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FG Big Data Engineering (DAMS Lab) — About Me

: : TECHNISCHE
Since 09/2022 TU Berlin, Germany . UNIVERSITAT
= University professor for Big Data Engineering (DAMS) BERLIN

2018-2022 TU Graz, Austria TU
= BMK endowed chair for data management + research area manager Grazm

W

= Data management for data science (DAMS), SystemDS & DAPHNE (Know
= 2012-2018 IBM Research — Almaden, CA, USA —

= Declarative large-scale machine learning
= Optimizer and runtime of Apache SystemML

4||I

m - TECHNISCHE
2007-2011 PhD TU Dresden, Germany EVERCITAT
= Cost-based optimization of integration flows DRESDEN
= Time series forecasting / in-memory indexing & query processing DB group
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FG Big Data Engineering (DAMS Lab) — Teaching

Architecture of DB system Architecture of ML system internals,

Database Systems " BIUEIHEIS ML Systems data science lifecycle
(ADBS, WS) + prog. project (AMLS, SoSe) + prog. project
SE Joint ML and DM
(MLDM, SoSe+WiSe)

SE/PR Large-scale
Data Engineering
(LDE, SoSe+WiSe)

Master Data Integration and
——————————— Large-Scale Analysis

Bachelor (DIA, WiSe)

Intro to Scientific
Methods (WS)

Distributed
Data Management

Data Management /
DEIELEES
(DM, SS+WS)

PP Prog.-Practicals
Data Systems
(PPDS, SoSe+W.iSe)

Data management from
user/application perspective
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Faculty IV - Team Awareness and Antidiscrimination
https://www.tu.berlin/eecs/awan

= Goal
= Low-barrier approachability for spectrum of awareness and antidiscrimination issues

= Team
" Irene Hube-Achter (MTSV)
= Matthias Boehm (professors)
= Nadine Karsten (scientific personnel)
= Tom Hersperger (students)

= Mission Statement
= Account for heterogeneity and complexity of modern societies at TU Berlin Contact: private email,
. . eecs-TB-awareness@win.tu-berlin.de,
All employees and students are committed to or AwAn@dams.tu-berlin.de

= #1 Treat all persons with fairness and respect ' '
" #2 Ensure a safe environment for all
= #3 Comply with our duty of care towards others
= #4 Actively support the implementation of the above guidelines and contribute
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Agenda

Course Organization

Course Motivation and Goals

Course Outline and Projects/Exercise

Excursus: Apache SystemDS
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Course Organization
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Course Logistics

Staff
= Lecturer: Prof. Dr. Matthias Boehm, DAMS
= Teaching Assistant: Carlos E. Muniz Cuza, DAMS

= Language
= Lectures and slides: English
= Communication and examination: English/German

= Course Format
= VL/UE 3/2 SWS, 6 ECTS (3 ECTS + 3 ECTS), bachelor/master; no capacity restrictions 279 REg (as of Oct 16)
= Weekly lectures (Thu 4.15pm sharp, in-person & zoom livestreaming/recording), optional attendance
= Mandatory exercises or programming project (3 ECTS), office hour Wed 5pm-6pm (sharp)
= Recommended papers for additional reading on your own

= Prerequisites
= Basic understanding of SQL / RA (or willingness to fill gaps)
= Basic programming skills (Python, R, Java, C++)

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 01 Introduction and Overview \‘ BI Fo LD




Course Logistics, cont.

Website / ISIS Course / Zoom
= https://mboehm7.github.io/teaching/ws2526 dia/index.htm (public)
» https://isis.tu-berlin.de/course/view.php?id=44995 (TUB-internal) Zoom
= https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOUI10cFdmem9zT202UT09

= Communication
= Informal language (first name is fine); immediate feedback welcome
= |SIS Forum for offline Q&A on projects/exercises as well as
= TA Office hours: TBD second week

Academic Honesty / No Plagiarism (incl LLMs like ChatGPT)

