TECHNISCHE
. UNIVERSITAT
BERLIN

Data Integration and Large-scale Analysis (DIA)
03 Replication and Message-oriented Middleware

Prof. Dr. Matthias Boehm

Technische Universitat Berlin
Berlin Institute for the Foundations of Learning and Data

Big Data Engineering (DAMS Lab)

Last update: Oct 24, 2025 \‘ BI FO LD

Announcements / Administrative Items

= #1 Video Recording
= Hybrid lectures: in-person BH-N 243, zoom live streaming, video recording zoom
" https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SCI9BOU10cFdmem9zT202UT09

= }#2 Project Selection
= Binding project/exercise selection by Oct 31

= Via the following form (so far 34): v

https://tinyurl.com/aytk6bw6

@ SystemDS Project
@ Alternative Exercise

n Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

Agenda

Motivation and Terminology

Distributed TX & Replication Techniques

Asynchronous Messaging

Message-oriented Integration Platforms

B Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

Motivation and Terminology

n Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

Recap: Information System Pyramid

DSS

Vertical Strategic
. Lecture 02
I?tegraE'Ell_E)n Systems
e.g.,

) :., 7 ‘I'l""j

Analytlcal Systems

“1 i1 Material

‘) Operational Systems

N
A4

Horizontal Integration (e.g., EAI)

Lecture 03 (today)

B Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

mitters missus message

B Aimidim e eadic
=1 a's Jirdilia T H
=Send eaaie crgisn

Messaging LATIN LATIN OLD FRENCH l E

[Credit: https://www.gstatic.com/
= Def: Message onebox/dictionary/etymology]

= Piece of information in certain structure

= Send from source (transmitter) over channel to destination (receiver)

= Syntax: different message formats (binary, text, XML, JSON, Protobuf)

= Semantic: different domain-specific message schemas (aka data models)

= Synchronous Messaging n

= Strict consistency requirements n<v
= Qverhead for distributed transactions via 2PC n

= Low local autonomy, usually data-driven

= Asynchronous Messaging
= Loose coupling, eventual consistency requirements

= Batching for efficient replication and updates
= Latency of update propagation

ﬂ Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

https://www.gstatic.com/onebox/dictionary/etymology
https://www.gstatic.com/onebox/dictionary/etymology
https://www.gstatic.com/onebox/dictionary/etymology

Types of Data Formats

General-Purpose Formats
= CLI/API access to DBs, KV-stores, doc-stores, time series DBs, etc
= CSV (comma separated values)
= JSON (javascript object notation), XML, Protobuf

%aMatrixMarket matrix coordinate real general

O .
= Sparse Matrix Formats o S

= Matrix market: text UV (row, col, value) . 1 oooeson

= Libsvm: text compressed sparse rows 22 oo

= Scientific formats: NetCDF, HDF5 1 ; ggggs:gg

4 4 —é.899e+92

4 5 3.332e+01

= Large-Scale Data Formats 55 1.200e+01

= ORC, Parquet (column-oriented file formats)
= Arrow (cross-platform columnar in-memory data)

= Domain-specific Formats: often binary, structured text, XML

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

Example Domain-specific Message Formats ﬂs

= Finance: SWIFT “’w& . & @@
= Society for Worldwide Interbank Financial Telecommunication
= >10,000 orgs (banks, stock exchanges, brokers and traders) - jﬁ,,
= Network and message formats for financial messaging .“& E E a@u
= MT and MX (XML, ISO 20022) messages ORET oo oo

it .//h dl.
= Health Care: HL/7, DICOM [https://ihodl.com]

= Health Level 7 (HL7) messages for clinical/admin data exchange (v2.x structured text msgs, v3 XML-based msgs)
= Digital Imaging and Communications in Medicine (DICOM)

= Automotive: ATF, VIDF
= Association for Standardisation of Automation and Measuring Systems (ASAM)
= E.g., Open Transport Data Format (ATF), Measurement Data Format (MDF), calibrations (CDF),
auto-lead XML (ADF), open platform communications (OPC)

=» Sometimes Large-scale analytics over histories of messages (e.g., health care analytics,
fraud detection, money laundering)

n Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

Types of Message-Oriented Middleware

#1 Distributed TXs & Replication

#2 Message Queueing
= Persistent message queues with well-defined delivery semantics
= Loose coupling of connected systems or services (e.g., availability)

