
Programmierpraktikum: Datensysteme
01 Kickoff and Introduction

Prof. Dr. Matthias Boehm
Technische Universität Berlin
Berlin Institute for the Foundations of Learning and Data
Big Data Engineering (DAMS Lab)

Last update: Oct 13, 2024

Matthias Boehm | FG DAMS | PPDS WiSe 2024/25 – 01 Kickoff and Introduction2

▪ Course Organization

▪ Background Data Management

▪ #1 Disk-based B-Trees (DAMS)

▪ #2 Duplicate Detection (D2IP)

▪ #3 Provenance Tracking in ML Pipelines (DEEM)

▪ Course Selection/Enrolment

Agenda

Matthias Boehm | FG DAMS | PPDS WiSe 2024/25 – 01 Kickoff and Introduction3

Course Organization

Matthias Boehm | FG DAMS | PPDS WiSe 2024/25 – 01 Kickoff and Introduction4

▪ Language
▪ Lectures and slides: English (German if preferred)

▪ Communication and presentations: English/German

▪ Informal language (first name is fine)

▪ Offline Q&A in forum, answered by teaching assistants

▪ Course Format
▪ 6 ECTS (4 SWS) bachelor computer science / information systems

▪ Every-other-week lectures (Mon 4.15pm sharp, including Q&A), attendance optional

▪ Prerequisites
▪ Basic programming skills in languages such as C, C++, Java, Rust, etc

▪ Basic understanding of data management SQL / RA (or willingness to fill gaps)

Basic Course Organization

Matthias Boehm | FG DAMS | PPDS WiSe 2024/25 – 01 Kickoff and Introduction5

▪ Objectives
▪ Apply basic programming skills to more complex problem (in self-organized team work)

▪ Technical focus on data management and data systems

▪ Holistic programming projects: prototyping, design, versioning, tests, experiments, benchmarks

▪ Grading: Pass/Fail
▪ Project Implementation (project source code) [45%]

▪ Component and Functional Tests (test source code) [10%]

▪ Runtime Experiments (achieve performance target) [15%]

▪ Documentation (design document up to 5 pages / code documentation) [15%]

▪ Result Presentation (10min talk) [15%]

▪ Academic Honesty / No Plagiarism (incl LLMs like ChatGPT)

Course Goals and Structure

Matthias Boehm | FG DAMS | PPDS WiSe 2024/25 – 01 Kickoff and Introduction6

▪ #1 Disk-based B-Trees
▪ Capacity: 48/80

▪ Organized by DAMS group

▪ Focus on index structures

▪ Lectures every-other-week in H 0111

▪ #2 Duplicate Detection
▪ Capacity: 16/80

▪ Organized by D2IP group

▪ Focus on entity resolution

▪ #2 Provenance Tracking in ML Pipelines
▪ Capacity: 16/80

▪ Organized by D2IP group

▪ Focus on entity resolution

Sub-Course Offerings

➔ Admitted Students:
▪ 5 + 48 on ISIS (incl duplicates)

▪ Total registrations: up to 80

→ 20 teams, 4 students each

Matthias Boehm | FG DAMS | PPDS WiSe 2024/25 – 01 Kickoff and Introduction7

Background Data Management

Matthias Boehm | FG DAMS | PPDS WiSe 2024/25 – 01 Kickoff and Introduction8

History 1970/1980s
Relational Database Systems

Edgar F. “Ted” Codd @ IBM
Research (Turing Award ‘81)

Relational Model

QUEL

Ingres @ UC Berkeley
(Stonebraker et al.,
Turing Award ‘14)

SQL Standard
(SQL-86)

[E. F. Codd: A Relational Model of
Data for Large Shared Data Banks.

Comm. ACM 13(6), 1970]

Tuple Calculus

SEQUEL

System R @ IBM
Research – Almaden

(Jim Gray et al.,
Turing Award ‘98)

Relational Algebra

Goal: Data Independence
(physical data independence)
• Ordering Dependence
• Indexing Dependence
• Access Path Dependence

Oracle, IBM DB2,
Informix, Sybase
→MS SQL

Matthias Boehm | FG DAMS | PPDS WiSe 2024/25 – 01 Kickoff and Introduction9

Success of SQL / Relational Model

Query:
SELECT O_OID, sum(L_Price)
FROM Orders, Lineitem, Customer
WHERE O_OID = L_OID AND O_CID = C_CID

AND O_Odate >= ‘2018-11-14’
AND C_Msegment = ‘AUTOMOBILE’

GROUP BY O_OID

#1 Declarative:
what not how

#2 Flexibility:
closure property
→ composability

Logical Query Plans

Γ

σ

⋈

σ

⋈ C

AUTOMOBILE

>=2018-11-14

sum(Price)

