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Announcements / Administrative Items

= #1 Video Recording
= Hybrid lectures: in-person BH-N 243, zoom live streaming, video recording zoom
" https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SCI9BOU10cFdmem9zT202UT09

= }#2 Project Selection
= Binding project/exercise selection by Oct 31

= Via the following form (so far 34): v

https://tinyurl.com/aytk6bw6

@ SystemDS Project
@ Alternative Exercise
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Agenda

Motivation and Terminology

Distributed TX & Replication Techniques

Asynchronous Messaging

Message-oriented Integration Platforms
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Motivation and Terminology
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Recap: Information System Pyramid

DSS
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I?tegraE'Ell_E)n Systems
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Analytlcal Systems

“1 i1 Material

‘ ) Operational Systems
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Horizontal Integration (e.g., EAI)

Lecture 03 (today)
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mitters missus message
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Messaging LATIN LATIN OLD FRENCH l E

[Credit: https://www.gstatic.com/
= Def: Message onebox/dictionary/etymology]

= Piece of information in certain structure

= Send from source (transmitter) over channel to destination (receiver)

= Syntax: different message formats (binary, text, XML, JSON, Protobuf)

= Semantic: different domain-specific message schemas (aka data models)

= Synchronous Messaging n

= Strict consistency requirements n<v
= Qverhead for distributed transactions via 2PC n

= Low local autonomy, usually data-driven

= Asynchronous Messaging
= Loose coupling, eventual consistency requirements

= Batching for efficient replication and updates
= Latency of update propagation
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Types of Data Formats

General-Purpose Formats
= CLI/API access to DBs, KV-stores, doc-stores, time series DBs, etc
= CSV (comma separated values)
= JSON (javascript object notation), XML, Protobuf

%aMatrixMarket matrix coordinate real general

O .
= Sparse Matrix Formats o S

= Matrix market: text UV (row, col, value) . 1 oooeson

= Libsvm: text compressed sparse rows 22 oo

= Scientific formats: NetCDF, HDF5 1 ; ggggs:gg

4 4 —é.899e+92

4 5 3.332e+01

= Large-Scale Data Formats 55 1.200e+01

= ORC, Parquet (column-oriented file formats)
= Arrow (cross-platform columnar in-memory data)

= Domain-specific Formats: often binary, structured text, XML

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 03 Replication and Message-oriented Middleware \‘ BI FOLD




Example Domain-specific Message Formats ﬂs

= Finance: SWIFT “’w& . & @@
= Society for Worldwide Interbank Financial Telecommunication
= >10,000 orgs (banks, stock exchanges, brokers and traders) - jﬁ,,
= Network and message formats for financial messaging .“& E E a@u
= MT and MX (XML, ISO 20022) messages ORET oo oo

it .//h dl.
= Health Care: HL/7, DICOM [https://ihodl.com]

= Health Level 7 (HL7) messages for clinical/admin data exchange (v2.x structured text msgs, v3 XML-based msgs)
= Digital Imaging and Communications in Medicine (DICOM)

= Automotive: ATF, VIDF
= Association for Standardisation of Automation and Measuring Systems (ASAM)
= E.g., Open Transport Data Format (ATF), Measurement Data Format (MDF), calibrations (CDF),
auto-lead XML (ADF), open platform communications (OPC)

=» Sometimes Large-scale analytics over histories of messages (e.g., health care analytics,
fraud detection, money laundering)
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Types of Message-Oriented Middleware

#1 Distributed TXs & Replication

#2 Message Queueing
= Persistent message queues with well-defined delivery semantics
= Loose coupling of connected systems or services (e.g., availability)

#3 Publish Subscribe
= Large number of subscribers to messages of certain topics/predicates
= Published messages forwarded to qualifying subscriptions

= #4 Integration Platforms
* |nbound/outbound adapters for external systems
= Sync and async messaging, message transformations, enrichment
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Distributed TX & Replication Techniques
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Distributed Database Systems

= Distributed DBS
= Distributed database: Virtual (logical) database
that appears like a local database but consists
of multiple physical databases
= Multiple local DBMS, components for global query processing
= Terminology: virtual DBS (homogeneous), federated DBS (heterogeneous)