#3 Publish Subscribe
= Large number of subscribers to messages of certain topics/predicates
= Published messages forwarded to qualifying subscriptions

= #4 Integration Platforms
* |nbound/outbound adapters for external systems
= Sync and async messaging, message transformations, enrichment

o Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

Distributed TX & Replication Techniques

@) Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

Distributed Database Systems

= Distributed DBS
= Distributed database: Virtual (logical) database
that appears like a local database but consists
of multiple physical databases
= Multiple local DBMS, components for global query processing
= Terminology: virtual DBS (homogeneous), federated DBS (heterogeneous)

= Challenges
= Tradeoffs: Transparency — autonomy, consistency — efficiency/fault tolerance
= #1 Global view and query language = schema architecture
= #2 Distribution transparency - global catalog Beware: Meaning
= #3 Distribution of data = data partitioning of “Transparency”
= #4 Global queries > distributed join operators, etc (invisibility) here
= #5 Concurrent transactions = 2PC
= #6 Consistency of copies = replication

@I atthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

Two-Phase Commit (2PC)

= Recap: Database Transaction
= A transaction (TX) is a series of steps that brings a database from
a consistent state into another (not necessarily different) consistent state
= ACID properties (atomicity, consistency, isolation, durability)

= Problems in Distributed DBS

= Node failures, and communication failures (e.g., network partitioning) Global
=» Distributed TX processing to ensure consistent view Coordinatorl TX
(atomicity/durability) ready ready
prepare TX TX prepare
= Two-Phase Commit (via 4*(n-1) msgs) commit TX commit
= Phase 1 PREPARE: check for successful completion, logging m
= Phase 2 COMMIT: commit/abort, release locks, ready Cohorts
prepare .
and other cleanups commit

= What happens if nodes unavailable, or report errors on prepare

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

Two-Phase Commit (2PC), cont.

= Excursus: Wedding Analogy
= Coordinator: marriage registrar
= Phase 1: Ask for willingness
= Phase 2: If all willing, declare marriage

#1 Problem: Many Messages
= 4(n-1) messages in successful case, otherwise additional msgs

#2 Problem: Blocking Protocol
» Local node PREPARE - FAILED =» TX is guaranteed to be aborted
= Local node PREPARE - READY = waiting for global response
= Failure of coordinator+cohort, or participating coordinator - outcome unknown

Other Problems
= Atomicity in heterogeneous systems w/o XA
= Deadlock detection, optimistic concurrency control, etc

Note: APIs for automatic
vs programmatic 2PC

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

Extended Distributed Commit Protocols

W

= 2PC Improvements
= Hierarchical Commit: establish message tree from coordinator to local nodes
=>» parallelization of message handling over inner nodes
= Presumed Abort: assume abort if there are no commit log entries
=» asynchronous logging of aborts, no ACK on abort

" 1PC (fewer messages) __Protocol _|_#Msgs__

= Combine TX operations w/ PREPARE to reduce 2(n-1) messages

* Local nodes enter waiting state earlier o
2PC 4(n-1
= 3PC (non-blocking) o o

= 3) CAN COMMIT? Yes/no

= b) PREPARE COMMIT? Ack

= ¢c) COMMIT? Ack

= Cohorts can collectively decide on commit if at least one in PREPARE-COMMIT

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

Replication Overview

T1

W

Replication
Transparency

= Replication
= Redundancy of stored fragments
= Availability/efficiency (read) vs

update overhead / storage Replication

= Replication Copy-Update
Techniques Strategies
A/A”\:/\Selgcted
ROWA ROWAA Predetermined Consensus
Primary Majority Dynamic Hierarchical
Copy Consensus Voting Quorum

Replication Techniques

1 /]

‘ logical

= ROWA
= Read-One/Write-All
= Read: good performance/availability
= Write: high overhead and

only successful if all available / / / / * logical

= ROWAA physical
= Read-One/Write-All-Available

= Relaxed availability requirement - -
for write operations J / x ‘/

,Update anywhere-anytime-anyway transactional replication

has unstable behavior as the workload scales up: a ten-fold ~ | [Jim Gray, Pat Helland, Patrick E. O'Neil,
increase in nodes and traffic gives a thousand fold increase
in deadlocks or reconciliations. Master copy replication
(primary copy) schemes reduce this problem.”

@) Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

physical

Dennis Shasha: The Dangers of Replication
and a Solution, SIGMOD 1996]

Replication Techniques, cont.

= Primary Copy
= Update single primary copy synchronously
Asynchronous propagation of updates to other replicates, read from all

Primary Copy SC, Secondary Copies
T1: writer,(x) ——— — Ko
async SC,

Pro: Higher update performance, good locality, and availability
Con: Potentially stale read on secondary copies (w/ and w/o locks)
Load balancing: place PC of different objects on different nodes

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

Replication Techniques, cont.

W

Consensus Protocols

= Basic idea: voting if read/write access is permissible (w.r.t. serializability) Overlap Rules:
= Each replicate has vote = all votes Q Q;+Q,>Q
= Read quorum Qg and write quorum Q, Q, >Q/2

#1 Majority Consensus
= Read requires Qz > Q/2, lock all and read newest replica
= Write requires Q,, > Q/2, lock and update all

#2 Dynamic Quorums
" Problem: network partitioning = retain vote for updated replica

#3 Hierarchical Quorums , ” & TEREED
= QObtain majority of nodes (here two) S 2 ZooKeeper
in multiple levels of the tree alslcl 70319

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

Asynchronous Messaging

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

Message Queueing

= Message IZ

= Atomic packet of data + meta data, wrapped as a message

<

= Message Queue
= FIFO or priority queue of messages

= |[n-memory, sometimes with persistent storage 4 D4
backend and transactional semantics ;’ %
= |nternal IDs, receive time
= Remote Message Queues
" Loose coupling of applications m\ _____ | /m
(no direct API calls, etc)
= |[ndependent of HW and OS I\c/lhe:rsmflile

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

Recap: Message Delivery Guarantees

= #1 At Most Once
= “Send and forget”, ensure data is never counted twice
= Might cause data loss on failures

= #2 At Least Once
= “Store and forward” or acknowledgements from receiver,
replay stream from a checkpoint on failures
= Might create incorrect state (processed multiple times)

= #3 Exactly Once
= “Store and forward” w/ guarantees regarding state updates and sent msgs
= Often via dedicated transaction mechanisms

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

BREAK and Test Yourself! ﬂs

= Assume a message-oriented middleware with a single FIFO message queue. Indicate, in the table
below, true (V') properties of the following three message delivery guarantees. [5 points]

_ At Most Once | At Least Once | Exactly Once

Requires Message Persistence

Requires Delivery TX Mechanism

Prevents Message Outrun ° °
Prevents Message Loss °
Prevents Message Double Delivery °

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

Example Systems

= IBM MOQSeries
= Message-oriented middleware for async queue communication

= Connections/objects: MQCONN, MQDISC, MQOPEN, MQCLOSE
= Queue ops: MQCRTMH, MQPUT, MQGET, MQSET, MQINQ, MQSTAT
®" Transactions: MQBEGIN, MQBACK, MQCMIT

= JMS (Java Message Service)
= J2EE API of messaging services in Java (messages, queues, sessions, etc)
= JMS providers: e.g., IBM Websphere MQ, Apache ActiveMQ, RabbitMQ,

= AWS Simple Queueing Service (SQS)
= Message queueing service for loose coupling of micro services
= Default queue: best effort order, at-least-once, high throughput
= FIFO: guarantees FIFO order, and exactly-once

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware

“NBIFOLD

[Gregor Hohpe, Bobby Woolf: Enterprise

Pa ra"el Message PfOCESSlng Integration Patterns, Addison-Wesley, 2004]

= #1 Pipeline Parallelism

Y Y =Y
= “Pipes and filters”: leverage pipeline parallelism m m u ﬂ m m

of chains of operators

» More complex w/ routing / control flow B m E
(possible via punctuations) < m u
= #2 Operator Parallelism = ﬂ ﬂ

= Multi-threaded execution of multiple messages within one operator
(pattern “competing consumers”)
= Requires robustness against partial out-of-order, or resequencing

APACHE

= #3 Key Range Partitioning
= Explicit routing to independent pipelines

Stream

»n u

(patterns “message router”, “content-based router”)
= QOrdering requirements only within each pipeline