T

= Exam
= Exam Prerequisite: Completed exercises or project (checked by teaching assistants)
= Final written exam (oral exam if <35 students take the exam): Feb 05, 4pm / Feb 12, 4pm / Mar 12, 4pm
= Grading (project/exercises pass/fail, 100% exam) = 5 extra points in exam if exercises with >= 90%
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Course Applicability

W

Bachelor study programs computer science, information systems management,
computer engineering, and electrical engineering

Master study programs computer science, information systems management,
computer engineering, and electrical engineering

= Data and software engineering

= Cognitive systems

= Distributed systems and networks

Free subject course in any other study program or university

(currently reorganization StuPO WS26/27 bachelor computer science
-> DIA in ”Data Systems” catalog)

Different than “Data Integration: Algorithms and Systems (DI)”
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Course Motivation and Goals
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Data Sources and Heterogeneity

1 /]

= Terminology
= |ntegration (Latin integer = whole): consolidation of data objects / sources
= Homogeneity (Greek homo/homoios = same): similarity
= Heterogeneity: dissimilarity, different representation / meaning [Credit: Albert Maier]

= Heterogeneous IT Infrastructure
= Common enterprise IT infrastructure contains >100s of
heterogeneous and distributed systems and applications
= E.g., health care data management: 20 - 120 systems

= Multi-Modal Data (example health care)
= Structured patient data, patient records incl. prescribed drugs
= Knowledge base drug APIs (active pharmaceutical ingredients) + interactions
Doctor notes (text), diagnostic codes, outcomes
Radiology images (e.g., MRI scans), patient videos
Time series (e.g., EEG, ECoG, heart rate, blood pressure)
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Recap: The Data Science Lifecycle Data-centric View:

w

Application perspective
Workload perspective
System perspective

(aka KDD Process, aka CRISP-DM)

W

Data
Scientist

Data Integration Model Selection Validate & Debug
Data Cleaning Training Deployment
Data Preparation Hyper-parameters Scoring & Feedback

Exploratory Process
(experimentation, refinements, ML pipelines)

Data/SW DevOps
Engineer Engineer
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The 80% Argument .

= Data Sourcing Effort

= Data scientists spend 80-90% time on finding, integrating, cleaning datasets [Michael Stonebraker, Ihab F. llyas: ———
Data Integration: The Current | - e
= Technical Debts in ML Systems Status and the Way Forward. |
IEEE Data Eng. Bull. 41(2) (2018)]
Machine o
Resource Monitoring [D. Sculley et al.: Hidden | =——
Configuration || Data Collection g Servin Technical Debt in Machine | =
Infrastruc?ure Learning Systems. NeurlPS 2015]
Analysis Tools
Feature
. Process
Extraction Management Tools

Glue code, pipeline jungles, dead code paths

Plain-old-data types (arrays), multiple languages, prototypes
Abstraction and configuration debts

Data testing, reproducibility, process management, and cultural debts
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Complementary System Architectures

#1 Information System N
Pyramid

N

DSS

Strategic
Systems
e %Em

wdl W

Analytlcal Systems

Operational Systems

Vertical
Integration
(e.g., ETL)

T T

*\1 il Material

A

AAAAAA

1 /]

Distributed
Computation
Frameworks

DATA LAKE

eCommerce

#2 Data
Lake

v

N

Horizontal Integration (e.g., EAI)
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Audio, Image, Video,
Text, Streams, Logs

Distributed
Data Stores

Amazon S3
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Course Goals

= Common Data and System Characteristics
= Heterogeneous data sources and formats, often distributed
= Large data collections = distributed data storage and analysis

#1 Major data integration architectures

#2 Key techniques for data integration and cleaning

#3 Methods for large-scale data storage and analysis
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Course Outline and Projects/Exercise
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Part A: Data Integration and Preparation

Data Integration Architectures
= 01 Introduction and Overview [Oct 16]
= 02 Data Warehousing, ETL, and SQL/OLAP [Oct 23]

= 03 Message-oriented Middleware, EAI, and Replication [Oct 30]

Key Integration Techniques

04 Schema Matching and Mapping [Nov 06]

05 Entity Linking and Deduplication [Nov 13]

06 Data Cleaning and Data Fusion [Nov 20]

07 Data Provenance and Catalogs [Nov 27]
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Part B: Large-Scale Data Management & Analysis

