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Announcements / Administrative Items

= #1 Video Recording
= Hybrid lectures: in-person BH-N 243, zoom live streaming, video recording zoom
" https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SCI9BOU10cFdmem9zT202UT09

= #2 Exercises/Projects
= Reminder: exercise/project submissions by Jan 30 (no extensions)
= Make use of virtual / in-person (FR-766) office hours Wed 5pm-6pm
= Docker Setup: https://isis.tu-berlin.de/mod/forum/discuss.php?d=704892

= #3 Course Evaluation
= By default, only mandatory courses and guest lecturers; but optional evaluation
= Joint exercise/lecture evaluation Jan 12 — 23
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Large-Scale Data Management and Analysis
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@ vatthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage

“NBIFOLD




Agenda

= Motivation and Terminology
= Object Stores and Distributed File Systems
= Key-Value Stores and Cloud DBMS
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Motivation and Terminology
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Overview Distributed Data Storage

Global

= Recap: Distributed DBS (03 Replication, MoM, and EAI)
= Distributed DB: Virtual (logical) DB, appears like a
local DB but consists of multiple physical DBs

= Components for global query processing
= Virtual DBS (homo.) vs federated DBS (hetero.)

= Cloud and Distributed Data Storage
= Motivation: size (large-scale), semi-structured/nested, fault tolerance

= #1 Cloud and Distributed Storage
= Block storage: files split into blocks, read/write (e.g., SAN, AWS EBS)
= Object storage: objects of limited size (e.g., 5TB), get/put (e.g., AWS S3)
= Distributed file systems: file system on block/object stores (NFS, HDFS)

= H2 Database as a Service
= NoSQL stores: Key-value stores, document stores
= Cloud DBMSs (SQL, for OLTP and OLAP workloads)

ﬂ Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage \‘ BI FOLD




Central Data Abstractions

W

= #1 Files and Objects
= File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)

= Object: binary large object, with certain meta data
=

= #2 Distributed Collections 4 Delta
= Logical multi-set (bag) of key-value pairs 2 Bravo
(unsorted collection) 1 Alfa
= Different physical representations i
s . 3 Charlie
= Easy distribution of pairs
via horizontal partitioning > Echo
(aka shards, partitions) 6 Foxtrot
= Can be created from single file, 7 Golf
or directory of files (unsorted)
1 Alfa
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Data Lakes

= Concept “Data Lake”
= Store massive amounts of un/semi-structured, and structured data (append only, no update in place)
= No need for architected schema or upfront costs (unknown analysis)
= Typically: file storage in open, raw formats (inputs and intermediates)
=>» Distributed storage and analytics for scalability and agility

= Criticism: Data Swamp
= Low data quality (lack of schema,
integrity constraints, validation)
= Missing meta data (context) and
data catalog for search
=» Requires proper data curation / tools
According to priorities (data governance)

DATA LAKE DATA SWAMP

[Credit: www.collibra.com]
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Recap FAIR Data Principles

Catalogs of Data and Artefacts
(see 07 Data Provenance) .

= Data Catalogs [Alon Y. Halevy et al: Goods: Organizing
= Data curation in repositories for finding datasets in data lakes Google's Datasets. SIGMOD 2016]
" Metadata and provenance [Dan Brickley, Matthew Burgess, Natasha
= Augment data with open and linked data sources F. Noy: Google Dataset Search: Building a

search engine for datasets in an open

= Examples Web ecosystem. WWW 2019]
[Omar Benjelloun, Shiyu Chen, Natasha Noy:
SAP Data Hub Google Dataset Search Google Dataset Search by the Numbers,

Dataset Organizing Tools https://arxiv.org/pdf/2006.06894]

