TECHNISCHE
. UNIVERSITAT
BERLIN

Data Integration and Large-scale Analysis (DIA)
10 Distributed Storage

Prof. Dr. Matthias Boehm

Technische Universitat Berlin
Berlin Institute for the Foundations of Learning and Data

Big Data Engineering (DAMS Lab)

AN BIFOLD

Last update: Dec 18, 2025

Announcements / Administrative Items

= #1 Video Recording
= Hybrid lectures: in-person BH-N 243, zoom live streaming, video recording zoom
" https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SCI9BOU10cFdmem9zT202UT09

= #2 Exercises/Projects
= Reminder: exercise/project submissions by Jan 30 (no extensions)
= Make use of virtual / in-person (FR-766) office hours Wed 5pm-6pm
= Docker Setup: https://isis.tu-berlin.de/mod/forum/discuss.php?d=704892

= #3 Course Evaluation
= By default, only mandatory courses and guest lecturers; but optional evaluation
= Joint exercise/lecture evaluation Jan 12 — 23

n Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FOLD

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://isis.tu-berlin.de/mod/forum/discuss.php?d=704892
https://isis.tu-berlin.de/mod/forum/discuss.php?d=704892
https://isis.tu-berlin.de/mod/forum/discuss.php?d=704892
https://isis.tu-berlin.de/mod/forum/discuss.php?d=704892

Course Outline Part B:
Large-Scale Data Management and Analysis

Compute/
Storage

Infra

12 Distributed Stream 13 Distributed Machine
Processing Learning Systems

11 Distributed Data-Parallel Computation

10 Distributed Data Storage

08 Cloud Computing Fundamentals

09 Cloud Resource Management and Scheduling

@ vatthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage

“NBIFOLD

Agenda

= Motivation and Terminology
= Object Stores and Distributed File Systems
= Key-Value Stores and Cloud DBMS

n Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FO LD

Motivation and Terminology

@ Vatthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FOLD

Overview Distributed Data Storage

Global

= Recap: Distributed DBS (03 Replication, MoM, and EAI)
= Distributed DB: Virtual (logical) DB, appears like a
local DB but consists of multiple physical DBs

= Components for global query processing
= Virtual DBS (homo.) vs federated DBS (hetero.)

= Cloud and Distributed Data Storage
= Motivation: size (large-scale), semi-structured/nested, fault tolerance

= #1 Cloud and Distributed Storage
= Block storage: files split into blocks, read/write (e.g., SAN, AWS EBS)
= Object storage: objects of limited size (e.g., 5TB), get/put (e.g., AWS S3)
= Distributed file systems: file system on block/object stores (NFS, HDFS)

= H2 Database as a Service
= NoSQL stores: Key-value stores, document stores
= Cloud DBMSs (SQL, for OLTP and OLAP workloads)

ﬂ Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FOLD

Central Data Abstractions

W

= #1 Files and Objects
= File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)

= Object: binary large object, with certain meta data
=

= #2 Distributed Collections 4 Delta
= Logical multi-set (bag) of key-value pairs 2 Bravo
(unsorted collection) 1 Alfa
= Different physical representations i
s . 3 Charlie
= Easy distribution of pairs
via horizontal partitioning > Echo
(aka shards, partitions) 6 Foxtrot
= Can be created from single file, 7 Golf
or directory of files (unsorted)
1 Alfa

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FOLD

Data Lakes

= Concept “Data Lake”
= Store massive amounts of un/semi-structured, and structured data (append only, no update in place)
= No need for architected schema or upfront costs (unknown analysis)
= Typically: file storage in open, raw formats (inputs and intermediates)
=>» Distributed storage and analytics for scalability and agility

= Criticism: Data Swamp
= Low data quality (lack of schema,
integrity constraints, validation)
= Missing meta data (context) and
data catalog for search
=» Requires proper data curation / tools
According to priorities (data governance)

DATA LAKE DATA SWAMP

[Credit: www.collibra.com]

n Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FOLD

http://www.collibra.com/

Recap FAIR Data Principles

Catalogs of Data and Artefacts
(see 07 Data Provenance) .