Cloud Computing
= 08 Cloud Computing Foundations [Dec 04]
= 09 Cloud Resource Management and Scheduling [Dec 11]

= 10 Distributed Data Storage [Dec 18]

Large-Scale Data Analysis
= 11 Distributed, Data-Parallel Computation [Jan 15]
= 12 Distributed Stream Processing [Jan 22]

= 13 Distributed Machine Learning Systems [Jan 29]
+ Q&A and Exam Preparation
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Overview Projects or Exercises

= Team
= 1-3 person teams (w/ clearly separated responsibilities)

= Objectives
= Non-trivial programming project in DIA context (3 ECTS = 80-90 hours)
= Preferred: Open-source contribution to Apache SystemDS
https://github.com/apache/systemds (from HW to high-level scripting)
= https://issues.apache.org/jira/secure/
Dashboard.jspa?selectPageld=12335852#Filter-Results/12365413
= Alternative Exercise: “Berlin Public Transport Data Analysis”

. Timeline https://tinyurl.com/

= Oct 31: Binding project/exercise selection (via google forms)

= Jan 30: Project/exercise submission deadline aythbWG
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DIA Exercise (alternative to projects), cont.

DIA WiSe2025: Exercise — Berlin Public Transport Data Analysis Ihttps://github.com/damslab/datasets/

Published: Oct 13, 2025 tree/master/DBahn-berlin]
Deadline: Jan 30, 2025; 11.59pm

datasets / DBahn-berlin / (&

This exercise is an alternative to the DIA programming projects and provides practical experience in O —— R
the development of ETL pipelines for data integration and analytics. The task of this semester is to . e .
ingest and analyze data from Berlin’s public transport system, extracted via the Deutsche Bahn (DB) [S— P —
API marketplace!. We collected real-world information for 133 Berlin stations, including train connec- = et ons reserdy
tions and disruptions, from Sep 02, 2025 through Oct 15, 2025. The objectives are to design a schema E:JM e -

capable of accommodating this data and to implement queries that demonstrate proficiency in data in- [ stion deaen TS —

tegration and large-scale analysis. The final submission is a zip archive named DIA_Exercise_<student
ID>.zip (max 5MB), containing: (1) the source code used to solve the individual sub-tasks, as well
as (2) a PDF report of up to 8 pages (10pt), including the names of all team members, a summary of
how to run the code, and a description of the solutions to the individual sub-tasks.

Data Source: The dataset consists of three main components:

readme.md

DBahn-Berlin Data — Weekly Archives

This repo bundles time-series snapshots into weekly _tar.gz archives

« timetables/ — hourly snapshots { virDoH . €.g. 2509021200 )
able_changes/ — 15-minute snapshots ( yvroores:, minutes e 00,15.30,45])

e Stations: A .json file with metadata for the 133 Berlin stations.

Each archive contains: the snapshot folders that fall in that 7-day window.

e Timetables: .xml files containing planned train movements (arrival/departure times, platforms, On-disk layout (archives)

lines, numbers, routes), collected once per hour at HH:01. _ ©
i —

|

|

e Timetable Changes: .xml files containing disruptions (delays, cancellations, modification mes-
sages), collected every 15 minutes at HH:01, HH: 16, HH:31, and HH: 46.

|- 250909 250916, tor.gz
L

Inside an archive (example)

We also provide a schema. json file describing all fields. All timetable files are stored as: /timetables/

{date hour 00}/{station name} timetable.xml, where date hour 00 encodes the download time, s oot p
e.g. 2509051100 for Sep 05, 2025 at 11:00. Each file covers one hour of data. Furthermore, all timetable Efi:it’,;‘:ﬁ
change files are stored as: /timetable changes/{date hour minute}/{station name} change.xml,

where date_hour_minute encodes the download time, e.g. 2509051116 for Sep 05, 2025 at 11:16. Each
file covers 15 minutes of data.

For t
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Apache SystemDS: A Declarative ML System
for the End-to-End Data Science Lifecycle

https://github.com/apache/systemds
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What is an ML System?