Provenance

i | Search | | Dashboards | Visualization Annotation
"""""""""""""""""""""""""""""""""""" Category Number % of Sample formats
of datasets total
A Tables 7.822K 37% CSsV, XLS
Structured 6.312K 30% JSON, XML, OWL, RDF
Documents 2.27T7K 11% PDF, DOC, HTML
Dataset Catalog Images 1,027K 5% JPEG, PNG, TIFF
Metadata Additional Sources of Metadata Archives 659K 3% ZIP, TAR, RAR
Path/ldentifier - = [ ’ Text 623K 3% TXT, ASCII
Size | Pr Schi - Source code repository - ) N ) e =
- User and group membership database Geospatial 376K 2% SHP, GEOJSON, KML
Ibigtable/foo/bar 100G | written_by: job_A proto:foo. Bar - Team and project database Computational biology 110K <1% SBML, BIOPAX2, SBGN
fgfsinluffoo 106G read_by: job_B, proto:nlu.Schema i g::;z{ltaer:?g;ﬁsz;?tﬂ:rsns through Audio 27K <1% WAV, MP3, OGG
written_by: job_C GOODS API Video 9K <1% AVI, MPG
Presentations 7K <1% PPTX
Medical imaging 4K <1% NII, DCM

Other categories 2.245K 11%
[SAP Sapphire Now 2019] o | [rwsman] "_" 500K > 30M datasets
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Open Table Formats (File Format + Metadata)

[Dipankar Mazumdar, Kyle Weller: Apache XTable gom

= Open Table Formats (incubating): Interoperability Among Lakehouse FEoai
= Data in open formats (e.g., parquet, orc, avro) Table Formats Databricks, Data Al Summit 2024. [ESEEe
. https://youtu.be/T-ee0xdJ7yM?list=PLTPXxbhUt- k&
= Meta data (e.g., schema, transaction logs) YW185605WNulSIxoF24S UB]

= Examples: Hudi (Uber, 2017),
Iceberg (Netflix/Snowflake, 2018), Delta Lake (Databricks, 2019) = and unfortunately diverging

= Apache XTable (A‘Hﬁha| A DELTA LAKE |CEBERG u

= Cross-table converter
for table formats s3_bucket/my_table/ s3_bucket/my_table/
(lightweight: meta data only) i - 222232;25"“”“‘” ]

= Community contributions by
Microsoft, Google,
Snowflake, Databricks

= https://github.com/apache/
incubator-xtable

s3_bucket/my_table/
[-
|- vl.metadata.json
| - snap-9fal-2-16c3.avro
| - 8d9a-98fa-77.avro

|- 000000.json

| | i
| |' '
= | - | -
= | | -
| |

© W G

Arure Data Lake Storage
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Excursus: Research Data Management (RDM)

1 /]

= Overview
= Ensure reproducibility of research results and conclusions “All code and data was on the
= Common problem: student’s laptop and the student
= Create value for others (compare, reuse, understand, extend) left / the laptop crashed.”

= EU Projects: Mandatory proposal section & deliverable on RDM plan

= RDM @ TU Graz “Ensure that research data, code and any other materials needed
= TU Graz RDM Policy since 12/2019, to reproduce research findings are appropriately documented,
stored and shared in a research data repository in accordance
with the FAIR principles (Findable, Accessible, Interoperable and
Reusable) for at least 10 years from the end of the research

as well as faculty-specific RDM policies
= https://www.tugraz.at/sites/rdm/home/

. roject, unless there are valid reasons not to do so. [...] Develo
= RDM @ TU Berlin project, u .. P
_ . _ a written data management strategy for managing research
= TU Berlin RDM Policy since 10/2019 outputs within the first 12 months of the PhD study [...].”