= Data Catalogs [Alon Y. Halevy et al: Goods: Organizing
= Data curation in repositories for finding datasets in data lakes Google's Datasets. SIGMOD 2016]
" Metadata and provenance [Dan Brickley, Matthew Burgess, Natasha
= Augment data with open and linked data sources F. Noy: Google Dataset Search: Building a

search engine for datasets in an open

= Examples Web ecosystem. WWW 2019]
[Omar Benjelloun, Shiyu Chen, Natasha Noy:
SAP Data Hub Google Dataset Search Google Dataset Search by the Numbers,

Dataset Organizing Tools https://arxiv.org/pdf/2006.06894]

Provenance

i | Search | | Dashboards | Visualization Annotation
"""""""""""""""""""""""""""""""""""" Category Number % of Sample formats
of datasets total
A Tables 7.822K 37% CSsV, XLS
Structured 6.312K 30% JSON, XML, OWL, RDF
Documents 2.27T7K 11% PDF, DOC, HTML
Dataset Catalog Images 1,027K 5% JPEG, PNG, TIFF
Metadata Additional Sources of Metadata Archives 659K 3% ZIP, TAR, RAR
Path/ldentifier - = [’ Text 623K 3% TXT, ASCII
Size | Pr Schi - Source code repository -) N) e =
- User and group membership database Geospatial 376K 2% SHP, GEOJSON, KML
Ibigtable/foo/bar 100G | written_by: job_A proto:foo. Bar - Team and project database Computational biology 110K <1% SBML, BIOPAX2, SBGN
fgfsinluffoo 106G read_by: job_B, proto:nlu.Schema i g::;z{ltaer:?g;ﬁsz;?tﬂ:rsns through Audio 27K <1% WAV, MP3, OGG
written_by: job_C GOODS API Video 9K <1% AVI, MPG
Presentations 7K <1% PPTX
Medical imaging 4K <1% NII, DCM

Other categories 2.245K 11%
[SAP Sapphire Now 2019] o | [rwsman] "_" 500K > 30M datasets

“NBIFOLD

@ Vatthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage

https://arxiv.org/pdf/2006.06894

Open Table Formats (File Format + Metadata)

[Dipankar Mazumdar, Kyle Weller: Apache XTable gom

= Open Table Formats (incubating): Interoperability Among Lakehouse FEoai
= Data in open formats (e.g., parquet, orc, avro) Table Formats Databricks, Data Al Summit 2024. [ESEEe
. https://youtu.be/T-ee0xdJ7yM?list=PLTPXxbhUt- k&
= Meta data (e.g., schema, transaction logs) YW185605WNulSIxoF24S UB]

= Examples: Hudi (Uber, 2017),
Iceberg (Netflix/Snowflake, 2018), Delta Lake (Databricks, 2019) = and unfortunately diverging

= Apache XTable (A‘Hﬁha| A DELTA LAKE |CEBERG u

= Cross-table converter
for table formats s3_bucket/my_table/ s3_bucket/my_table/
(lightweight: meta data only) i - 222232;25"“”“‘”]

= Community contributions by
Microsoft, Google,
Snowflake, Databricks

= https://github.com/apache/
incubator-xtable

s3_bucket/my_table/
[-
|- vl.metadata.json
| - snap-9fal-2-16c3.avro
| - 8d9a-98fa-77.avro

|- 000000.json

| | i
| |' '
= | - | -
= | | -
| |

© W G

Arure Data Lake Storage

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FOLD

https://github.com/apache/incubator-xtable
https://github.com/apache/incubator-xtable
https://github.com/apache/incubator-xtable
https://github.com/apache/incubator-xtable
https://github.com/apache/incubator-xtable
https://youtu.be/T-ee0xdJ7yM?list=PLTPXxbhUt-YW18S6p5wNu1SJxoF24S_UB
https://youtu.be/T-ee0xdJ7yM?list=PLTPXxbhUt-YW18S6p5wNu1SJxoF24S_UB
https://youtu.be/T-ee0xdJ7yM?list=PLTPXxbhUt-YW18S6p5wNu1SJxoF24S_UB
https://youtu.be/T-ee0xdJ7yM?list=PLTPXxbhUt-YW18S6p5wNu1SJxoF24S_UB
https://youtu.be/T-ee0xdJ7yM?list=PLTPXxbhUt-YW18S6p5wNu1SJxoF24S_UB

