRG</u>
- Exercise: <u>https://befragung.tu-berlin.de/evasys/online.php?pswd=1X7EN</u>

Lecture

ZOOM

Course Outline Part B: Large-Scale Data Management and Analysis

berlin

12 Distributed Stream Processing

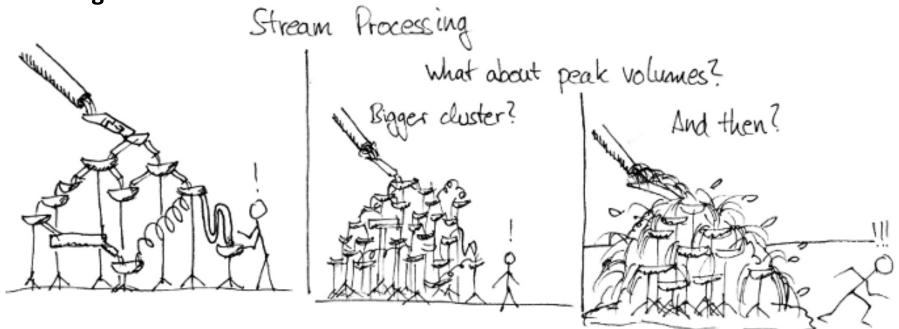
13 Distributed Machine Learning Systems



Agenda

berlin

- Data Stream Processing
- Distributed Stream Processing
- Data Stream Mining



Data Stream Processing

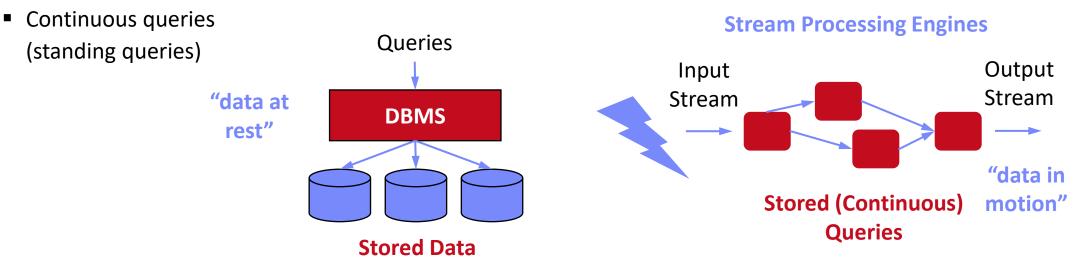
Stream Processing Terminology

Ubiquitous Data Streams

- Event and message streams (e.g., click stream, twitter, etc)
- Sensor networks, IoT, and monitoring (traffic, env, networks)

Stream Processing Architecture

Infinite input streams, often with window semantics



berlin

Stream Processing Terminology, cont.

Use Cases

- Monitoring and alerting (notifications on events / patterns)
- Real-time reporting (aggregate statistics for dashboards)
- Real-time ETL and event-driven data updates
- Real-time decision making (fraud detection)
- Data stream mining (summary statistics w/ limited memory)

Data Stream

- Unbounded stream of data tuples S = (s₁, s₂, ...) with s_i = (t_i, d_i)
- See DM 10 NoSQL Systems (time series)

Real-time Latency Requirements

- Real-time: guaranteed task completion by a given deadline (30 fps)
- Near Real-time: few milliseconds to seconds
- In practice, used with much weaker meaning

Continuously active

History of Stream Processing Systems

2000s

- Data stream management systems (DSMS, mostly academic prototypes): STREAM (Stanford'01), Aurora (Brown/MIT/Brandeis'02) → Borealis ('05), NiagaraCQ (Wisconsin), TelegraphCQ (Berkeley'03), and many others
 - ➔ but mostly unsuccessful in industry/practice
- Message-oriented middleware and Enterprise Application Integration (EAI): IBM Message Broker, SAP eXchange Infra., MS Biztalk Server, TransConnect

