
Data Integration and Large-scale Analysis (DIA)
10 Distributed Storage

Prof. Dr. Matthias Boehm
Technische Universität Berlin
Berlin Institute for the Foundations of Learning and Data
Big Data Engineering (DAMS Lab)

Last update: Dec 18, 2025

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage2

Announcements / Administrative Items

▪ #1 Video Recording
▪ Hybrid lectures: in-person BH-N 243, zoom live streaming, video recording

▪ https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

▪ #2 Exercises/Projects
▪ Reminder: exercise/project submissions by Jan 30 (no extensions)

▪ Make use of virtual / in-person (FR-766) office hours Wed 5pm-6pm

▪ Docker Setup: https://isis.tu-berlin.de/mod/forum/discuss.php?d=704892

▪ #3 Course Evaluation
▪ By default, only mandatory courses and guest lecturers; but optional evaluation

▪ Joint exercise/lecture evaluation Jan 12 – 23

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://isis.tu-berlin.de/mod/forum/discuss.php?d=704892
https://isis.tu-berlin.de/mod/forum/discuss.php?d=704892
https://isis.tu-berlin.de/mod/forum/discuss.php?d=704892
https://isis.tu-berlin.de/mod/forum/discuss.php?d=704892

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage3

Course Outline Part B:
Large-Scale Data Management and Analysis

08 Cloud Computing Fundamentals

09 Cloud Resource Management and Scheduling

10 Distributed Data Storage

11 Distributed Data-Parallel Computation

12 Distributed Stream
Processing

13 Distributed Machine
Learning Systems

Compute/
Storage

Infra

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage4

▪ Motivation and Terminology

▪ Object Stores and Distributed File Systems

▪ Key-Value Stores and Cloud DBMS

Agenda

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage5

Motivation and Terminology

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage6

▪ Recap: Distributed DBS (03 Replication, MoM, and EAI)
▪ Distributed DB: Virtual (logical) DB, appears like a

local DB but consists of multiple physical DBs

▪ Components for global query processing

▪ Virtual DBS (homo.) vs federated DBS (hetero.)

▪ Cloud and Distributed Data Storage
▪ Motivation: size (large-scale), semi-structured/nested , fault tolerance

▪ #1 Cloud and Distributed Storage

▪ Block storage: files split into blocks, read/write (e.g., SAN, AWS EBS)
▪ Object storage: objects of limited size (e.g., 5TB), get/put (e.g., AWS S3)
▪ Distributed file systems: file system on block/object stores (NFS, HDFS)

▪ #2 Database as a Service

▪ NoSQL stores: Key-value stores, document stores
▪ Cloud DBMSs (SQL, for OLTP and OLAP workloads)

Overview Distributed Data Storage

DB1

DB2
DB3

DB4

Global
Q

Q’ Q’’’
Q’’

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage7

▪ #1 Files and Objects
▪ File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)

▪ Object: binary large object, with certain meta data

▪ #2 Distributed Collections
▪ Logical multi-set (bag) of key-value pairs

(unsorted collection)

▪ Different physical representations

▪ Easy distribution of pairs

via horizontal partitioning

(aka shards, partitions)

▪ Can be created from single file,

or directory of files (unsorted)

Central Data Abstractions

Key Value

4 Delta

2 Bravo

1 Alfa

3 Charlie

5 Echo

6 Foxtrot

7 Golf

1 Alfa

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage8

▪ Concept “Data Lake”
▪ Store massive amounts of un/semi-structured, and structured data (append only, no update in place)

▪ No need for architected schema or upfront costs (unknown analysis)

▪ Typically: file storage in open, raw formats (inputs and intermediates)

➔ Distributed storage and analytics for scalability and agility

▪ Criticism: Data Swamp
▪ Low data quality (lack of schema,

integrity constraints, validation)

▪ Missing meta data (context) and

data catalog for search

➔ Requires proper data curation / tools

According to priorities (data governance)

Data Lakes

[Credit: www.collibra.com]

http://www.collibra.com/

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage9

▪ Data Catalogs
▪ Data curation in repositories for finding datasets in data lakes

▪ Metadata and provenance

▪ Augment data with open and linked data sources

▪ Examples

Catalogs of Data and Artefacts

[Alon Y. Halevy et al: Goods: Organizing
Google's Datasets. SIGMOD 2016]

[Dan Brickley, Matthew Burgess, Natasha
F. Noy: Google Dataset Search: Building a

search engine for datasets in an open
Web ecosystem. WWW 2019]

SAP Data Hub Google Dataset Search

[SAP Sapphire Now 2019]

[Omar Benjelloun, Shiyu Chen, Natasha Noy:
Google Dataset Search by the Numbers,

https://arxiv.org/pdf/2006.06894]

500K → 30M datasets

Recap FAIR Data Principles
(see 07 Data Provenance)

https://arxiv.org/pdf/2006.06894

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage10

▪ Open Table Formats
▪ Data in open formats (e.g., parquet, orc, avro)