= Challenges
= Tradeoffs: Transparency — autonomy, consistency — efficiency/fault tolerance
= #1 Global view and query language = schema architecture
= #2 Distribution transparency - global catalog Beware: Meaning
= #3 Distribution of data = data partitioning of “Transparency”
= #4 Global queries > distributed join operators, etc (invisibility) here
= #5 Concurrent transactions = 2PC
= #6 Consistency of copies = replication
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Two-Phase Commit (2PC)

= Recap: Database Transaction
= A transaction (TX) is a series of steps that brings a database from
a consistent state into another (not necessarily different) consistent state
= ACID properties (atomicity, consistency, isolation, durability)

= Problems in Distributed DBS

= Node failures, and communication failures (e.g., network partitioning) Global
=» Distributed TX processing to ensure consistent view Coordinatorl TX
(atomicity/durability) ready ready
prepare TX TX prepare
= Two-Phase Commit (via 4*(n-1) msgs) commit TX commit
= Phase 1 PREPARE: check for successful completion, logging m
= Phase 2 COMMIT: commit/abort, release locks, ready Cohorts
prepare .
and other cleanups commit

= What happens if nodes unavailable, or report errors on prepare
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Two-Phase Commit (2PC), cont.

= Excursus: Wedding Analogy
= Coordinator: marriage registrar
= Phase 1: Ask for willingness
= Phase 2: If all willing, declare marriage

#1 Problem: Many Messages
= 4(n-1) messages in successful case, otherwise additional msgs

#2 Problem: Blocking Protocol
» Local node PREPARE - FAILED =» TX is guaranteed to be aborted
= Local node PREPARE - READY = waiting for global response
= Failure of coordinator+cohort, or participating coordinator - outcome unknown

Other Problems
= Atomicity in heterogeneous systems w/o XA
= Deadlock detection, optimistic concurrency control, etc

Note: APIs for automatic
vs programmatic 2PC
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Extended Distributed Commit Protocols

W

= 2PC Improvements
= Hierarchical Commit: establish message tree from coordinator to local nodes
=>» parallelization of message handling over inner nodes
= Presumed Abort: assume abort if there are no commit log entries
=» asynchronous logging of aborts, no ACK on abort

" 1PC (fewer messages) __Protocol _|_#Msgs__

= Combine TX operations w/ PREPARE to reduce 2(n-1) messages

* Local nodes enter waiting state earlier o
2PC 4(n-1
= 3PC (non-blocking) o o

= 3) CAN COMMIT? Yes/no

= b) PREPARE COMMIT? Ack

= ¢c) COMMIT? Ack

= Cohorts can collectively decide on commit if at least one in PREPARE-COMMIT
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Replication Overview

T1

W

Replication
Transparency

= Replication
= Redundancy of stored fragments
= Availability/efficiency (read) vs

update overhead / storage Replication

= Replication Copy-Update
Techniques Strategies
A/A”\:/\Selgcted
ROWA ROWAA Predetermined Consensus
Primary Majority Dynamic Hierarchical
Copy Consensus Voting Quorum



Replication Techniques

1 /]

‘ logical

= ROWA
= Read-One/Write-All
= Read: good performance/availability
= Write: high overhead and

only successful if all available / / / / * logical

= ROWAA physical
= Read-One/Write-All-Available

= Relaxed availability requirement - -
for write operations J / x ‘/

,Update anywhere-anytime-anyway transactional replication

has unstable behavior as the workload scales up: a ten-fold ~ | [Jim Gray, Pat Helland, Patrick E. O'Neil,
increase in nodes and traffic gives a thousand fold increase
in deadlocks or reconciliations. Master copy replication
(primary copy) schemes reduce this problem.”
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Replication Techniques, cont.

= Primary Copy
= Update single primary copy synchronously
Asynchronous propagation of updates to other replicates, read from all

Primary Copy SC, Secondary Copies
T1: writer,(x) ——— — Ko
async SC,

Pro: Higher update performance, good locality, and availability
Con: Potentially stale read on secondary copies (w/ and w/o locks)
Load balancing: place PC of different objects on different nodes
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Replication Techniques, cont.