= https://www.tu.berlin/en/ub/szf/information-tips/
what-is-research-data-management

“The minimum storage period for research data

is ten years after either the assignment of a
= https://www.static.tu.berlin/fileadmin/www/10000000/ persistent identifier or the publication of the
Arbeiten/Wichtige Dokumente/RDM-Policy TUBerlin 2023 en.pdf related work following research project
completion, whichever is later.”
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FAIR Data Principles ! : HEAIR

[https://www.go-fair.org/fair-principles/]

W

#1 Findable
= Metadata and data have globally unique persistent identifiers
= Data describes w/ rich meta data; registered/indexes and searchable

#2 Accessible
= Metadata and data retrievable via open, free and universal communication protocols
= Metadata accessible even when data no longer available

#3 Interoperable
= Metadata and data use a formal, accessible, and broadly applicable format
= Metadata and data use FAIR vocabularies and qualified references

#4 Reusable
= Metadata and data described with plurality of accurate and relevant attributes
= (Clear license, associated with provenance, meets community standards
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Object Stores and Distributed File Systems
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Object Storage

= Recap: Key-Value Stores
= Key-value mapping, where values can be of a variety of data types
= APIs for CRUD operations; scalability via sharding (objects or object segments)

= Object Store
= Similar to key-value stores, but: optimized for large objects in GBs and TBs
= Object identifier (key), meta data, and object as binary large object (BLOB)
= APIs: often REST APIs, SDKs, sometimes implementation of DFS APIs

= Key Techniques Partitioning |JID} Replication [P}
= Partitioning u g2 D, | 2 D, |
= Replication & Distribution - D, |

= Erasure Coding Distribution

(partitioning + parity) @ @ .ﬁ Iﬁ
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Object Storage, cont.

W

e
= Example Object Stores / Protocols s openstack.

= Amazon Simple Storage Service (S3) Amasn S3 (‘\I
= QOpenStack Object Storage (Swift) Q’
= |[BM Object Storage

= Microsoft Azure Blob Storage

IBM Cloud
Object Storage

= Example Amazon S3
= Reliable object store for photos, videos, documents or any binary data
= Bucket: Uniquely named, static data container http://s3.aws-eu-central-1.
= Object: key, version ID, value, metadata, access control amazonaws . com/mboehm7datab
= Single (5GB)/multi-part (5TB) upload and direct/BitTorrent download
= Storage classes: STANDARD, STANDARD _IA, GLACIER, DEEP_ARCHIVE
= Operations: GET/PUT/LIST/DEL, and SQL over CSV/JSON objects
= Eventual consistency = Dec 1 2020: read-after-write and list consistency
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Hadoop Distributed File System (HDFS) [Sanjay Ghemawat, Howard

Gobioff, Shun-Tak Leung: The |
Google file system. SOSP 2003]

= Brief Hadoop History
= Google’s GFS + MapReduce [ODSI'04] = Apache Hadoop (2006)
= Apache Hive (SQL), Pig (ETL), Mahout/SystemML (ML), Giraph (Graph)

= HDFS Overview
= Hadoop’s distributed file system, for large clusters and datasets
* Implemented in Java, w/ native libraries for compression, 1/0, CRC32

= Files split into 128MB blocks, replicated (3x), and distributed Client

/

Hadoop Distributed File System (HDFS)
Data Data Data Data Data
Node Node @ Node B Node

Node

e~ e~ e~ e~ e~
]
Head Node Worker Nodes (shared-nothing cluster)
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HDFS Daemon Processes

= HDFS NameNode hadoop fs -1s ./data/mnistim.bin

= Master daemon that manages file system
namespace and access by clients

= Metadata for all files (e.g., replication,
permissions, sizes, block ids, etc)

= FSImage: checkpoint of FS namespace

= EditLog: write-ahead-log (WAL) of file write operations (merged on startup)

= HDFS DataNode
= Worker daemon per cluster node that manages block storage (list of disks)

= Block creation, deletion, replication as individual files in local FS
= On startup: scan local blocks and send block report to name node

= Serving block read and write requests
= Send heartbeats to NameNode (capacity, current transfers) and receives replies

(replication, removal of block replicas)
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HDFS InputFormats and RecordReaders

= Overview InputFormats
= InputFormat: implements access to distributed collections in files