Classification
Regression
Recommenders
Clustering
Dim Reduction
Neural Networks

ML Applications Machine
(entire KDD/DS Learning
lifecycle) (ML)

Rapidly Evolving
Runtime Techniques

(Execution, Data Access) Compilation

Techniques

Data Accelerators

Management
HW

Architecture

Operating
Systems




Landscape of ML Systems

[//DASK |

= Existing ML Systems Numpy  julia @
= #1 Numerical computing frameworks 0 kan o Spotflzz
= #2 ML Algorithm libraries (local, large-scale) 2 MAHOUT ggztil::mm
= :Z II.)mear algebra ML systems (large-scale) by TORCH @m T
= eep neural network (DNN) frameworks
= #5 Model management, and deployment H- Keras Temsorron

= Exploratory Data-Science Lifecycle
= Open-ended problems w/ underspecified objectives
= Hypotheses, data integration, run analytics
= Unknown value = lack of system infrastructure

- Redundancy of manual efforts and computation [NIPS 2015]
[DEBull 2018] ——

“Take these datasets
and show value or
competitive advantage”

= Data Preparation Problem
= 80% Argument: 80-90% time for finding, integrating, cleaning data
= Diversity of tools = boundary crossing, lack of optimization
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The Data Science Lifecycle
(aka KDD Process, aka CRISP-DM)

1 /]

Key observation: SotA data

Data integration/cleaning based on ML
Scientist

Data extraction, schema alignment, entity ‘I
resolution, data validation, data cleaning, outlier |
detection, missing value imputation, semantic type :
detection, data augmentation, feature selection, 1
feature engineering, feature transformations ,I

P e o o e e e o o e e e e

[
I
1
|
|
I
\

Data Integration Model Selection Validate & Debug
Data Cleaning Training Deployment
Data Preparation Hyper-parameters Scoring & Feedback

|

Exploratory Process
(experimentation, refinements, ML pipelines)

Data/SW

DevOps
Engineer

Engineer
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Apache SystemDS [https://github.com/apache/systemds] : : -

Educate One Million

Establish Spark Technology Center

DML Scripts
APIs: Command line, JMLC, Python ‘
Spark MLContext, Spark ML A
, ’ ache
(Scalable Algorithms + Primitives) Language SgF;stemML"“

C il 07/2020 Renamed to Apache SystemDS
[SIGMOD’15,/17,/19,’21abc,’ 23abc,’24ab] ompiier 05/2017 Apache Top-Level Project

[PVLDB’14,’16ab,'18,22] 11/2015 Apache Incubator Project
[ICDE’11,’12,15] 08/2015 Open Source Release

[EDBT’25][BTW’25ab]

e T~ T
[Clkw22] Run Anywhere

[DEBuII'14] In-Memory Single Node Hadoop or Spark Cluster Federated
[PPoPP’15] (scale-up) (scale-out) (LA progs, PS)

In-Progress: < (G hEEbED Spoflh(z eX ra
Others: GPU Java @ - -
Netezza ‘ ‘

Apache Flink

ﬂ since 2014/16 since 2012 since 2010/11 since 2015

since 2019



https://github.com/apache/systemds

Language Abstractions and APIs

Data Independence + Impl-Agnostic Ops l E

=» “Separation of Concerns”

= Example: User Script Built-in Functions

matrix(reg,ncol(X),1)

A = t(X) %*% X + diag(l)
b=1t(X) %*%y

beta = solve(A, b) ...} 7

across data science Algorithms 1

lifecycle tasks

StepWise X = read(‘features.csv’) . m_steplm = function(...) { m_1mCG = function(...) {