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

Publish/Subscribe Architecture

= Overview
Publish-Subscribe

(Pub/Sub) Publisher 1 /\ m

M Subscriber 1

Publisher 2

Subscriber 4

= Key Characteristics
= Often imbalance between few publishers and many subscribers
= Topics: explicit or implicit (e.g., predicates) groups of messages to publish into or subscribe from
= Addition and deletion of subscribers rare compared to message load
= ECA (event condition action) evaluation model Alternative Exercise:

= Often at-least-once guarantee Streaming Full Text Search
[https://mboehm7.github.io/teaching/ws2425 dia/DIA 2024 Exercise.pdf]

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

https://mboehm7.github.io/teaching/ws2425_dia/DIA_2024_Exercise.pdf

Publish/Subscribe Architecture, cont.

= Subscriber Filtering
= Complex predicates of range filters, equi-predicates, and negation

= Goal: Avoid naive scan over all subscriber predicates / topics

= Matching Algorithm
= Matching event against a set of subscriptions
= Approach: sorting and
parallel search tree

Example Publish
{a;=1, a,=2, a;=3,
a,=1, a;=2}

1 /]

[Guruduth Banavar et al: An Efficient
Multicast Protocol for Content-Based
Publish-Subscribe Systems. ICDCS 1999]

al
2 a2
a3
a4

a5

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

ApaChe Kafka [https://kafka.apache.org/ APACHE
documentation] I(CIH(CL .
A distributed streaming platform

= Overview System Architecture Producers
= Publish & Subscribe system w/ partitioned topics App || Avp || App
= Storage of data streams in distributed, — \ / App
fault-tolerant cluster (replicated) Con Ke:;ka ‘/vStream
» Configurable retention periods (e.g., days) Sluster|« Processors
= APIs: producer API, consumer API, / v \ il
streams API, Connector API Aop | [Aep | | Aep
Consumers
= Topics Anatomy of a Topic
= Explicit categories w/ user-defined Parton | [+ 2fa|s]s[s|7]e[s] 1] ;
(semantic) partitioning - \
= Partitions are ordered, immutable ol e e 2 e e Htes
sequences of records (log) w/ offsets partion |31 T lalalalolale ol 1] /
= Current offset per consumer stored ; s -2-’N

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

https://kafka.apache.org/documentation
https://kafka.apache.org/documentation

Apache Kafka, cont.

= Netflix Delta
= A Data Synchronization
and Enrichment Platform
= DSL and UDF APIs for custom
filters and transformations

= Netflix Keystone
(Kafka frontend)
= ~500G events/day
(5M events/s peak)
= ~1.3PB/day

[https://medium.com/netflix-
techblog/evolution-of-the-netflix-data-
pipeline-da246ca36905]

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware

Delta-Connector
Mgsuml_

[https://medium.com/netflix-techblog/delta-
a-data-synchronization-and-enrichment-
platform-e82c36a79aee, Oct 15 2019]

@ Delta Application
—— §g kqfkq Source) | Filter [Transform) | Enrich 5| Sink
0. K D =
. . s evSthe Delta Stream s h Ind
Processing Framework earch Indexes
.cassaﬂ \
— 82 katka
Kevstone
________________ Cache
_, HTTP E i 83—~ @
é Proxy \ i Con‘tr{'n:Iane E /’ EMR
&% @ B

= T s _§€_’

Event
Producer

Consumer

Stream Consumers
(Spark, Mantis, Custom Apps)