Excursus: Research Data Management (RDM)

1 /]

= Overview
= Ensure reproducibility of research results and conclusions “All code and data was on the
= Common problem: student’s laptop and the student
= Create value for others (compare, reuse, understand, extend) left / the laptop crashed.”

= EU Projects: Mandatory proposal section & deliverable on RDM plan

= RDM @ TU Graz “Ensure that research data, code and any other materials needed
= TU Graz RDM Policy since 12/2019, to reproduce research findings are appropriately documented,
stored and shared in a research data repository in accordance
with the FAIR principles (Findable, Accessible, Interoperable and
Reusable) for at least 10 years from the end of the research

as well as faculty-specific RDM policies
= https://www.tugraz.at/sites/rdm/home/

. roject, unless there are valid reasons not to do so. [...] Develo
= RDM @ TU Berlin project, u .. P
_ . _ a written data management strategy for managing research
= TU Berlin RDM Policy since 10/2019 outputs within the first 12 months of the PhD study [...].”

= https://www.tu.berlin/en/ub/szf/information-tips/
what-is-research-data-management

“The minimum storage period for research data

is ten years after either the assignment of a
= https://www.static.tu.berlin/fileadmin/www/10000000/ persistent identifier or the publication of the
Arbeiten/Wichtige Dokumente/RDM-Policy TUBerlin 2023 en.pdf related work following research project
completion, whichever is later.”

https://www.tugraz.at/sites/rdm/home/
https://www.tugraz.at/sites/rdm/home/
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.static.tu.berlin/fileadmin/www/10000000/Arbeiten/Wichtige_Dokumente/RDM-Policy_TUBerlin_2023_en.pdf
https://www.static.tu.berlin/fileadmin/www/10000000/Arbeiten/Wichtige_Dokumente/RDM-Policy_TUBerlin_2023_en.pdf
https://www.static.tu.berlin/fileadmin/www/10000000/Arbeiten/Wichtige_Dokumente/RDM-Policy_TUBerlin_2023_en.pdf
https://www.static.tu.berlin/fileadmin/www/10000000/Arbeiten/Wichtige_Dokumente/RDM-Policy_TUBerlin_2023_en.pdf
https://www.static.tu.berlin/fileadmin/www/10000000/Arbeiten/Wichtige_Dokumente/RDM-Policy_TUBerlin_2023_en.pdf
https://www.static.tu.berlin/fileadmin/www/10000000/Arbeiten/Wichtige_Dokumente/RDM-Policy_TUBerlin_2023_en.pdf

FAIR Data Principles ! : HEAIR

[https://www.go-fair.org/fair-principles/]

W

#1 Findable
= Metadata and data have globally unique persistent identifiers
= Data describes w/ rich meta data; registered/indexes and searchable

#2 Accessible
= Metadata and data retrievable via open, free and universal communication protocols
= Metadata accessible even when data no longer available

#3 Interoperable
= Metadata and data use a formal, accessible, and broadly applicable format
= Metadata and data use FAIR vocabularies and qualified references

#4 Reusable
= Metadata and data described with plurality of accurate and relevant attributes
= (Clear license, associated with provenance, meets community standards

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI Fo LD

https://www.go-fair.org/fair-principles/
https://www.go-fair.org/fair-principles/
https://www.go-fair.org/fair-principles/
https://www.go-fair.org/fair-principles/
https://www.go-fair.org/fair-principles/