: Y = read(‘labels.csv’) / while( continue ) { while( i<maxi&nr2>tgt ) {
Linear [B,S] = steplm(X, Y, ! parfor( i in 1:n ) { q = (t(X) %*% (X %*% p))
Regression icpt=e, reg=0.001) - if( Ifixed[1,i] ) { + lambda * p

write(B, ‘model.txt’) 7 : Xi = cbind(Xg, X[,1i]) beta = ... }
| B[,i] = Im(Xi, vy, ...) } 7
| } } \ 4
: i a:(chbest to Xg m_1m = function(...)
'y, (AIC) if( ncol(X) > 1024 ) Linear
, B = ImCG(X, 4, ...)
! elee Algebra
' Feature B = 1mds(X, y, ...) | Programs
! Selection ) S~

efge [ ] L] ] I \

Facilitates optimization ! ML m_1mDS = function(...) {
:
I
I
I
I
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Basic HOP and LOP DAG Compilation

1 /]

LinregDS (Direct Solve) HOP DAG C%KBwrite Cluster Config:
X = read($1); Loy (after rewrites) VTN « driver mem: 20 GB
: y = read($2); X:108 x 1083, 10" A 16MB CP  p(solve) * exec mem: 60 GB
| intercept = $3; . 1N08 8 / cpP
: lambda = 0.001; y: 10°x1,10 ,/ 172KB /'b(j)jx_l_.sjg _____________
L o e mmmm———mm o )/ CP r(diag) | ba(+*) SP ba(+*) 800GB |
Cif(Tintercept == 1) {7 ° / I SP :
I lones = matrix(1, nrow(X), 1); I ,' 1.6TB I
' :X = append(X, ones); ey sp | r(t) I
r S . - ] / 8KB 1 v\ [
,.Lz__________._____________:______:______:__.! // CP dg(r‘and) : X SOOGB y SOOMB I
I = matrix(1, nCO].SX), 1); 17 (103x1,103) | (108x103,101) (108x1,108) ¢ : 9 Distributed Matrices
1A = t(X) %*% X + diag(I)*1lambda; ,f el B . . .
b= t(X) %% y; ! | * Fixed-size matrix blocks
. / I 0
| beta = solve(A, B); ¢ ! LOP DAG 165?(@) v * Data-parallel operations
| write(beta, $4); : (after rewrites) A 3
mapmm(SP) tsmm(SP) )(1 1
. . 800MB ,
=» Hybrid Runtime Plans: 1.6GB / \ /
* Size propagation / memory estimates r’ (CP) X %21
* Integrated CP / Spark runtime t (persistedin |,
. - i . MEM_DISK) m,1
* Dynamic recompilation during runtime y
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Data Cleaning Pipelines (sicMop’24a, ToDs'26]

‘;‘",

AT

=
3
L

Lty ;

#

= Automatic Generation of Cleaning Pipelines [best paper runner-up
= Library of robust, parameterized data cleaning primitives, w/ Shafaq and Roman]

= Enumeration of DAGs of primitives & hyper-parameter optimization (evolutionary, HB)

Data '
Samples
: Top-k
Physical
Target [ = » » Pipelines

App

Data- and Task-parallel
Computation

Logical

7 ‘ h N
Rules/Objectives Outlier Detection & MVI = Deduplication = Resolve Mislabels
s AN

P,. gmm -> imputeFD -> mergeDup > delML P,. outlierBySd=> mice - delDup -> voting Debugging
University |Country University |Country A B C D A B C D
TU Graz Austria TU Graz Austria 0.77 0.80 1 1 0.77 0.80 1 1
TU Graz Austria TU Graz Austria 0.96 0.12 1 1 0.96 0.12 1 1
e T —— oo url L

i IIT India - . - -
L India - i 0.91 0.02 17 hull 0.91 0.02 |17 1
Ll = ndia 0.21  l0.38 17 1 0.21 0.38 17 1
T Pakistan Ll fndia .31 null 17 1 0.31 .29 17 1
11T India IIT India .75 .21 20 1 9.75 0.21 20 1
SIBA Pakistan SIBA Pakistan null null 20 1 0.41 9.24 20 1
SIBA null SIBA Pakistan 0.19 0.61 20 1 0.19 0.61 20 1
SIBA hull SIBA pakistan .64 9.31 20 1 9.64 0.31 |20 1

Dirty Data After imputeFD(0.5) Dirty Data After MICE




SliceLine for Model Debugging

= Problem Formulation
= Intuitive slice scoring function
= Exact top-k slice finding
" |S|=0dAsc(S)>0,a€ (0,1]