Kafka

“NBIFOLD

https://medium.com/netflix-techblog/delta-a-data-synchronization-and-enrichment-platform-e82c36a79aee
https://medium.com/netflix-techblog/delta-a-data-synchronization-and-enrichment-platform-e82c36a79aee
https://medium.com/netflix-techblog/delta-a-data-synchronization-and-enrichment-platform-e82c36a79aee
https://medium.com/netflix-techblog/delta-a-data-synchronization-and-enrichment-platform-e82c36a79aee
https://medium.com/netflix-techblog/delta-a-data-synchronization-and-enrichment-platform-e82c36a79aee
https://medium.com/netflix-techblog/delta-a-data-synchronization-and-enrichment-platform-e82c36a79aee
https://medium.com/netflix-techblog/delta-a-data-synchronization-and-enrichment-platform-e82c36a79aee
https://medium.com/netflix-techblog/delta-a-data-synchronization-and-enrichment-platform-e82c36a79aee
https://medium.com/netflix-techblog/delta-a-data-synchronization-and-enrichment-platform-e82c36a79aee
https://medium.com/netflix-techblog/delta-a-data-synchronization-and-enrichment-platform-e82c36a79aee
https://medium.com/netflix-techblog/delta-a-data-synchronization-and-enrichment-platform-e82c36a79aee
https://medium.com/netflix-techblog/delta-a-data-synchronization-and-enrichment-platform-e82c36a79aee
https://medium.com/netflix-techblog/delta-a-data-synchronization-and-enrichment-platform-e82c36a79aee
https://medium.com/netflix-techblog/delta-a-data-synchronization-and-enrichment-platform-e82c36a79aee
https://medium.com/netflix-techblog/delta-a-data-synchronization-and-enrichment-platform-e82c36a79aee
https://medium.com/netflix-techblog/delta-a-data-synchronization-and-enrichment-platform-e82c36a79aee
https://medium.com/netflix-techblog/delta-a-data-synchronization-and-enrichment-platform-e82c36a79aee
https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905
https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905
https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905
https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905
https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905
https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905
https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905
https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905
https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905
https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905
https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905
https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905
https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905
https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905
https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905

Message-oriented Integration Platforms

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

Overview Message-oriented Integration Platforms

= Motivation
= |ntegration of many applications and systems via common IR
= Beware: syntactic vs semantic data models

= Evolving Names -—

= Enterprise Application Integration (EAI) | *
= Enterprise Service Bus (ESB)]
= Message Broker

= Example Systems
= |BM App Connect Enterprise (aka Integration Bus, aka Message Broker)
= MS Azure Integration Services + Service Bus (aka Biztalk Server)
= SAP Process Integration (aka Exchange Infrastructure)
= SQL AG TransConnect

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

Common System
Architecture

External
System

External
System

External
System

Modeling
(Flow Design)

whv

1 /]

SWIFT sync

s Inbound >
Adapter
—
HL/7 “L
async

Adapter

AN

Orchestration Engine

Message Flows

-@-

/

\

RDBMS
ma Outbound gg
Adapter

\ File a
Adapter

HL/7

SAP
Adapter

/

Scheduler

‘ Temporary Data Store |

Adapter

SAP
Adapter

External
System
External
System
External

—
System
External

-
System

—
—

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware

“NBIFOLD

Common System Architecture, cont.

= #1 Synchronous Message Processing
= Event: client input message
= Client system blocks until message flow executed to
output messages delivered to target systems

= #2 Asynchronous Message Processing
= Event: client input message from queue
= Client system blocks until input message stored in queue
= Asynchronous message flow processing and output message delivery (streaming)
= QOptional acknowledgement, when input message successfully processed

= #3 Scheduled Processing
= Event: time-based scheduled message flows (CronJobs)
= Periodic data replication and loading (e.g., ETL use cases)

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

Commercial Systems

Datenbanken Microservices Messaging PLM HL?, DICOM, Cloud
" LoT
= o = R a8 L
[IBM App Connect Enterprise:

https://www.ibm.com/support/ ol - [SQL AG: https://

knowledgecenter/en/SSTTDS _11.0.0/ N www.transconnect-
- - — B
com.ibm.etools.mft.doc/ab20551_.htm] Restia ol i online.de/]

‘Webservices

IBM App Connect Enterprise

IBM App Connect Enterprise | | 18m App Connect Enterprise fe—t control Web Azure Integration Services
web user interface Toolkit system Application
t ! R &5 o <07 =
Integration server 1) Customer submits 2) Message sent 3) Message arrival 4) Event triggers
External Application Shared library External order generates event logic app
= || E = {&)
Bl
Message flows Shared librany Event Grid ,/7 Log'c Ap
Static 5) Logic app _— ps
| libraries El El El retrieves _— ///L
HTTP (HES0gE _- 6) Logic app executes business process
ad mtllr;::trzlmn _— -
Integration node i 'L
Integration server CRM SAP
Application Shared library Connector Connector
Ex‘t;mq Sl E’ Ene{mal \ // \ //
system Message flows - syslem . . .
== Shared mary [https://azure.microsoft.com/mediahandler/files/
libraries
resourcefiles/azure-integration-services/

Azure-Integration-Services-Whitepaper-v1-0.pdf]

@D Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

Message Delivery Guarantees, cont.