Object Stores and Distributed File Systems

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI Fo LD

Object Storage

= Recap: Key-Value Stores
= Key-value mapping, where values can be of a variety of data types
= APIs for CRUD operations; scalability via sharding (objects or object segments)

= Object Store
= Similar to key-value stores, but: optimized for large objects in GBs and TBs
= Object identifier (key), meta data, and object as binary large object (BLOB)
= APIs: often REST APIs, SDKs, sometimes implementation of DFS APIs

= Key Techniques Partitioning |JID} Replication [P}
= Partitioning u g2 D, | 2 D, |
= Replication & Distribution - D, |

= Erasure Coding Distribution

(partitioning + parity) @ @ .ﬁ Iﬁ

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FOLD

Object Storage, cont.

W

e
= Example Object Stores / Protocols s openstack.

= Amazon Simple Storage Service (S3) Amasn S3 (‘\I
= QOpenStack Object Storage (Swift) Q’
= |[BM Object Storage

= Microsoft Azure Blob Storage

IBM Cloud
Object Storage

= Example Amazon S3
= Reliable object store for photos, videos, documents or any binary data
= Bucket: Uniquely named, static data container http://s3.aws-eu-central-1.
= Object: key, version ID, value, metadata, access control amazonaws . com/mboehm7datab
= Single (5GB)/multi-part (5TB) upload and direct/BitTorrent download
= Storage classes: STANDARD, STANDARD _IA, GLACIER, DEEP_ARCHIVE
= Operations: GET/PUT/LIST/DEL, and SQL over CSV/JSON objects
= Eventual consistency = Dec 1 2020: read-after-write and list consistency

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI Fo LD

Hadoop Distributed File System (HDFS) [Sanjay Ghemawat, Howard

Gobioff, Shun-Tak Leung: The |
Google file system. SOSP 2003]

= Brief Hadoop History
= Google’s GFS + MapReduce [ODSI'04] = Apache Hadoop (2006)
= Apache Hive (SQL), Pig (ETL), Mahout/SystemML (ML), Giraph (Graph)

= HDFS Overview
= Hadoop’s distributed file system, for large clusters and datasets
* Implemented in Java, w/ native libraries for compression, 1/0, CRC32

= Files split into 128MB blocks, replicated (3x), and distributed Client

/

Hadoop Distributed File System (HDFS)
Data Data Data Data Data
Node Node @ Node B Node

Node

e~ e~ e~ e~ e~
]
Head Node Worker Nodes (shared-nothing cluster)

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FOLD

HDFS Daemon Processes

= HDFS NameNode hadoop fs -1s ./data/mnistim.bin

= Master daemon that manages file system
namespace and access by clients

= Metadata for all files (e.g., replication,
permissions, sizes, block ids, etc)

= FSImage: checkpoint of FS namespace

= EditLog: write-ahead-log (WAL) of file write operations (merged on startup)

= HDFS DataNode
= Worker daemon per cluster node that manages block storage (list of disks)

= Block creation, deletion, replication as individual files in local FS
= On startup: scan local blocks and send block report to name node

= Serving block read and write requests
= Send heartbeats to NameNode (capacity, current transfers) and receives replies

(replication, removal of block replicas)

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FOLD

HDFS InputFormats and RecordReaders

= Overview InputFormats
= InputFormat: implements access to distributed collections in files

= Split: record-aligned block of file (alighed with HDFS block size)
= RecordReader: API for reading key-value pairs from file splits
= Examples: FilelnputFormat, TextInputFormat, SequenceFilelnputFormat

m Example FileInputFor‘mat.?ddInputPath(job, path); # path: dir/file
Text Read TextInquFor'mat :.memt = new TextIn?uth.)r'mat(), .
InputSplit[] splits = infmt.getSplits(job, numSplits);

LongWritable key = new LongWritable();
Text value = new Text();
for(InputSplit split : splits) {
RecordReader<LongWritable,Text> reader = infmt.getRecordReader(split,job,Reporter.NULL);
while(reader.next(key, value))
... //process individual text lines

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FOLD

HDFS InputFormats and RecordReaders, cont.