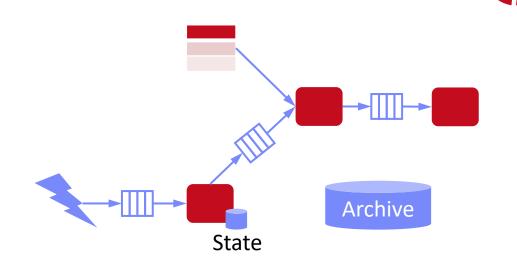
2010s

- Distributed stream processing engines, and "unified" batch/stream processing
- Proprietary systems: Google Cloud Dataflow, MS StreamInsight / Azure Stream Analytics, IBM InfoSphere Streams / Streaming Analytics, AWS Kinesis
- Open-source systems: Apache Spark Streaming (Databricks), Apache Flink (Data Artisans), Apache Kafka (Confluent), Apache Storm

System Architecture – Native Streaming

Basic System Architecture

- Data flow graphs (potentially w/ multiple consumers)
- Nodes: asynchronous operations w/ state (e.g., separate threads)
- Edges: data dependencies (tuple/message streams)
- Push model: data production controlled by source



Operator Model

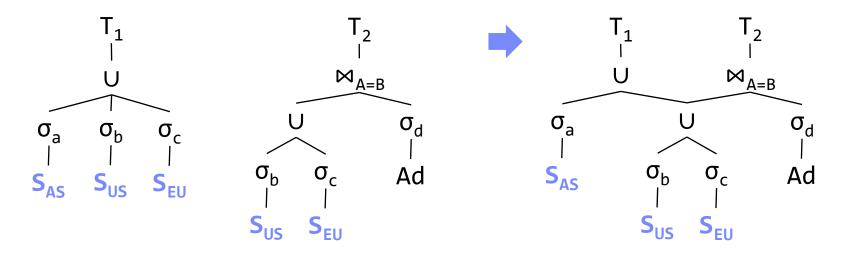
- Read from input queue
- Write to potentially many output queues
- Example Selection σ_{A=7}

```
while( !stopped ) {
    r = in.dequeue(); // blocking
    if( pred(r.A) ) // A==7
    for( Queue o : out )
        o.enqueue(r); // blocking
}
```


berlin

System Architecture – Sharing

- Multi-Query Optimization
 - Given set of continuous queries (deployed), compile minimal DAG w/o redundancy (see DM 08 Physical Design MV) → subexpression elimination



- Operator and Queue Sharing
 - **Operator sharing:** complex ops w/ multiple predicates for adaptive reordering
 - Queue sharing: avoid duplicates in output queues via masks

System Architecture – Handling Overload

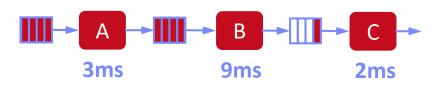
berlin

#1 Back Pressure

- Graceful handling of overload w/o data loss
- Slow down sources
- E.g., blocking queues

#2 Load Shedding

- #1 Random-sampling-based load shedding
- #2 Relevance-based load shedding
- #3 Summary-based load shedding (synopses)
- Given SLA, select queries and shedding placement that minimize error and satisfy constraints
- #3 Distributed Stream Processing (see next part)
 - Data flow partitioning (distribute the query)
 - Key range partitioning (distribute the data stream)



Self-adjusting operator scheduling Pipeline runs at rate of slowest op

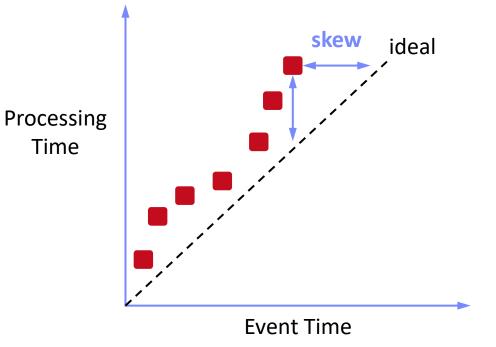
> [Nesime Tatbul et al: Load Shedding in a Data Stream Manager. VLDB 2003]

Time (Event, System, Processing)

- Event Time
 - Real time when the event/data item was created
- Ingestion Time
 - System time when the data item was received
- Processing Time
 - System time when the data item is processed