= Split: record-aligned block of file (alighed with HDFS block size)
= RecordReader: API for reading key-value pairs from file splits
= Examples: FilelnputFormat, TextInputFormat, SequenceFilelnputFormat

m Example FileInputFor‘mat.?ddInputPath(job, path); # path: dir/file
Text Read TextInquFor'mat :.memt = new TextIn?uth.)r'mat(), .
InputSplit[] splits = infmt.getSplits(job, numSplits);

LongWritable key = new LongWritable();
Text value = new Text();
for(InputSplit split : splits) {
RecordReader<LongWritable,Text> reader = infmt.getRecordReader(split,job,Reporter.NULL);
while( reader.next(key, value) )
... //process individual text lines
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HDFS InputFormats and RecordReaders, cont.

= Sequence Files
= Binary files for key/value pairs, w/ optional compression (MR/Spark /0, MR intermediates)
= |nputFormat with readers, writers, and sorters

= Example Uncompressed SequenceFile
= Header: SEQ+version (4 bytes), keyClassName, valueClassName,
compression, blockCompression, compressor class (codec), meta data
= Splittable binary representation of key-value pair collection

(O] (®
Header :>’. Record Record Record u§,. Record

_—

Record Key
Length Length

SystemDS: values are

Key 1k x 1k matrix blocks
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HDFS Write and Read

= HDFS Write
= #1 Client RPC to NameNode
to create file = lease/replica DNs
= #2 Write blocks to DNs, pipelined
replication to other DNs
= #3 DNs report to NN via heartbeat

= HDFS Read

= #1 Client RPC to NameNode
to open file > DNs for blocks

= #2 Read blocks sequentially from
closest DN w/ block

® |nputFormats and RecordReaders
as abstraction for multi-part files
(incl. compression/encryption)

@) atthias Boehm | FG DAMS | DIA WiSe 2025/26 — 10 Distributed Storage

Client B
1. Create *
foo.txt « HDFS Client IE2W
/ m

W

foo.txt: BEEN 3
D1-1,2 Node i Node g Node
1. Open f

foo.txt « HDFS Client IE2W
foo.txt:

Data Data

D1-1,2 Node Node
e~

o - m m
! M
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HDFS Data Locality

= Data Locality
= HDFS is generally rack-aware (node-local, rack-local, other)
= Schedule reads from closest data node
= Replica placement (rep 3): local DN, other-rack DN, same-rack DN
= MapReduce/Spark: locality-aware execution (function vs data shipping)

= Custom Locality Information public class MyFileSplit extends FileSplit
= Custom InputFormat and { _ _ o _
FileSplit implementations gg\l:(laiﬁih(;l)e/FlleSpllt(F11eSp11t X, «oe) A}
" Return customized mapping public String[] getLocations() {
of locations on getLocations() return new String[]{“nodel”,“node7”};
= Can use block locations of arbitrary files }

FileStatus st = fs.getFileStatus(new Path(fname));
BlockLocation[] tmpl = fs.getFileBlockLocations(st, @, st.getLen());
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HDFS Federated NameNodes

= HDFS Federation
= Eliminate NameNode as
namespace scalability bottleneck
= |Independent NameNodes,
responsible for name spaces
= DataNodes store blocks of all NameNodes
= Client-side mount tables

Namespace

>

Block Storage

Common Storage

‘V.

[Credit: https://hadoop.apache.org/docs/current/hadoop-
project-dist/hadoop-hdfs/Federation.html]

= GFS Multiple Cells
= “We also ended up doing what we call a "multi-cell” _ _ ‘ _
. . . . [Kirk McKusick, Sean Quinlan: |-
approach, which basically made it possible to put GFS: evolution on fast-forward. |==*
multiple GFS masters on top of a pool of chunkservers.” Commun. ACM 53(3) 2010] |

-- Sean Quinlan
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Other DFS

W

= HDFS FileSystem Implementations (subset)
= LocalFileSystem (file), DistributedFileSystem (hdfs)
= FTPFileSystem, HttpFileSystem, ViewFilesystem (ViewFs — mount table)
= NativeS3FileSystem (s3, s3a), NativeSwiftFileSystem, NativeAzureFileSystem