= Sequence Files
= Binary files for key/value pairs, w/ optional compression (MR/Spark /0, MR intermediates)
= |nputFormat with readers, writers, and sorters

= Example Uncompressed SequenceFile
= Header: SEQ+version (4 bytes), keyClassName, valueClassName,
compression, blockCompression, compressor class (codec), meta data
= Splittable binary representation of key-value pair collection

(O] (®
Header :>’. Record Record Record u§,. Record

_—

Record Key
Length Length

SystemDS: values are

Key 1k x 1k matrix blocks

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FOLD

HDFS Write and Read

= HDFS Write
= #1 Client RPC to NameNode
to create file = lease/replica DNs
= #2 Write blocks to DNs, pipelined
replication to other DNs
= #3 DNs report to NN via heartbeat

= HDFS Read

= #1 Client RPC to NameNode
to open file > DNs for blocks

= #2 Read blocks sequentially from
closest DN w/ block

® |nputFormats and RecordReaders
as abstraction for multi-part files
(incl. compression/encryption)

@) atthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage

Client B
1. Create *
foo.txt « HDFS Client IE2W
/ m

W

foo.txt: BEEN 3
D1-1,2 Node i Node g Node
1. Open f

foo.txt « HDFS Client IE2W
foo.txt:

Data Data

D1-1,2 Node Node
e~

o - m m
! M

“NBIFOLD

HDFS Data Locality

= Data Locality
= HDFS is generally rack-aware (node-local, rack-local, other)
= Schedule reads from closest data node
= Replica placement (rep 3): local DN, other-rack DN, same-rack DN
= MapReduce/Spark: locality-aware execution (function vs data shipping)

= Custom Locality Information public class MyFileSplit extends FileSplit
= Custom InputFormat and { _ _ o _
FileSplit implementations gg\l:(laiﬁih(;l)e/FlleSpllt(F11eSp11t X, «oe) A}
" Return customized mapping public String[] getLocations() {
of locations on getLocations() return new String[]{“nodel”,“node7”};
= Can use block locations of arbitrary files }

FileStatus st = fs.getFileStatus(new Path(fname));
BlockLocation[] tmpl = fs.getFileBlockLocations(st, @, st.getLen());

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FOLD

HDFS Federated NameNodes

= HDFS Federation
= Eliminate NameNode as
namespace scalability bottleneck
= |Independent NameNodes,
responsible for name spaces
= DataNodes store blocks of all NameNodes
= Client-side mount tables

Namespace

>

Block Storage

Common Storage

‘V.

[Credit: https://hadoop.apache.org/docs/current/hadoop-
project-dist/hadoop-hdfs/Federation.html]

= GFS Multiple Cells
= “We also ended up doing what we call a "multi-cell” _ _ ‘ _
. . . . [Kirk McKusick, Sean Quinlan: |-
approach, which basically made it possible to put GFS: evolution on fast-forward. |==*
multiple GFS masters on top of a pool of chunkservers.” Commun. ACM 53(3) 2010] |

-- Sean Quinlan

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI Fo LD

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/Federation.html

Other DFS

W

= HDFS FileSystem Implementations (subset)
= LocalFileSystem (file), DistributedFileSystem (hdfs)
= FTPFileSystem, HttpFileSystem, ViewFilesystem (ViewFs — mount table)
= NativeS3FileSystem (s3, s3a), NativeSwiftFileSystem, NativeAzureFileSystem

= QOther proprietary: IBM GPFS, Databricks FS (DBFS)

[WIRED: Google Remakes
= Google Colossus Online Empire With 'Colossus',

= More fine-grained accesses, Google Cloud Storage https://www.wired.com/2012/
07/google-colossus/]