In Practice

- Delayed and unordered data items
- Use of heuristics (e.g., water marks = delay threshold)
- Use of more complex triggers (speculative and late results)



Durability and Delivery Guarantees

#1 At Most Once

- "Send and forget", ensure data is never counted twice
- Might cause data loss on failures

#2 At Least Once

- "Store and forward" or acknowledgements from receiver, replay stream from a checkpoint on failures
- Might create incorrect state (processed multiple times)

#3 Exactly Once

- "Store and forward" w/ guarantees regarding state updates and sent msgs
- Often via dedicated transaction mechanisms

03 Message-oriented Middleware, EAI, and Replication

14 Matthias Boehm | FG DAMS | DIA WiSe 2024/25 – 12 Distributed Stream Processing

#1 Tumbling Window

Every data item is only part of a single window

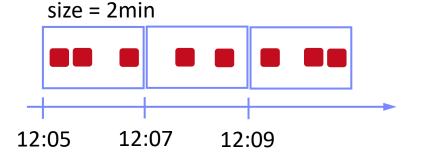
Many operations like joins/aggregation undefined over unbounded streams

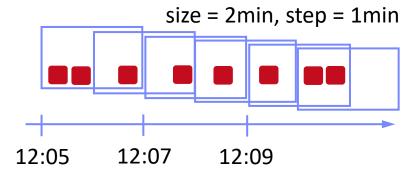
Compute operations over windows of (a) time or (b) elements counts

Aka Jumping window

#2 Sliding Window

- Time- or tuple-based sliding windows
- Insert new and expire old data items





Windowing Approach

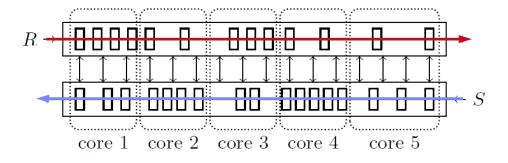
Stream Joins

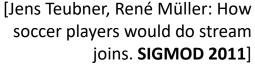
- Basic Stream Join
 - Tumbling window: use classic join methods
 - Sliding window (symmetric for both R and S)
 - Applies to arbitrary join pred
 - See DM 08 Query Processing (NLJ)

- For each new r in R:
 - 1. Scan window of stream S to find match tuples
 - 2. Insert new r into window of stream R
 - 3. Invalidate expired tuples in window of stream R

Excursus: How Soccer Players Would do Stream Joins

Handshake-join w/ 2-phase forwarding



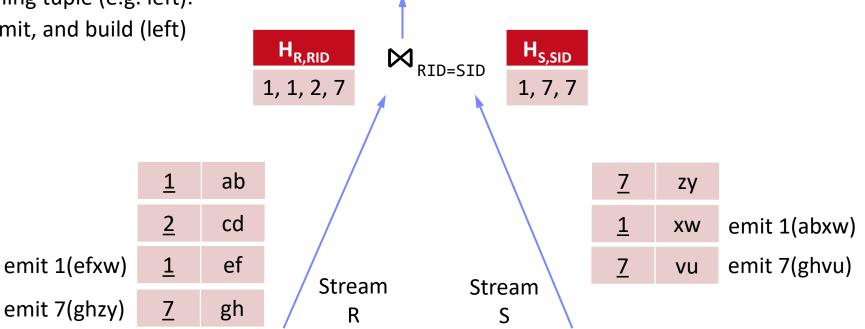


Stream Joins, cont.