= QOther proprietary: IBM GPFS, Databricks FS (DBFS)

[WIRED: Google Remakes
= Google Colossus Online Empire With 'Colossus',

= More fine-grained accesses, Google Cloud Storage https://www.wired.com/2012/
07/google-colossus/]

= High-Performance Computing
= |BM GPFS (General Parallel File System) / Spectrum Scale Scope: Focus on high 10Ps
= BeeGFS (Fraunhofer GFS) — focus on usability, storage/metadata servers (instead of bandwidth)
= Lustre (Linux + Cluster) — GPL license, LNET protocol / metadata / object storage with block write
= RedHat GFS2 (Global File System) — Linux cluster file system, close to local
= NAS (Network Attached Storage), SAN (Storage Area Network)
= GekkoFS (Uni Mainz / Barcelona SC) — data-intensive HPC applications
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Lustre Filesystem l U-S t ra ﬂg

* Overview and T aGT) oo MOTD) T (UOTI ) s (0% s 0%
System Architecture —— —— ' , , ' w L ,
= Widely used, open-source, <> 99
- i S — : ——— ~——
POSIX-compliant, S = _ =
distributed parallel file system ! ><
* Primary domain: e w w S e x| w [ - |
high-performance computing - R ' .
and simulation environments rovin il s provesm - e
Sarvers Sarvers

High Performance Data MNetwork
(Cmni-Path, InfiniBand, 10/40/1 00GRE)

[https://wiki.lustre.org/
Introduction to Lustre]

Lustre Clients (1 = 100.000+)
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Key-Value Stores and Cloud DBMS
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Motivation and Terminology

1 /]

= Motivation
= Basic key-value mapping via simple API
(more complex data models can be mapped to key-value representations)
= Reliability at massive scale on commodity HW (cloud computing)

users:1:a “Inffeldgasse 13, Graz”

" System Architecture TOSCHEN | “[12, 34, 45, 67, 89]”
= Key-value maps, with values of different data types
= APIs for CRUD operations (create, read, update, delete)
= Scalability via sharding (horizontal partitioning)

users:2:a “MandellstraBe 12, Graz”

users:2:b “[12, 212, 3212, 43212]”

= Example Systems

= Dynamo (2007, AP) 2 Amazon DynamoDB (2012) [Giuseppe DeCandia et al:

. . Dynamo: amazon's highly available

Redis (2009, CP/AP) . key-value store. SOSP 2007]
& redis
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Example Systems: Dyna mo [Giuseppe DeCandia et al:

Dynamo: amazon's highly available
key-value store. SOSP 2007]

W

= Motivation | Amazon
= Simple, highly-available data storage for small objects in ~1MB range clentfequess e-Commerce
= Aim for good load balance (99.9t" percentile SLAs) ™~ l _~  Platform
Pagg
= #1 System Interface guugy. ¢ Sompapsris
= Simple get(k, ctx) and put(k, ctx) ops \ /

I Request Routing I

= #2 Partitioning N
= Consistent hashing of nodes and keys on circular ring fﬁ?g Mo f{@ - - g
for incremental scaling | Request Routing |
= Nodes hold multiple virtual nodes for load balance

o e
(add/rm, heterogeneous) 5?3 fggg

#3 Replication @@ @@@@ —

3

Services

= Each data item replicated N times (at coord node and N-1 successors) =
= Eventual consistency w/ async update propagation via vector clocks
= Replica synchronization via Merkle trees
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Example Systems, cont.

