
Univ.-Prof. Dr.-Ing. Matthias Boehm
Technische Universität Berlin
Faculty IV - Electrical Engineering and Computer Science
Berlin Institute for the Foundations of Learning and Data (BIFOLD)
Big Data Engineering (DAMS Lab) Group

1 DIA WiSe2024: Exercise – Streaming Full Text Search

Published: Oct 16, 2024 (last update: Oct 16)
Deadline: Jan 30, 2025, 11.59pm

This exercise is an alternative to the DIA programming projects, and aims to provide practical ex-
perience in the development of data engineering and ML pipelines. The task of this semester is to
filter a stream of documents using a dynamic set of exact and approximate continuous keyword match
queries. This task resembles the SIGMOD Programming Contest 2013. You may use any program-
ming language(s) of your choosing, and utilize existing open-source ML frameworks and libraries. The
expected result is a zip archive named DIA Exercise <student ID>.zip (replace <student ID> by
your student ID) of max 5MB, containing:

� The source code used to solve the individual sub-tasks

� A PDF report of up to 8 pages (10pt), including the names of all team members, a brief summary
of how to run your code, and a description of the solutions to the individual sub-tasks.

Data and Reference Implementation: The task API header file, a reference implementation of
the task interface, the test driver along with an example workload, and a Makefile are available at
https://github.com/transactionalblog/sigmod-contest-2013. A detailed task description can
be found here. Additionally, you can find both smaller and bigger datasets here.
Grading: This exercise can be pursued in teams of 1 to 3 persons (one submission, scale quality

expectations). The overall grading is a pass/fail for the entire team. Exercises with ≥ 50/100 points
are a pass, and with ≥ 90/100 points we receive 5 extra points in the exam.

1.1 Basic Implementation (30/100 points)

Implement the four core functions of the API: StartQuery(), EndQuery(), MatchDocument(), as well
as GetNextAvailRes(). Detailed descriptions of the parameters and specifications for these functions
can be found here. Write a test driver to validate these functions using both small and the big data
files. The test driver should parse the files, invoke the API, and report results (errors, successes, and
failures). For C/C++ implementations, you can reuse the provided test driver.

Expected Results: Code for basic implementation and the test driver, as well as an output file
having the results of the tests. The report should discuss the implementation details.

1.2 Maximize Throughput (45/100 points)

Maximize the throughput of the basic implementation using optimization techniques such as multi-
threading, caching, memory pre-allocation, and using specialized data structures like tries. The goal
is to achieve a minimum speedup of 20x compared to the reference implementation.

Expected results: A separate source code file with the optimized implementation. The report
must include the speedup as well as descriptions of the techniques and data structures used.

1

https://github.com/transactionalblog/sigmod-contest-2013
https://sigmod.kaust.edu.sa/index.html
https://github.com/damslab/datasets/tree/master/DIA_2024
https://sigmod.kaust.edu.sa/doxygen/core_8h.html


1.3 Data-Parallel Implementation (25/100 points)

Reimplement the functions on top of a distributed, data-parallel computation framework such as
Apache Spark, Flink, or Dask. This data-parallel implementation should also pass the tests. Compare
the execution time of the data-parallel implementation with the basic and optimized implementations.

Expected Results: Code for the data-parallel implementation, a description of the approach, as
well as the execution time.

2


	1 DIA WiSe2024: Exercise – Streaming Full Text Search
	1.1 Basic Implementation (30/100 points)
	1.2 Maximize Throughput (45/100 points)
	1.3 Data-Parallel Implementation (25/100 points)