[Zachary G. Ives, Daniela Florescu, Marc Friedman, Alon Y. Levy, Daniel S. Weld: An Adaptive Query Execution System for Data Integration. **SIGMOD 1999**]

Double-Pipelined Hash Join

- Join of bounded streams (or unbounded w/ invalidation)
- Equi join predicate, symmetric and non-blocking
- For every incoming tuple (e.g. left): probe (right)+emit, and build (left)



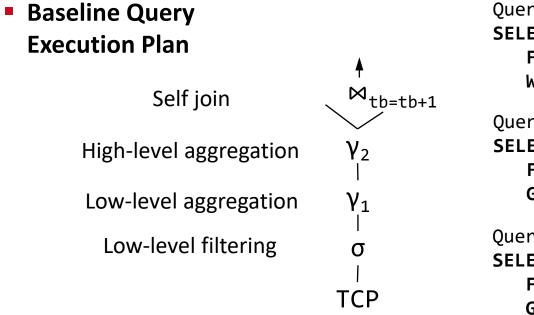
Distributed Stream Processing

Query-Aware Stream Partitioning

[Theodore Johnson, S. Muthu Muthukrishnan, Vladislav Shkapenyuk, Oliver Spatscheck: Query-aware partitioning for monitoring massive network data streams. **SIGMOD 2008**]

Example Use Case

- AT&T network monitoring with Gigascope (e.g., OC768 network)
- 2x40 Gbit/s traffic → 112M packets/s → 26 cycles/tuple on 3Ghz CPU
- Complex query sets (apps w/ ~50 queries) and massive data rates



Query flow_pairs:

```
SELECT S1.tb, S1.srcIP, S1.max, S2.max
FROM heavy_flows S1, heavy_flows S2
WHERE S1.srcIP = S2.srcIP and S1.tb = S2.tb+1
```

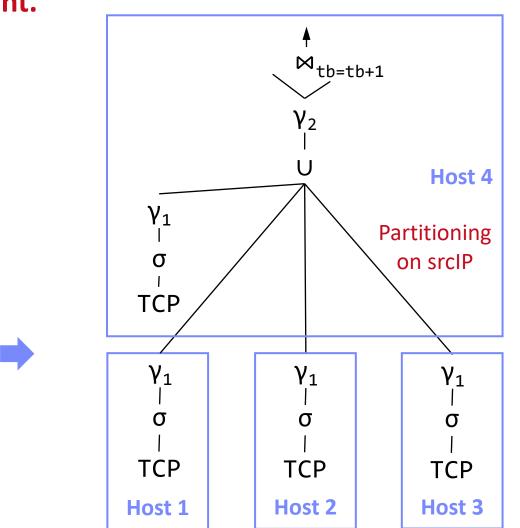
```
Query heavy_flows:
SELECT tb,srcIP,max(cnt) as max_cnt
    FROM flows
    GROUP BY tb, srcIP
```

Query flows:

```
SELECT tb, srcIP, destIP, COUNT(*) AS cnt
FROM TCP WHERE ...
GROUP BY time/60 AS tb,srcIP,destIP
```


Query-Aware Stream Partitioning, cont.

- Optimized Query Execution Plan
 - Distributed plan operators
 - Pipeline and task parallelism



berlin

 $\bowtie_{tb=tb+1}$

 γ_2

 γ_1

σ

TCP

Stream Group Partitioning

- Large-Scale Stream Processing
 - Limited pipeline parallelism and task parallelism (independent subqueries)
 - Combine with data-parallelism over stream groups

#1 Shuffle Grouping

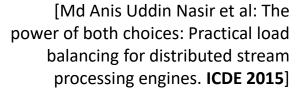
- Tuples are randomly distributed across consumer tasks
- Good load balance

#2 Fields Grouping

- Tuples partitioned by grouping attributes
- Guarantees order within keys, but load imbalance if skew

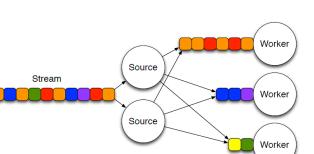
#3 Partial Key Grouping

- Apply "power of two choices" to streaming
- Key splitting: select among 2 candidates per key (associative agg)
- #4 Others: Global, None, Direct, Local