W

Consensus Protocols

= Basic idea: voting if read/write access is permissible (w.r.t. serializability) Overlap Rules:
= Each replicate has vote = all votes Q Q;+Q,>Q
= Read quorum Qg and write quorum Q, Q, >Q/2

#1 Majority Consensus
= Read requires Qz > Q/2, lock all and read newest replica
= Write requires Q,, > Q/2, lock and update all

#2 Dynamic Quorums
" Problem: network partitioning = retain vote for updated replica

#3 Hierarchical Quorums , ” & TEREED
= QObtain majority of nodes (here two) S 2 ZooKeeper
in multiple levels of the tree alslcl 70319
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Asynchronous Messaging
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Message Queueing

= Message IZ

= Atomic packet of data + meta data, wrapped as a message

<

= Message Queue
= FIFO or priority queue of messages

= |[n-memory, sometimes with persistent storage 4 D4
backend and transactional semantics ;’ %
= |nternal IDs, receive time
= Remote Message Queues
" Loose coupling of applications m\ _____ | /m
(no direct API calls, etc)
= |[ndependent of HW and OS I\c/lhe:rsmflile
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Recap: Message Delivery Guarantees

= #1 At Most Once
= “Send and forget”, ensure data is never counted twice
= Might cause data loss on failures

= #2 At Least Once
= “Store and forward” or acknowledgements from receiver,
replay stream from a checkpoint on failures
= Might create incorrect state (processed multiple times)

= #3 Exactly Once
= “Store and forward” w/ guarantees regarding state updates and sent msgs
= Often via dedicated transaction mechanisms
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BREAK and Test Yourself! ﬂs

= Assume a message-oriented middleware with a single FIFO message queue. Indicate, in the table
below, true (V') properties of the following three message delivery guarantees. [5 points]

_ At Most Once | At Least Once | Exactly Once

Requires Message Persistence

Requires Delivery TX Mechanism

Prevents Message Outrun ° °
Prevents Message Loss °
Prevents Message Double Delivery °
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Example Systems

= IBM MOQSeries
= Message-oriented middleware for async queue communication

= Connections/objects: MQCONN, MQDISC, MQOPEN, MQCLOSE
= Queue ops: MQCRTMH, MQPUT, MQGET, MQSET, MQINQ, MQSTAT
®" Transactions: MQBEGIN, MQBACK, MQCMIT

= JMS (Java Message Service)
= J2EE API of messaging services in Java (messages, queues, sessions, etc)
= JMS providers: e.g., IBM Websphere MQ, Apache ActiveMQ, RabbitMQ,

= AWS Simple Queueing Service (SQS)
= Message queueing service for loose coupling of micro services
= Default queue: best effort order, at-least-once, high throughput
= FIFO: guarantees FIFO order, and exactly-once
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[Gregor Hohpe, Bobby Woolf: Enterprise

Pa ra"el Message PfOCESSlng Integration Patterns, Addison-Wesley, 2004]

= #1 Pipeline Parallelism

Y Y =Y
= “Pipes and filters”: leverage pipeline parallelism m m u ﬂ m m

of chains of operators

» More complex w/ routing / control flow B m E
(possible via punctuations) < m u
= #2 Operator Parallelism = ﬂ ﬂ

= Multi-threaded execution of multiple messages within one operator
(pattern “competing consumers”)
= Requires robustness against partial out-of-order, or resequencing

APACHE

= #3 Key Range Partitioning
= Explicit routing to independent pipelines

Stream

»n u

(patterns “message router”, “content-based router”)
= QOrdering requirements only within each pipeline
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Publish/Subscribe Architecture

= Overview
Publish-Subscribe

(Pub/Sub) Publisher 1 /\ m

M Subscriber 1

Publisher 2

Subscriber 4

= Key Characteristics
= Often imbalance between few publishers and many subscribers
= Topics: explicit or implicit (e.g., predicates) groups of messages to publish into or subscribe from
= Addition and deletion of subscribers rare compared to message load
= ECA (event condition action) evaluation model Alternative Exercise:

= Often at-least-once guarantee Streaming Full Text Search
[https://mboehm7.github.io/teaching/ws2425 dia/DIA 2024 Exercise.pdf]
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Publish/Subscribe Architecture, cont.