= Redis Data Types

= Redis is not a plain KV-store, but “data structure server” with persistent log (appendfsync no/everysec/always)
= Key: ASCII string (max 512MB, common key schemes: comment:1234:reply.to) )
= Values: strings, lists, sets, sorted sets, hashes (map of string-string), etc e I"E'dIS

= Redis APIs
= SET/GET/DEL: insert a key-value pair, lookup value by key, or delete by key
= MSET/MGET: insert or lookup multiple keys at once
= INCRBY/DECBY: increment/decrement counters

= QOthers: EXISTS, LPUSH, LPOP, LRANGE, LTRIM, LLEN, etc \%" € |( . .
= Other systems e
= Classic KV stores (AP): Riak, Aerospike, Voldemort, . ‘ LEVELDB
LevelDB, RocksDB, FoundationDB, Memcached |
= Wide-column stores: Google BigTable (CP), MHERCE @ e
Apache HBase (CP), Apache Cassandra (AP) cassandra
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[Patrick E. O'Neil, Edward Cheng, Dieter Gawlick, |
Elizabeth J. O'Neil: The Log-Structured Merge- |
Tree (LSM-Tree). Acta Inf. 1996] |

Log-structured Merge Trees

= LSM Overview
= Many KV-stores rely on LSM-trees as their storage engine
(e.g., BigTable, DynamoDB, LevelDB, Riak, RocksDB, Cassandra, HBase)
= Approach: Buffers writes in memory, flushes data as sorted runs to storage,
merges runs into larger runs of next level (compaction)

in-memory
= System Architecture writes —> buffer (C0)
= Writes in CO reads max capacity T
" Reads againstCOandCl = —---cmmmmmmb e e e o -
(w/ buffer for C1)

= Compaction (rolling merge):

sort, merge, including deduplication on-disk

storage (C1)
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Log-structured Merge Trees, cont.

= LSM Tiering = LSM Leveling
= Keep up to T-1 runs per level L

= Keep 1 run per level L
= Merge all runs of L, into 1 run of L, = Merge run of Li with Li+1
= 1 I

-1 B
o | | [ "2
| s U
optimized
A
o .,
7 % d
Q @ Basic read-
[Niv Dayan: Log-Structured- — LSM-tree optimized
Merge Trees, Comp115 | o™ <
Sorted
guest lecture, 2017] |, e o

array

[Stratos Idreos, Mark Callaghan:
Key-Value Storage Engines
(Tutorial), SIGMOD 2020] : Insertion cost
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Cloud Databases (DBaaS$)

1 /]

= Motivation DBaa$S O 5, - amazon
= Simplified setup, maintenance, tuning and auto scaling REDSHIFT
= Multi-tenant systems (scalability, learning opportunities) Microsoft
= Different types based on workload (OLTP vs OLAP, NoSQL) %‘Eﬁ@

= Elastic Data Warehouses 02 Data Warehousing
= Motivation: Intersection of data warehousing, cloud computing, distributed storage ETL, and SQL/OLAP
= Example Systems

= #1 Snowflake Commonalities:

= #2 Google BigQuery (Dremel) SQL, column stores,

= #3 Amazon Redshift — data on object store / DFS,
= #4 ByteDance ByConity elastic cloud scaling

= Azure SQL Data Warehouse / _

#5 Azure SQL Database Hyperscale (Socrates)
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[Benoit Dageville et al.: The
Snowflake Elastic Data
Warehouse. SIGMOD 2016]

Example Snowflake

1 /]

Motivation (impl started late 2012)

= Enterprise-ready DWH solution for the cloud (elasticity, semi-structured) i‘"‘g snowflake
= Pure SaaS experience, high availability, cost efficient - N
Authentication and Access Control
. CIOUd Services Cloud Infrastructure Optimizer Transaction Security
= Manage virtual DHWs, TXs, and queries Services | Manager P Manager
* Meta data and catalogs e Metadata Storage
. y
= Virtual Warehouses
. o . (" Virtual ) ( Virtual (" Virtual ) { Virtual
= Query execution in EC2 w/ CaChmg/mtermEd'ates Warehouse Warehouse Warehouse Warehouse
« Data St 010 H]E OO0 00
ata oragfe Cache Cache Cache Cache
= Storage in AWS S3 AL =\ >\ =\