O L

0.2

0.001

10K

1G

100M

C(P)=2.2G

Γ

⋈

⋈

O

L

σ

Cσ

C(P)=1.32M

Γ

⋈

⋈ L

O

σ

C

σ

C(P)=0.34M

Physical
Query Plan

#3 Automatic Optimization

Hash
GrpJoin

Hash
Join

TScan
L

IXScan

O
TScan
C

σ

Date

#4 Physical Data
Independence

Matthias Boehm | FG DAMS | PPDS WiSe 2024/25 – 01 Kickoff and Introduction10

#1 Disk-based B-Trees (DAMS)

Matthias Boehm | FG DAMS | PPDS WiSe 2024/25 – 01 Kickoff and Introduction11

▪ Since 09/2022 TU Berlin, Germany
▪ University professor for Big Data Engineering (DAMS)

▪ 2018-2022 TU Graz, Austria
▪ BMK endowed chair for data management + research area manager

▪ Data management for data science (DAMS), SystemDS & DAPHNE

▪ 2012-2018 IBM Research – Almaden, CA, USA
▪ Declarative large-scale machine learning

▪ Optimizer and runtime of Apache SystemML

▪ 2007-2011 PhD TU Dresden, Germany
▪ Cost-based optimization of integration flows

▪ Time series forecasting / in-memory indexing & query processing

About Me

DB group

Matthias Boehm | FG DAMS | PPDS WiSe 2024/25 – 01 Kickoff and Introduction12

▪ Staff
▪ Lecturer: Prof. Dr. Matthias Boehm

▪ Teaching Assistants: Christina Dionysio, Ramon Schöndorf

▪ Next Dates/Lectures
▪ Oct 21: Course Selection; team preferences, otherwise assignment

▪ Oct 28: Background Index Structures

▪ Nov 11: Background Buffer Pool

▪ Nov 28: Background Transaction Processing

▪ Dec 12: Experiments and Reproducibility

▪ Jan 27: Project submissions (performance target: 20K transactions/second)

▪ Feb 03: Project presentations (10min per team, mandatory attendance)

▪ Infrastructure
▪ Setup your own private Github/Gitlab repository

Additional Course Logistics

Each teams gets a mentor
Q&A sessions on demand

Matthias Boehm | FG DAMS | PPDS WiSe 2024/25 – 01 Kickoff and Introduction13

▪ Database Architecture
▪ Page-oriented storage on disk and in memory (DB buffer)

▪ Dedicated eviction algorithms

▪ Modified in-memory pages marked as

dirty, flushed by cleaner thread

▪ Log: append-only TX changes

▪ Data/log often placed on different devices

and periodically archived (backup + truncate)

▪ Write-Ahead Logging (WAL)
▪ The log records of changes to some (dirty) data page must be

on stable storage before the data page (UNDO - atomicity)

▪ Force-log on commit or full buffer (REDO - durability)

▪ Recovery: forward (REDO) and backward (UNDO) processing

▪ Log sequence number (LSN)

Overview Database (Transaction) Log

[C. Mohan, Donald J. Haderle, Bruce G. Lindsay,
Hamid Pirahesh, Peter M. Schwarz: ARIES: A

Transaction Recovery Method Supporting Fine-
Granularity Locking and Partial Rollbacks Using

Write-Ahead Logging. TODS 1992]

DBMS

DB Buffer Log
Buffer

User 1
User 2

User 3

P1

P7 P3’

Data Log

P7 P3

Matthias Boehm | FG DAMS | PPDS WiSe 2024/25 – 01 Kickoff and Introduction14

▪ History B-Tree
▪ Bayer and McCreight 1972, Block-based, Balanced, Boeing Labs

▪ Multiway tree (node size = page size); designed for DBMS

▪ Extensions: B+-Tree/B*-Tree (data only in leafs, double-linked leaf nodes)

▪ Definition B-Tree (k, h)
▪ All paths from root to leafs have equal length h

▪ All nodes (except root) have [k, 2k] key entries

▪ All nodes (except root, leafs) have [k+1, 2k+1] successors

▪ Data is a record or a reference to the record (RID)

B-Tree Overview

[Rudolf Bayer, Edward M. McCreight:
Organization and Maintenance of Large

Ordered Indices. Acta Inf. (1) 1972]

  1
2

1
log)1(log 112 +















 +
+ ++

n
hn kk

P0 Key K1 Data D1 P1 Key K2 Data D2 P2 Key K3 Data D3 P3 Key K4 Data D4 P4

Subtree w/
K2 < keys ≤ K3

Subtree w/
keys ≤ K1

k=2

All nodes adhere
to max constraints

pointers are page IDs

Matthias Boehm | FG DAMS | PPDS WiSe 2024/25 – 01 Kickoff and Introduction15

▪ Example B-Tree k=2
▪ Get 38→ D38

▪ Get 20→ D20

▪ Get 6→ NULL

▪ Lookup QK within a node
▪ Scan / binary search keys for QK, if Ki=QK, return Di

▪ If node does not contain key

▪ If leaf node, abort search w/ NULL (not found), otherwise
▪ Decent into subtree Pi with Ki < QK ≤ Ki+1

▪ Range Scan QL<K<U

▪ Lookup QL and call next K while K<QU (keep current position and node stack)

B-Tree Overview – Search
25

10 20 30 40

2 5 7 8

13 14 15 18

22 24

41 42 45 46

32 35 38

26 27 28

Matthias Boehm | FG DAMS | PPDS WiSe 2024/25 – 01 Kickoff and Introduction16

▪ Volcano Iterator Model
▪ Open-Next-Close (ONC) interface

▪ Query execution from root node (pull-based) → Pipelined

▪ Example
σA=7(R)

▪ Blocking Operators
▪ Sorting, grouping/aggregation, build-phase of (simple) hash joins

Query Processing – Iterator Model [Goetz Graefe: Volcano - An Extensible
and Parallel Query Evaluation System.