= Properties & Pruning
= Monotonicity of slice sizes, errors
= Upper bound sizes/errors/scores
- pruning & termination

= Linear-Algebra-based Slice Finding

= Recoded/binned matrix X, error vector e

[SIGMOD’21b, BTW’25a]

@ sli@eline

4 [Credit: sliceline,
- Silicon Valley, HBO]

o (1x1 2 es, 1X]
= a(lsl . lel ‘ -1 —(1—a)<m—1>

i=1

slice error slice size

X (|S|=n, se=e)

m
0(2! —z 2% + 1 +m)
j=1

Level 1:
(1 in, 3 out)

Level 2:
(2 in, 2 out)

ele
Level 3: 1 e 1| Candidate
(3 in, 1 out) ‘ 188 )
[S| = min(|S| parents) 000 Slices
Level m: se =< min(se parents) Data 210
leeel e 2e
leeel e z2e
e11eeflze 1| ——|ayel
. . . . . . . . leeel e 2e
= Vectorized implementation in linear algebra (join & eval via sparse-sparse matmult) e1e10f[11:
211eae 2e1

= Local and distributed task/data-parallel execution

“NBIFOLD
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Multi-level Lineage Tracing & Reuse [cipr20, SIGMOD"212,
EDBT’25] . A

y

= Lineage as Key Enabling Technique
= Trace lineage of ops (incl. non-determinism), dedup for loops/funcs IP,‘I‘.‘O‘;?;“;
= Model versioning, data reuse, incr. maintenance, autodiff, debugging

_ trace  _ Lineage _  serialize Lineage

“reconstruct  Graph £ ™ gecerialize Log

compare C-’%

Full Reuse of Intermediates

= Before executing instruction, probe output lineage in cache for( i in l:numModels )
Map<Lineage, MatrixBlock> RLL1T = 1m(x\,{, tambdali, ], v..)
= Cost-based/heuristic caching and eviction decisions m_1mDS = function(...) {
(compiler-assisted) ,i : ??igliiﬁeﬁicgigﬁﬁ’
: . b = t(X) %*% y
= Partial Reuse of Intermediates beta = solve(A, b) ...}

= Problem: Often partial result overlap
= Reuse partial results via dedicated rewrites (compensation plans)
= Example: steplm

m_steplm = function(...) {
while( continue ) {
parfor( i in 1:n ) {
if( !fixed[1,i] ) {
m>>n Xi = cbind(Xg, X[,1i])
B[,i] = Im(Xi, vy, ...)

}}
t(X) # add best to Xg (AIC)
}} 7

Next Steps: multi-backend, unified mem mgmt




Compressed Linear Algebra Extended [pvLDB'163, VLDBY'18, SIGMOD’234,

under submission]

W

u LOSSIESS Matrix COmprESSion Uncompressed Compressed Matrix M
. o . . . Input Matrix p N
= Improved general applicability (adaptive compression time, ) ] rwﬂ DDl (OLE{ﬂ
7 9 6 25 {8.5} {9} U:“"“rE Il (2.5} {3}
new compression schemes, new kernels, intermediates, workload-aware) T -
= Sparsity 2 Redundancy exploitation 04z s 4
3 0 4 25 - 2
P Y y P 10850 0= g 0 10
(data redundancy, structural redundancy) 3Es 0 :
7 9 6 25 1
¥3 0 4 34 $sparsel L(demse) ZJL(sparse)J
= Workload-aware Compression
User Script: /| if(shift) |:{> Workload Tree
= Workload summary /17X = X - colMeans(X)
. Ed = read("data/X") // if(scale)
- compression o read("data/y") /X=X cotsds(x)
= Compressed Representation X = scale(X,TRUE, TRUE) ©,1 if(intercept)
. . w = 12svm(X,y, TRUE, | X = cbind(X,ones)
- execution plannlng le-9,1e-3,100) (\ while(conto & i<maxi) {
Xd = X %*% s
write(w, "data/wXy") ‘\ while(conti) {
\ out = 1-y*(Xw+sz*Xd)
= Next Steps \| sz = sz - g/ ko
. }
= Frame compression, compressed |/O Built-in || 8_new = t(X) %*% (out*y) Cost Summary J,
Functions: [0 [100] 10 10]105] 0 |