= Subscriber Filtering
= Complex predicates of range filters, equi-predicates, and negation

= Goal: Avoid naive scan over all subscriber predicates / topics

= Matching Algorithm
= Matching event against a set of subscriptions
= Approach: sorting and
parallel search tree

Example Publish
{a;=1, a,=2, a;=3,
a,=1, a;=2}

1 /]

[Guruduth Banavar et al: An Efficient
Multicast Protocol for Content-Based
Publish-Subscribe Systems. ICDCS 1999]

al
2 a2
a3
a4

a5
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ApaChe Kafka [https://kafka.apache.org/ APACHE
documentation] I(CIH(CL .
A distributed streaming platform

= Overview System Architecture Producers
= Publish & Subscribe system w/ partitioned topics App || Avp || App
= Storage of data streams in distributed, — \ / App
fault-tolerant cluster (replicated) Con Ke:;ka ‘/vStream
» Configurable retention periods (e.g., days) Sluster|« Processors
= APIs: producer API, consumer API, / v \ il
streams API, Connector API Aop | [ Aep | | Aep
Consumers
= Topics Anatomy of a Topic
= Explicit categories w/ user-defined Parton | [+ 2fa|s]s[s|7]e[s] 1] ;
(semantic) partitioning - \
= Partitions are ordered, immutable ol e e 2 e e Htes
sequences of records (log) w/ offsets partion |31 T lalalalolale ol 1] /
= Current offset per consumer stored ; s -2-’N
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Apache Kafka, cont.

= Netflix Delta
= A Data Synchronization
and Enrichment Platform
= DSL and UDF APIs for custom
filters and transformations

= Netflix Keystone
(Kafka frontend)
= ~500G events/day
(5M events/s peak)
= ~1.3PB/day

[https://medium.com/netflix-
techblog/evolution-of-the-netflix-data-
pipeline-da246ca36905]
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Delta-Connector
Mgsuml_

[https://medium.com/netflix-techblog/delta-
a-data-synchronization-and-enrichment-
platform-e82c36a79aee, Oct 15 2019]

@ Delta Application
—— §g kqfkq Source ) | Filter  [Transform) | Enrich 5| Sink
0. K D =
. . s evSthe Delta Stream s h Ind
Processing Framework earch Indexes
.cassaﬂ \
— 82 katka
Kevstone
________________ Cache
_, HTTP E i 83—~ @
é Proxy \ i Con‘tr{'n:Iane E /’ EMR
&% @ B

= T s \_§€_’

Event
Producer

_________________

Consumer

Stream Consumers
(Spark, Mantis, Custom Apps)

Kafka
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Message-oriented Integration Platforms
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Overview Message-oriented Integration Platforms

= Motivation
= |ntegration of many applications and systems via common IR
= Beware: syntactic vs semantic data models

= Evolving Names -—

= Enterprise Application Integration (EAI) | *
= Enterprise Service Bus (ESB) ]
= Message Broker

= Example Systems
= |BM App Connect Enterprise (aka Integration Bus, aka Message Broker)
= MS Azure Integration Services + Service Bus (aka Biztalk Server)
= SAP Process Integration (aka Exchange Infrastructure)
= SQL AG TransConnect
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Common System
Architecture

External
System

External
System

External
System

Modeling
(Flow Design)

whv

1 /]
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s Inbound >
Adapter
—
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async
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/

\
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ma Outbound gg
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\ File a
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SAP
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‘ Temporary Data Store |
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SAP
Adapter
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—
—
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Common System Architecture, cont.

= #1 Synchronous Message Processing
= Event: client input message
= Client system blocks until message flow executed to
output messages delivered to target systems

= #2 Asynchronous Message Processing
= Event: client input message from queue
= Client system blocks until input message stored in queue
= Asynchronous message flow processing and output message delivery (streaming)
= QOptional acknowledgement, when input message successfully processed

= #3 Scheduled Processing
= Event: time-based scheduled message flows (CronJobs)
= Periodic data replication and loading (e.g., ETL use cases)
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Commercial Systems

Datenbanken Microservices Messaging PLM HL?, DICOM, Cloud
" LoT
= o = R a8 L
[IBM App Connect Enterprise:

https://www.ibm.com/support/ ol - [SQL AG: https://

knowledgecenter/en/SSTTDS _11.0.0/ N www.transconnect-
- - — B
com.ibm.etools.mft.doc/ab20551_.htm] Restia ol i online.de/]

‘Webservices

IBM App Connect Enterprise

IBM App Connect Enterprise | | 18m App Connect Enterprise fe—t  control Web Azure Integration Services
web user interface Toolkit system Application
t ! R &5 o <07 =
Integration server 1) Customer submits 2) Message sent 3) Message arrival 4) Event triggers
External Application Shared library External order generates event logic app
= || E = {&)
Bl
Message flows Shared librany Event Grid ,/7 Log'c Ap
Static 5) Logic app _— ps
| libraries El El El retrieves _— ///L
HTTP (HES0gE \_- 6) Logic app executes business process
ad mtllr;::trzlmn _— -
Integration node i 'L
Integration server CRM SAP
Application Shared library Connector Connector
Ex‘t;mq Sl E’ Ene{mal \ // \ //
system Message flows - syslem . . .
== Shared mary [https://azure.microsoft.com/mediahandler/files/
libraries . . . .
resourcefiles/azure-integration-services/

Azure-Integration-Services-Whitepaper-v1-0.pdf]
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Message Delivery Guarantees, cont.