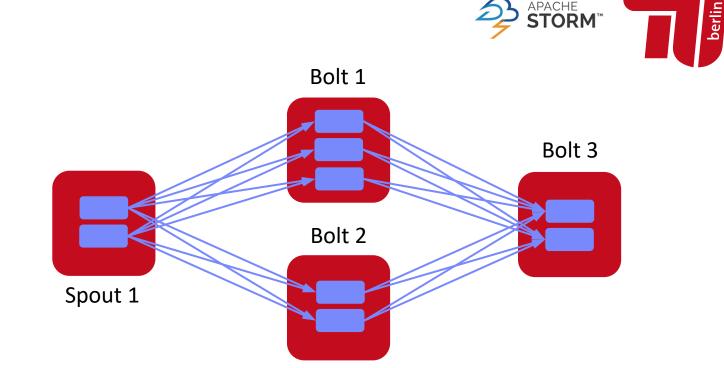
11 Distributed, Data-Parallel

Computation



Example Apache Storm

- Example Topology DAG
 - Spouts: sources of streams
 - Bolts: UDF compute ops
 - Tasks mapped to worker processes and executors (threads)



```
Config conf = new Config();
conf.setNumWorkers(3);
```

```
topBuilder.setSpout("Spout1", new FooS1(), 2);
topBuilder.setBolt("Bolt1", new FooB1(), 3).shuffleGrouping("Spout1");
topBuilder.setBolt("Bolt2", new FooB2(), 2).shuffleGrouping("Spout1");
topBuilder.setBolt("Bolt3", new FooB3(), 2)
.shuffleGrouping("Bolt1").shuffleGrouping("Bolt2");
```

StormSubmitter.submitTopology(..., topBuilder.createTopology());

Example Twitter Heron

[Credit: Karthik Ramasamy]

Motivation

- Heavy use of Apache Storm at Twitter
- Issues: debugging, performance, shared cluster resources, back pressure mechanism

STORM @TWITTER

Twitter Heron

- API-compatible distributed streaming engine
- De-facto streaming engine at Twitter since 2014

Dhalion (Heron Extension)

 Automatically reconfigure Heron topologies to meet throughput SLO [Sanjeev Kulkarni et al: Twitter Heron: Stream Processing at Scale. **SIGMOD 2015**]

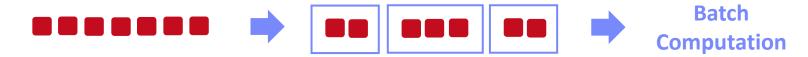
[Avrilia Floratou et al: Dhalion: Self-Regulating Stream Processing in Heron. **PVLDB 2017**]

Now back pressure implemented in Apache Storm 2.0 (May 2019)

Discretized Stream (Batch) Computation

Motivation

- Fault tolerance (low overhead, fast recovery)
- Combination w/ distributed batch analytics
- Discretized Streams (DStream)
 - Batching of input tuples (100ms 1s) based on ingest time
 - Periodically run distributed jobs of stateless, deterministic tasks → DStreams
 - State of all tasks materialized as RDDs, recovery via lineage



Sequence of immutable, partitioned datasets (RDDs)

Criticism: High latency, required for batching

[Matei Zaharia et al: Discretized streams: fault-tolerant streaming computation at scale. **SOSP 2013**]

Unified Batch/Streaming Engines

- Apache Spark Streaming (Databricks)
 - Micro-batch computation with exactly-once guarantee
 - Back-pressure and water mark mechanisms
 - Structured streaming via SQL (2.0), continuous streaming (2.3)
- Apache Flink (Data Artisans, now Alibaba)
 - Tuple-at-a-time with exactly-once guarantee
 - Back-pressure and water mark mechanisms
 - Batch processing viewed as special case of streaming
- Google Cloud Dataflow
 - Tuple-at-a-time with exactly-once guarantee
 - MR → FlumeJava → MillWheel → Dataflow (managed batch/stream service)
- Apache Beam (API+SDK from Dataflow)
 - Abstraction for Spark, Flink, Dataflow w/ common API, etc
 - Individual runners for the different runtime frameworks

[https://flink.apache.org/news/ 2019/02/13/unified-batchstreaming-blink.html]

[T. Akidau et al.: The Dataflow Model: A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-Order Data Processing. **PVLDB 2015**]

Resource Elasticity

[Li Wang, Tom Z. J. Fu, Richard T. B. Ma, Marianne Winslett, Zhenjie Zhang: Elasticutor: Rapid Elasticity for Realtime Stateful Stream Processing. **SIGMOD 2019**]