= PAX / hybrid columnar

= Min-max pruning Sgi:lage g g g g g g
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Example GOOgle Bnguery [Sergey Melnik et al.: Dremel:

Interactive Analysis of Web-Scale
Datasets. PVLDB 3(1) 2010]

= Background Dremel

A
*_cf . _ . m
= Scalable and fast in-situ analysis of read-only nested data (DFS, BigTable) ¢, gyl C/B\*D E
= Data model: protocol buffers - strongly-typed nested records ) B rll
2 m 1
= Storage model: columnar storage of nested data r§ rlI r2I
(efficient splitting and assembly records) ecord. columm- 1-ZI
= Query execution via multi-level serving tree oriented oriented
o o i tion t
= BigQuery System Architecture °"ff“ e exlef e
= Public impl of internal Dremel system (2012) root server O
» SQL over structured, nested data (OLAP, BI) | | i I
intermediate C) o o
= Extensions: web Uis, REST APIs and ML servers - I
= Data storage: Colossus (NextGen GFS) eaf servers I OO0 -
ith local S0
soragey L IIE T
wwwwwwwwww [Kazunori Sato: An Inside Look at Google 11
' BigQuery, Google BigQuery White Paper 2012.] \ storage layer (e.g., GFS) \

“NBIFOLD
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[Anurag Gupta et al.: Amazon | =

Example Amazon Redshift Redshift and the Case for Simpler /
Data Warehouses. SIGMOD 2015] | l

. . [Mengchu Cai et al.: Integrated
| I
Motivation (release 02/2013) Querying of SQL database data |

= Simplicity and cost-effectiveness e and S3 data in Amazon Redshift.
(fully-managed DWH at petabyte scale) IEEE Data Eng. Bull. 41(2) 2018]

= System Architecture

| Amazon Leader Node
= Data plane: data storage and SQL execution Redshift Cluster ©
= Control plane: workflows for monitoring, | o .7 @m{,me ™ —
. . | Node 1 Node 2 Node 3
and managing databases, AWS services | "1 I O - 2B
= Data Plane

™ I 't' | H I' df P A I Spectrum Spectrum Spectrum Spectrum Spectrum

Nnitial engine license rom FarAcce Node 1 Node 2 Node 3 Node ... Nade N
= Leader node + compute nodes in EC2 a9 3 o3 o o3

(w/ local storage)
= Replication across nodes + S3 backup .
= Query compilation in C++ code
= Support for flat and nested files
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Example ByteDance ByConity

Metadata :

FoundationDB l
--5----»( Timestamp oracle

Timestamp

A 4

[ Catalog api ] [Resource api jq.

= System Architecture Query

= Virtual Warehouses Client " ! f
Result [Query analyzer] _’[Plan Schedulerj

(disaggregated storage and compute) and optimizer

= On-demand elasticity Server T T ] e

= Column store on object storage (e.g., S3) | — [ (m—p— |
= Open-source
(https://github.com/ByConity/ByConity) Segment executor =1 fsegment excoutor
= —
Scan

EEN
| H
LB

B E &

11111

1111
EEEEEN
EEEEEE
ENEEER
EEEEER
EEEEEE
EEEEEN
EEEEEE
EEEEEE
EEEEER
EEEEEE
EEEEEN
EEEEEN
EEEEEN

. . -
1

Column storage Column storage

[https://byconity.github.io/blog/ Q Virtual filesystem ) ( Virtual filesystem 22
2023-05-24-byconity-announcement- Worker Worker
opensources-its-cloudnative-data-warehouse] ( Cloud storage )
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Summary and Q&A

W

= Motivation and Terminology

Object Stores and Distributed File Systems H d p py H O I id ayS !

Key-Value Stores and Cloud DBMS

Next Lectures (Large-scale Data Management and Analysis)
= 11 Distributed, Data-Parallel Computation [Jan 15]
= 12 Distributed Stream Processing [Jan 22]
= 13 Distributed Machine Learning Systems [Jan 29]
= Exercise/Project Submission [Jan 30]
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