Local ID Maintenance

= Example Remote ID Maintenance
Exactly-Once w/ TX capability
|n':t:leaq(;§:ir$]n Target System
BOT
/“* ~ —checkTiD— —
watl - ———execute lnteractionf_ﬁ_f‘_,_,
T —witeTD—
L. . —return Message -
\“\\‘_i_*'_’_*_‘*—'COmmit Interaction-—— .
- write
Message
- State
EOT
time time

[Credit: SQL AG - https://www.transconnect-online.de/]

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware

w/ TX capability
Integration
Platform Target System
BOT o
check TID
| .
,/'//7-/7/_7
x -~ —execute Interaction - &l
~wiite TID
-
| IA— ____return Message-— |
_\"“\1*_7_'7_*‘*Comml't Interaction —
——_ write
Message
- State
EOT

time W/O TX capa blllty time
at-least-once

“NBIFOLD

Recap: XML (Extensible Markup Language)

1 /]

= XML Data Model <?xml version=“1.0“ encoding=“UTF-8“?>
. - dat
= Meta language to define specific exchange formats < 3s::dent id=1”>
= Document format for semi-structured data <course id=“INF.01014UF” name=“Databases”/>
= Well formedness <course id=“706.550” name=“AMLS”/>
</student>
= XML schema / DTD <student id=*“5">
<course id=7“706.004” name=“Databases 1”/>
= XPath (XML Path Language) </student>
= Query language for </data>
accessing collections of nodes of an XML document .
: g. - /data/student[@id=“1’]/course/@name
= Axis specifies for ancestors, descendants, siblings, etc l
= XSLT (XML Stylesheet Language Transformations) . .,
= Schema mapping (transformation) language for XML documents Da‘:c:MbLaSs”es

XQuery
= Query language to extract, transform, and analyze XML documents

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

XSLT in Integration Platforms

" Problem
= XML often used as external and internal data representation
= Different schemas (message types) =2 requires mapping

= XSLT Overview
= XSLT processor transforms input XML document
according to XML stylesheet to output XML documents
= Subtree specifications via XPath, loops, branches,
built-in functions for text processing, etc i XSLT
= Streaming: STX or XSLT 3.0 streaming , Processor
= CSV and JSON input/output possible

= Note: Similar tools/libraries for JSON

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

XSLT Example

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="2.0“ xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<xsl:element name=“suppliers">
<xsl:for-each select="/resultsets/resultset[@Tablename="Supplier']/row">
<xsl:element name=“supplier">

<xsl:attribute name=“ID"><xsl:value-of select="Suppkey"/></xsl:attribute>
<xsl:element name="Name"><xsl:value-of select="SuppName"/></xsl:element>
<xsl:element name="Address"><xsl:value-of select="SuppAddress"/></xsl:element>

</xsl:element>
</xsl:for-each>
</xsl:element> <resultssets> l
</xsl:template> <resultset Tablename=“Supplier”> i
</xsl:stylesheet> = SUpP <suppliers>
<row> » <supplier ID=“7">
<Suppkey>7</Suppkey> <Name>MB</Name>
<SuppName>MB</Suppname> <Address>1035 Coleman Rd</Address>
<SuppAddress>1035 Coleman Rd</SuppAddress> </supplier>
</row> <supplier> .. </supplier>
<row> .. </row> <suppliers>
</resultset>
</resultsets>

“NBIFOLD

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware

Summary and Q&A

= Distributed TX & Replication Techniques
= Distributed commit protocols
= Different replication techniques

= Message-oriented Middleware Macrf’swp'c
: View
= Asynchronous Messaging
(message queueing, publish/subscribe)
= Message-oriented Integration Platforms
(system architecture, systems, transformations)

= Next Lectures (Data Integration Architectures)
= 04 Schema Matching and Mapping [Nov 06]
= 05 Entity Linking and Deduplication [Nov 13] Micr?scopic
= 06 Data Cleaning and Data Fusion [Nov 20] View
= (07 Data Provenance and Catalogs [Nov 27]

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