Local ID Maintenance

= Example Remote ID Maintenance
Exactly-Once w/ TX capability
|n':t:leaq(;§:ir$]n Target System
BOT
/“* ~ —checkTiD— —
watl - ———execute lnteractionf_ﬁ_f‘_,_,
T —witeTD—
L. . —return Message -
\“\\‘_i_*'_’_*_‘*—'COmmit Interaction-—— .
- write
Message
- State
EOT
time time

[Credit: SQL AG - https://www.transconnect-online.de/]
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w/ TX capability
Integration
Platform Target System
BOT o
check TID
| .
,/'//7-/7/_7
x -~ —execute Interaction - &l
~wiite TID
-
| IA— ____return Message-— |
_\"“\1*_7_'7_*‘*Comml't Interaction —
——_ write
Message
- State
EOT

time W/O TX capa blllty time
at-least-once
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Recap: XML (Extensible Markup Language)

1 /]

= XML Data Model <?xml version=“1.0“ encoding=“UTF-8“?>
. - dat
= Meta language to define specific exchange formats < 3s::dent id=1”>
= Document format for semi-structured data <course id=“INF.01014UF” name=“Databases”/>
= Well formedness <course id=“706.550” name=“AMLS”/>
</student>
= XML schema / DTD <student id=*“5">
<course id=7“706.004” name=“Databases 1”/>
= XPath (XML Path Language) </student>
= Query language for </data>
accessing collections of nodes of an XML document .
: g. - /data/student[@id=“1’]/course/@name
= Axis specifies for ancestors, descendants, siblings, etc l
= XSLT (XML Stylesheet Language Transformations) . .,
= Schema mapping (transformation) language for XML documents Da‘:c:MbLaSs”es

XQuery
= Query language to extract, transform, and analyze XML documents
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XSLT in Integration Platforms

" Problem
= XML often used as external and internal data representation
= Different schemas (message types) =2 requires mapping

= XSLT Overview
= XSLT processor transforms input XML document
according to XML stylesheet to output XML documents
= Subtree specifications via XPath, loops, branches,
built-in functions for text processing, etc i XSLT
= Streaming: STX or XSLT 3.0 streaming , Processor
= CSV and JSON input/output possible

= Note: Similar tools/libraries for JSON
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XSLT Example

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="2.0“ xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<xsl:element name=“suppliers">
<xsl:for-each select="/resultsets/resultset[@Tablename="Supplier']/row">
<xsl:element name=“supplier">

<xsl:attribute name=“ID"><xsl:value-of select="Suppkey"/></xsl:attribute>
<xsl:element name="Name"><xsl:value-of select="SuppName"/></xsl:element>
<xsl:element name="Address"><xsl:value-of select="SuppAddress"/></xsl:element>

</xsl:element>
</xsl:for-each>
</xsl:element> <resultssets> l
</xsl:template> <resultset Tablename=“Supplier”> i
</xsl:stylesheet> = SUpP <suppliers>
<row> » <supplier ID=“7">
<Suppkey>7</Suppkey> <Name>MB</Name>
<SuppName>MB</Suppname> <Address>1035 Coleman Rd</Address>
<SuppAddress>1035 Coleman Rd</SuppAddress> </supplier>
</row> <supplier> .. </supplier>
<row> .. </row> <suppliers>
</resultset>
</resultsets>
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Summary and Q&A

= Distributed TX & Replication Techniques
= Distributed commit protocols
= Different replication techniques

= Message-oriented Middleware Macrf’swp'c
: View
= Asynchronous Messaging
(message queueing, publish/subscribe)
= Message-oriented Integration Platforms
(system architecture, systems, transformations)

= Next Lectures (Data Integration Architectures)
= 04 Schema Matching and Mapping [Nov 06]
= 05 Entity Linking and Deduplication [Nov 13] Micr?scopic
= 06 Data Cleaning and Data Fusion [Nov 20] View
= (07 Data Provenance and Catalogs [Nov 27]
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