#1 Static

Static, operator-level key partitioning

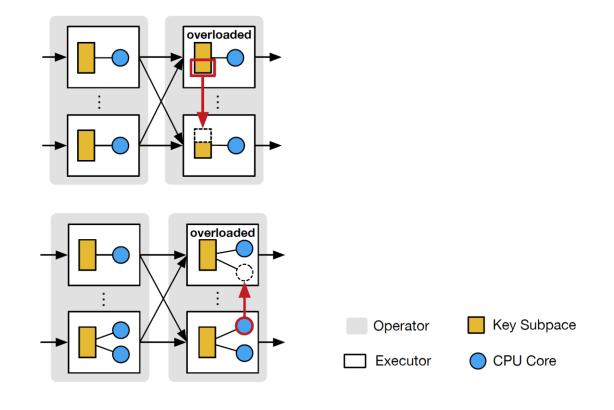
#2 Resource-Centric

- Dynamic, operator-level key partitioning
- Global synchronization for key repartitioning and state migration

#3 Executor-Centric

- Static, operator-level key partitioning
- CPU core reassignments

via local and remote tasks



Data Stream Mining

Selected Example Algorithms

Overview Stream Mining

Streaming Analysis Model

- Independent of actual storage model and processing system
- Unbounded stream of data item S = (s₁, s₂, ...)
- Evaluate function f(S) as aggregate over stream or window of stream
- Standing vs ad-hoc queries

Recap: Classification of Aggregates

- Additive aggregation functions (SUM, COUNT)
- Semi-additive aggregation functions (MIN, MAX)
- Additively computable aggregation functions (AVG, STDDEV, VAR)
- Aggregation functions (MEDIAN, QUANTILES) → approximations

➔ Selected Algorithms

- Higher-Order Statistics (e.g., STDDEV)
- Approximate # Distinct Items (e.g., KMV, HyperLogLog)
- Approximate Heavy Hitters (e.g. CountMin-Sketch)

02 Data Warehousing, ETL, and SQL/OLAP

Higher-Order Statistics

- Overview Order Statistics
 - Many order statistics computable via pth central moment
 - **Examples:** Variance σ^2 , skewness, kurtosis

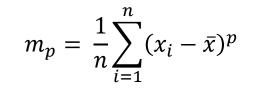
Incremental Computation of Variance

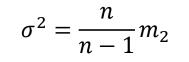
- #1 Default 2-pass algorithm (mean, and squared diffs)
- #2 Textbook 1-pass algorithm (incrementally maintainable)

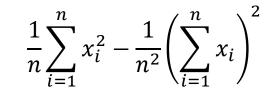
➔ numerically instable

 #3 Incremental update rules for m_p with Kahan addition (variance since 1979)

[Yuanyuan Tian, Shirish Tatikonda, Berthold Reinwald: Scalable and Numerically Stable Descriptive Statistics in SystemML. ICDE 2012]







 $n = n_{a} + n_{b}, \ \delta = \mu_{b} - \mu_{a}, \ \mu = \mu_{a} \oplus n_{b} \frac{\delta}{n}$ $M_{p} = M_{p,a} \oplus M_{p,b} \oplus \{\sum_{j=1}^{p-2} \binom{p}{j} [(-\frac{n_{b}}{n})^{j} M_{p-j,a}$ $+ (\frac{n_{a}}{n})^{j} M_{p-j,b}] \delta^{j} + (\frac{n_{a} n_{b}}{n} \delta)^{p} [\frac{1}{n^{p-1}} - (\frac{-1}{n_{a}})^{p-1}] \}$