= Compressed feature transformations
= Morphing of compressed data
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T wihry

1 :1

Federated Learning [siemop21c, cikm'22]

1 /]

= Federated Backend
= Federated data (matrices/frames) as meta data objects
» Federated linear algebra, (and federated parameter server)

X = federated(addresses=1ist(nodel, node2, node3),
ranges=1ist(list(0,0), list(4eK,70), ..., list(80K,0), 1list(100K,70)));

Fedel:ated SystemDS Federated

Coordinator Federated Worker 1 CP Workers
- ————=====- | Data N i
| SystemDS | [ matrix, Fpea ]5 7| SystemDS Federated Requests:

100K x 70

: Control Program : [1:40K,],3, Worker 2 CP READ, PUT, GET, EXEC_INST,
I [ nodel:5000 /,___.[ |: 3 i EXEC_UDF, CLEAR
I — x| e | 5| [40K:80K,],3, ;i
| while vigl|l|! node2:5000 =)
| PeX W wleg| |1 [[BOK:100K, 1,3, SystemDS =» Design Simplicity:
| w=r-*X | node3:5005 Worker 3 CP . .
| | (1) reuse instructions
| [
| [

Federated L\__ 3| @[« Read on (2) federation hierarchies

____________ Requests 7183 Demand
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Federated Learning — Experiments

Reproducible Results

OPEN ACCESS o ﬁ

o W

LM L2SVM MLogReg K-Means PCA FFN
120 A
600 - 500 1
A 100 - 50 &
z 300 1 500 - 400 1 300+
_E 15 80 1 400 4 0
o 60 - 200 - 30 - 3001 200 -
=] i 200 4
g o000 407 200 20
2 5 | 100 - 100 o
. 20 {—*—e——v—v—e : 100 {Semmggry| 101 100
0 T T T T T T T 0 T T T T T T T 0 T T T T T T T 0 T T T T T T T 0 T T T T T T T 0 T T T T T T T 0 T T T T T T T
1 2 3 45 6 7 1 2 3 45 6 7 1 2 3 45 6 7 1 2 3 45 6 7 1 2 3 45 6 7 1 2 3 45 6 7 1 2 3 45 6 7
# Workers # Workers # Workers # Workers # Workers # Workers # Workers
—@— Fed LAN —%— Fed WAN —— Local —— Fed LowerBound
= Workloads and Baselines
K-Means PCA FFN CNN

LIM: linear regression, ImCG
L2SVM: |12-regularized SVM
MLogReg: multinomial logreg

K-Means: Lloyd’s alg. w/ K-Means++ init
PCA: principal component analysis

FFN: fully-connected feed-forward NN
CNN: convolutional NN

Comparisons w/
Scikit-learn and

TensorFlow

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 01 Introduction and Overview

105 1
90 1
75 4
60 -
45
30
15 4

Execution Time [s]

I Fed LAN 4

90 A
80 A
704
60 1
501
40 A
301
201
10 1
0_

15

I Local

1351
120 4
105 4
90
75 1
60 1
45 1
30 1

0_

SK-Learn

120
105

90 1
75 A
60 4
45 4
30 A
15 1

0-
E= TensorFlow

“NBIFOLD



Summary and Q&A

= Course Goals
= #1 Major data integration architectures a n S

= #2 Key techniques for data integration and cleaning
= #3 Methods for large-scale data storage and analysis

" Programming Projects E

= Unique project in Apache SystemDS (teams or individuals), or
= Exercise on data engineering /ML pipeline

= Project selection by Oct 31 EOD https://tinyu rI.Com/ -
aytk6bw6 E

W

[=]

= Next Lectures
= 02 Data Warehousing, ETL, and SQL/OLAP [Oct 23]
= 03 Message-oriented Middleware, EAI, and Replication [Oct 30]
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