IEEE Trans. Knowl. Data Eng. 1994]

Scalable (small memory)
High CPI measures

R

σA=7

open()

open()

next()
next()

next()
next()

close()

open()
next()
next()

close()

next()
next()

close()
→ EOF

→ EOF

→ EOF

void open() { R.open(); }

void close() { R.close(); }

Record next() {
while((r = R.next()) != EOF)
if(p(r)) //A==7

return r;
return EOF;

}

PostgreSQL: Init(),
GetNext(), ReScan(), MarkPos(),

RestorePos(), End()

Matthias Boehm | FG DAMS | PPDS WiSe 2024/25 – 01 Kickoff and Introduction17

▪ Team
▪ 4 person teams (self-organized team work, but everybody needs to contribute)

▪ Task: SIGMOD’09
Programming Contest

▪ Transactional, in-memory index for

VARCHAR128, INT32, INT64 w/ duplicates

▪ C test / performance suites, multi-threaded concurrent operations

▪ Programming language: C or C++ recommended, Java or Rust

▪ WiSe 23/24: in-memory indexing w/ perf target 400K TXN/second

▪ WiSe 24/25: disk-based b-tree w/ perf target 20K TXN/second

no VARCHAR and fixed payload length

Overview Programming Project

Example Speedtest Output:
Creating 100 indices
Populating indices 100
Time to populate: 29ms
Testing the indices
Time to test: 1106ms
Testing complete.

NUM_DEADLOCK: 0
NUM_TXN_FAIL: 0
NUM_TXN_COMP: 1,600,000

Overall time to run: 1135ms

Matthias Boehm | FG DAMS | PPDS WiSe 2024/25 – 01 Kickoff and Introduction18

▪ Create a functional implementation of the provided application programming interface (API) that
ensures result correctness and high performance for different data types and characteristics

▪ API
Functions
server.h

API Summary

// Index Handling
ErrCode create(KeyType type, char *name, size_t pageSize);
ErrCode drop(char *name);
ErrCode openIndex(const char *name, IdxState **idxState);
ErrCode closeIndex(IdxState *idxState);

// Transaction Handling
ErrCode beginTransaction(TxnState **txn);
ErrCode abortTransaction(TxnState *txn);
ErrCode commitTransaction(TxnState *txn); //guarantee durability!

// Read and Write Operations
ErrCode get(IdxState *idxState, TxnState *txn, Record *record);
ErrCode getNext(IdxState *idxState, TxnState *txn, Record *record);
ErrCode insertRecord(IdxState *idxState, TxnState *txn, Key *k, const char* payload);
ErrCode deleteRecord(IdxState *idxState, TxnState *txn, Record *record);

Matthias Boehm | FG DAMS | PPDS WiSe 2024/25 – 01 Kickoff and Introduction19

#2 Duplicate Detection (D2IP)

Matthias Boehm | FG DAMS | PPDS WiSe 2024/25 – 01 Kickoff and Introduction20

#3 Provenance Tracking in ML Pipelines (DEEM)

Matthias Boehm | FG DAMS | PPDS WiSe 2024/25 – 01 Kickoff and Introduction21

Course Selection/Enrolment

Matthias Boehm | FG DAMS | PPDS WiSe 2024/25 – 01 Kickoff and Introduction22

▪ #1 Disk-based B-Trees (DAMS)
▪ Capacity: 48/80

▪ #2 Duplicate Detection (D2IP)
▪ Capacity: 16/80

▪ #3 Provenance Tracking in ML Pipeline (DEEM)
▪ Capacity: 16/80

Select Your Course

https://forms.gle/HFvzPCHHpcyZis8KA

https://forms.gle/HFvzPCHHpcyZis8KA

Matthias Boehm | FG DAMS | PPDS WiSe 2024/25 – 01 Kickoff and Introduction23

▪ Course Organization

▪ Background Data Management

▪ #1 Disk-based B-Trees (DAMS)

▪ #2 Duplicate Detection (D2IP)

▪ #3 Provenance Tracking in ML Pipelines (DEEM)

▪ Course Selection/Enrolment by Oct 21 EOD

Summary & QA

Thanks

https://forms.gle/HFvzPCHHpcyZis8KA

https://forms.gle/HFvzPCHHpcyZis8KA

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