= High-Performance Computing
= |BM GPFS (General Parallel File System) / Spectrum Scale Scope: Focus on high 10Ps
= BeeGFS (Fraunhofer GFS) — focus on usability, storage/metadata servers (instead of bandwidth)
= Lustre (Linux + Cluster) — GPL license, LNET protocol / metadata / object storage with block write
= RedHat GFS2 (Global File System) — Linux cluster file system, close to local
= NAS (Network Attached Storage), SAN (Storage Area Network)
= GekkoFS (Uni Mainz / Barcelona SC) — data-intensive HPC applications

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FOLD

https://www.wired.com/2012/07/google-colossus/
https://www.wired.com/2012/07/google-colossus/
https://www.wired.com/2012/07/google-colossus/
https://www.wired.com/2012/07/google-colossus/

Lustre Filesystem l U-S t ra ﬂg

* Overview and T aGT) oo MOTD) T (UOTI) s (0% s 0%
System Architecture —— —— ' , , ' w L ,
= Widely used, open-source, <> 99
- i S — : ——— ~——
POSIX-compliant, S = _ =
distributed parallel file system ! ><
* Primary domain: e w w S e x| w [- |
high-performance computing - R ' .
and simulation environments rovin il s provesm - e
Sarvers Sarvers

High Performance Data MNetwork
(Cmni-Path, InfiniBand, 10/40/1 00GRE)

[https://wiki.lustre.org/
Introduction to Lustre]

Lustre Clients (1 = 100.000+)

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FOLD

https://wiki.lustre.org/Introduction_to_Lustre
https://wiki.lustre.org/Introduction_to_Lustre

Key-Value Stores and Cloud DBMS

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI Fo LD

Motivation and Terminology

1 /]

= Motivation
= Basic key-value mapping via simple API
(more complex data models can be mapped to key-value representations)
= Reliability at massive scale on commodity HW (cloud computing)

users:1:a “Inffeldgasse 13, Graz”

" System Architecture TOSCHEN | “[12, 34, 45, 67, 89]”
= Key-value maps, with values of different data types
= APIs for CRUD operations (create, read, update, delete)
= Scalability via sharding (horizontal partitioning)

users:2:a “MandellstraBe 12, Graz”

users:2:b “[12, 212, 3212, 43212]”

= Example Systems

= Dynamo (2007, AP) 2 Amazon DynamoDB (2012) [Giuseppe DeCandia et al:

. . Dynamo: amazon's highly available

Redis (2009, CP/AP) . key-value store. SOSP 2007]
& redis

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FOLD

Example Systems: Dyna mo [Giuseppe DeCandia et al:

Dynamo: amazon's highly available
key-value store. SOSP 2007]

W

= Motivation | Amazon
= Simple, highly-available data storage for small objects in ~1MB range clentfequess e-Commerce
= Aim for good load balance (99.9t" percentile SLAs) ™~ l _~ Platform
Pagg
= #1 System Interface guugy. ¢ Sompapsris
= Simple get(k, ctx) and put(k, ctx) ops \ /

I Request Routing I

= #2 Partitioning N
= Consistent hashing of nodes and keys on circular ring fﬁ?g Mo f{@ - - g
for incremental scaling | Request Routing |
= Nodes hold multiple virtual nodes for load balance

o e
(add/rm, heterogeneous) 5?3 fggg

#3 Replication @@ @@@@ —

3

Services

= Each data item replicated N times (at coord node and N-1 successors) =
= Eventual consistency w/ async update propagation via vector clocks
= Replica synchronization via Merkle trees

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FOLD

Dynamo instances Other datastores

Example Systems, cont.