11 Distributed, Data-Parallel Computation

Number of Distinct Items

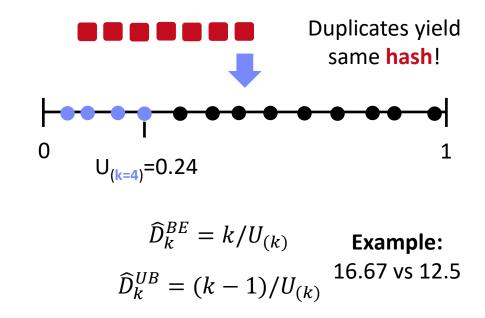
[Kevin S. Beyer, Peter J. Haas, Berthold Reinwald, Yannis Sismanis, Rainer Gemulla: On synopses for distinct-value estimation under multiset operations. **SIGMOD 2007**]

Problem

- Estimate # distinct items in a dataset / data stream w/ limited memory
- Support for set operations (union, intersect, difference)

K-Minimum Values (KMV)

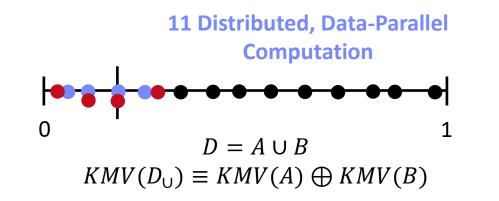
- Hash values d_i to $h_i \in [0, M]$
- Domain M = O(D²) to avoid collisions → O(k log D) space
- Store k minimum hash values
 - (e.g., via priority queue) in normalized form $h_i \in [0,1]$
- Basic estimator:
- Unbiased estimator:



Number of Distinct Items, cont.

Per lin

- KMV Set Operations
 - Union and intersection directly on partition synopses
 - Difference via Augmented KMV (AKMV) that include counters of multiplicities of k-minimum values



HyperLogLog

- Hash values and maintain maximum
 # of leading zeros p → D
 = 2^p
- Stochastic averaging over m sub-streams (p maintain in registers M)
- HyperLogLog++

[P. Flajolet, Éric Fusy, O. Gandouet, and F. Meunier: Hyperloglog: The analysis of a near-optimal cardinality estimation algorithm. **AOFA 2007**]

	1000		
Restaring to anti-		-	
	tera Castral a	d body.	
34717-7-592-12			
(maturity)			

[Stefan Heule, Marc Nunkesser, Alexander Hall: HyperLogLog in practice: algorithmic engineering of a state of the art cardinality estimation algorithm. **EDBT 2013**]

Stream Summarization

[Graham Cormode, S. Muthukrishnan: An Improved Data Stream Summary: The Count-Min Sketch and Its Applications. LATIN 2004]

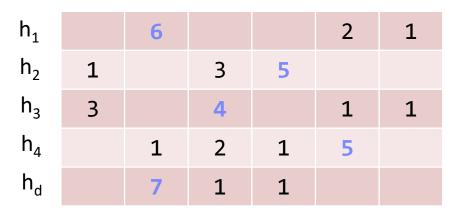
Problem

- Summarize stream in sketch/synopsis w/ limited memory
- Finding quantiles, frequent items (heavy hitters), etc

Count-Min (CM) Sketch

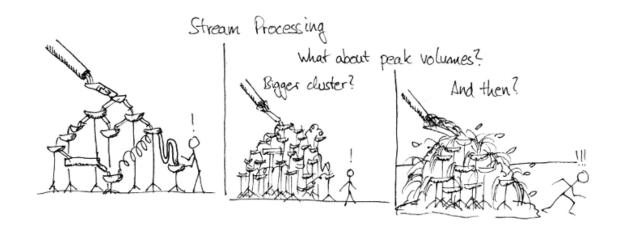
- Two-dimensional count array of width w and depth d
- d hash functions map $\{1 \dots n\} \rightarrow \{1 \dots w\}$
- Update (s_i,c_i): compute d hashes for s_i and increase counts of all locations
- Point query (s_i): compute d hashes for s_i and estimate frequency as min(count[j,h_i(s_i)])

Unlikely similar hash collisions



Summary and Q&A

- Data Stream Processing
- Distributed Stream Processing
- Data Stream Mining



- Next Lectures (Large-scale Data Management and Analysis)
 - **13 Distributed Machine Learning Systems** [Jan 23, 4pm]
 - 14 Exam Preparation [Jan 23, 6pm]

berlin