= Redis Data Types

= Redis is not a plain KV-store, but “data structure server” with persistent log (appendfsync no/everysec/always)
= Key: ASCII string (max 512MB, common key schemes: comment:1234:reply.to))
= Values: strings, lists, sets, sorted sets, hashes (map of string-string), etc e I"E'dIS

= Redis APIs
= SET/GET/DEL: insert a key-value pair, lookup value by key, or delete by key
= MSET/MGET: insert or lookup multiple keys at once
= INCRBY/DECBY: increment/decrement counters

= QOthers: EXISTS, LPUSH, LPOP, LRANGE, LTRIM, LLEN, etc \%" € |(. .
= Other systems e
= Classic KV stores (AP): Riak, Aerospike, Voldemort, . ‘ LEVELDB
LevelDB, RocksDB, FoundationDB, Memcached |
= Wide-column stores: Google BigTable (CP), MHERCE @ e
Apache HBase (CP), Apache Cassandra (AP) cassandra

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FOLD

[Patrick E. O'Neil, Edward Cheng, Dieter Gawlick, |
Elizabeth J. O'Neil: The Log-Structured Merge- |
Tree (LSM-Tree). Acta Inf. 1996] |

Log-structured Merge Trees

= LSM Overview
= Many KV-stores rely on LSM-trees as their storage engine
(e.g., BigTable, DynamoDB, LevelDB, Riak, RocksDB, Cassandra, HBase)
= Approach: Buffers writes in memory, flushes data as sorted runs to storage,
merges runs into larger runs of next level (compaction)

in-memory
= System Architecture writes —> buffer (C0)
= Writes in CO reads max capacity T
" Reads againstCOandCl = —---cmmmmmmb e e e o -
(w/ buffer for C1)

= Compaction (rolling merge):

sort, merge, including deduplication on-disk

storage (C1)

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FOLD

Log-structured Merge Trees, cont.

= LSM Tiering = LSM Leveling
= Keep up to T-1 runs per level L

= Keep 1 run per level L
= Merge all runs of L, into 1 run of L, = Merge run of Li with Li+1
= 1 I

-1 B
o | | ["2
| s U
optimized
A
o .,
7 % d
Q @ Basic read-
[Niv Dayan: Log-Structured- — LSM-tree optimized
Merge Trees, Comp115 | o™ <
Sorted
guest lecture, 2017] |, e o

array

[Stratos Idreos, Mark Callaghan:
Key-Value Storage Engines
(Tutorial), SIGMOD 2020] : Insertion cost

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FOLD

Cloud Databases (DBaaS$)

1 /]

= Motivation DBaa$S O 5, - amazon
= Simplified setup, maintenance, tuning and auto scaling REDSHIFT
= Multi-tenant systems (scalability, learning opportunities) Microsoft
= Different types based on workload (OLTP vs OLAP, NoSQL) %‘Eﬁ@

= Elastic Data Warehouses 02 Data Warehousing
= Motivation: Intersection of data warehousing, cloud computing, distributed storage ETL, and SQL/OLAP
= Example Systems

= #1 Snowflake Commonalities:

= #2 Google BigQuery (Dremel) SQL, column stores,

= #3 Amazon Redshift — data on object store / DFS,
= #4 ByteDance ByConity elastic cloud scaling

= Azure SQL Data Warehouse / _

#5 Azure SQL Database Hyperscale (Socrates)

@& atthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FOLD

[Benoit Dageville et al.: The
Snowflake Elastic Data
Warehouse. SIGMOD 2016]

Example Snowflake

1 /]

Motivation (impl started late 2012)

= Enterprise-ready DWH solution for the cloud (elasticity, semi-structured) i‘"‘g snowflake
= Pure SaaS experience, high availability, cost efficient - N
Authentication and Access Control
. CIOUd Services Cloud Infrastructure Optimizer Transaction Security
= Manage virtual DHWs, TXs, and queries Services | Manager P Manager
* Meta data and catalogs e Metadata Storage
. y
= Virtual Warehouses
. o . (" Virtual) (Virtual (" Virtual) { Virtual
= Query execution in EC2 w/ CaChmg/mtermEd'ates Warehouse Warehouse Warehouse Warehouse
« Data St 010 H]E OO0 00
ata oragfe Cache Cache Cache Cache
= Storage in AWS S3 AL =\ >\ =\

= PAX / hybrid columnar

= Min-max pruning Sgi:lage g g g g g g

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FOLD

Example GOOgle Bnguery [Sergey Melnik et al.: Dremel:

Interactive Analysis of Web-Scale
Datasets. PVLDB 3(1) 2010]

= Background Dremel

A
*_cf . _ . m
= Scalable and fast in-situ analysis of read-only nested data (DFS, BigTable) ¢, gyl C/B*D E
= Data model: protocol buffers - strongly-typed nested records) B rll
2 m 1
= Storage model: columnar storage of nested data r§ rlI r2I
(efficient splitting and assembly records) ecord. columm- 1-ZI
= Query execution via multi-level serving tree oriented oriented
o o i tion t
= BigQuery System Architecture °"ff“ e exlef e
= Public impl of internal Dremel system (2012) root server O
» SQL over structured, nested data (OLAP, BI) | | i I
intermediate C) o o
= Extensions: web Uis, REST APIs and ML servers - I
= Data storage: Colossus (NextGen GFS) eaf servers I OO0 -
ith local S0
soragey L IIE T
wwwwwwwwww [Kazunori Sato: An Inside Look at Google 11
' BigQuery, Google BigQuery White Paper 2012.] \ storage layer (e.g., GFS) \

“NBIFOLD

@&ED atthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage

[Anurag Gupta et al.: Amazon | =

Example Amazon Redshift Redshift and the Case for Simpler /
Data Warehouses. SIGMOD 2015] | l

. . [Mengchu Cai et al.: Integrated
| I
Motivation (release 02/2013) Querying of SQL database data |

= Simplicity and cost-effectiveness e and S3 data in Amazon Redshift.
(fully-managed DWH at petabyte scale) IEEE Data Eng. Bull. 41(2) 2018]

= System Architecture

| Amazon Leader Node
= Data plane: data storage and SQL execution Redshift Cluster ©
= Control plane: workflows for monitoring, | o .7 @m{,me ™ —
. . | Node 1 Node 2 Node 3
and managing databases, AWS services | "1 I O - 2B
= Data Plane

™ I 't' | H I' df P A I Spectrum Spectrum Spectrum Spectrum Spectrum

Nnitial engine license rom FarAcce Node 1 Node 2 Node 3 Node ... Nade N
= Leader node + compute nodes in EC2 a9 3 o3 o o3

(w/ local storage)
= Replication across nodes + S3 backup .
= Query compilation in C++ code
= Support for flat and nested files

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI Fo LD

Example ByteDance ByConity

Metadata :

FoundationDB l
--5----»(Timestamp oracle

Timestamp

A 4

[Catalog api] [Resource api jq.

= System Architecture Query

= Virtual Warehouses Client " ! f
Result [Query analyzer] _’[Plan Schedulerj

(disaggregated storage and compute) and optimizer

= On-demand elasticity Server T T] e

= Column store on object storage (e.g., S3) | — [(m—p— |
= Open-source
(https://github.com/ByConity/ByConity) Segment executor =1 fsegment excoutor
= —
Scan

EEN
| H
LB

B E &

11111

1111
EEEEEN
EEEEEE
ENEEER
EEEEER
EEEEEE
EEEEEN
EEEEEE
EEEEEE
EEEEER
EEEEEE
EEEEEN
EEEEEN
EEEEEN

. . -
1

Column storage Column storage

[https://byconity.github.io/blog/ Q Virtual filesystem) (Virtual filesystem 22
2023-05-24-byconity-announcement- Worker Worker
opensources-its-cloudnative-data-warehouse] (Cloud storage)

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FO LD

https://github.com/ByConity/ByConity
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse

Summary and Q&A

W

= Motivation and Terminology

Object Stores and Distributed File Systems H d p py H O I id ayS !

Key-Value Stores and Cloud DBMS

Next Lectures (Large-scale Data Management and Analysis)
= 11 Distributed, Data-Parallel Computation [Jan 15]
= 12 Distributed Stream Processing [Jan 22]
= 13 Distributed Machine Learning Systems [Jan 29]
= Exercise/Project Submission [Jan 30]

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FO LD

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