▪ Meta data (e.g., schema, transaction logs)

▪ Examples: Hudi (Uber, 2017),

Iceberg (Netflix/Snowflake, 2018), Delta Lake (Databricks, 2019) → and unfortunately diverging

▪ Apache XTable
▪ Cross-table converter

for table formats

(lightweight: meta data only)

▪ Community contributions by

Microsoft, Google,

Snowflake, Databricks

▪ https://github.com/apache/

incubator-xtable

Open Table Formats (File Format + Metadata)

[Dipankar Mazumdar, Kyle Weller: Apache XTable
(incubating): Interoperability Among Lakehouse

Table Formats Databricks, Data AI Summit 2024.
https://youtu.be/T-ee0xdJ7yM?list=PLTPXxbhUt-

YW18S6p5wNu1SJxoF24S_UB]

https://github.com/apache/incubator-xtable
https://github.com/apache/incubator-xtable
https://github.com/apache/incubator-xtable
https://github.com/apache/incubator-xtable
https://github.com/apache/incubator-xtable
https://youtu.be/T-ee0xdJ7yM?list=PLTPXxbhUt-YW18S6p5wNu1SJxoF24S_UB
https://youtu.be/T-ee0xdJ7yM?list=PLTPXxbhUt-YW18S6p5wNu1SJxoF24S_UB
https://youtu.be/T-ee0xdJ7yM?list=PLTPXxbhUt-YW18S6p5wNu1SJxoF24S_UB
https://youtu.be/T-ee0xdJ7yM?list=PLTPXxbhUt-YW18S6p5wNu1SJxoF24S_UB
https://youtu.be/T-ee0xdJ7yM?list=PLTPXxbhUt-YW18S6p5wNu1SJxoF24S_UB

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage11

▪ Overview
▪ Ensure reproducibility of research results and conclusions

▪ Common problem:

▪ Create value for others (compare, reuse, understand, extend)

▪ EU Projects: Mandatory proposal section & deliverable on RDM plan

▪ RDM @ TU Graz
▪ TU Graz RDM Policy since 12/2019,

as well as faculty-specific RDM policies

▪ https://www.tugraz.at/sites/rdm/home/

▪ RDM @ TU Berlin
▪ TU Berlin RDM Policy since 10/2019

▪ https://www.tu.berlin/en/ub/szf/information-tips/

what-is-research-data-management

▪ https://www.static.tu.berlin/fileadmin/www/10000000/

Arbeiten/Wichtige_Dokumente/RDM-Policy_TUBerlin_2023_en.pdf

Excursus: Research Data Management (RDM)

“Ensure that research data, code and any other materials needed
to reproduce research findings are appropriately documented,
stored and shared in a research data repository in accordance

with the FAIR principles (Findable, Accessible, Interoperable and
Reusable) for at least 10 years from the end of the research

project, unless there are valid reasons not to do so. [...] Develop
a written data management strategy for managing research

outputs within the first 12 months of the PhD study […].”

“All code and data was on the
student’s laptop and the student

left / the laptop crashed.”

“The minimum storage period for research data
is ten years after either the assignment of a

persistent identifier or the publication of the
related work following research project

completion, whichever is later.”

https://www.tugraz.at/sites/rdm/home/
https://www.tugraz.at/sites/rdm/home/
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.tu.berlin/en/ub/szf/information-tips/what-is-research-data-management
https://www.static.tu.berlin/fileadmin/www/10000000/Arbeiten/Wichtige_Dokumente/RDM-Policy_TUBerlin_2023_en.pdf
https://www.static.tu.berlin/fileadmin/www/10000000/Arbeiten/Wichtige_Dokumente/RDM-Policy_TUBerlin_2023_en.pdf
https://www.static.tu.berlin/fileadmin/www/10000000/Arbeiten/Wichtige_Dokumente/RDM-Policy_TUBerlin_2023_en.pdf
https://www.static.tu.berlin/fileadmin/www/10000000/Arbeiten/Wichtige_Dokumente/RDM-Policy_TUBerlin_2023_en.pdf
https://www.static.tu.berlin/fileadmin/www/10000000/Arbeiten/Wichtige_Dokumente/RDM-Policy_TUBerlin_2023_en.pdf
https://www.static.tu.berlin/fileadmin/www/10000000/Arbeiten/Wichtige_Dokumente/RDM-Policy_TUBerlin_2023_en.pdf

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage12

▪ #1 Findable
▪ Metadata and data have globally unique persistent identifiers

▪ Data describes w/ rich meta data; registered/indexes and searchable

▪ #2 Accessible
▪ Metadata and data retrievable via open, free and universal communication protocols

▪ Metadata accessible even when data no longer available

▪ #3 Interoperable
▪ Metadata and data use a formal, accessible, and broadly applicable format

▪ Metadata and data use FAIR vocabularies and qualified references

▪ #4 Reusable
▪ Metadata and data described with plurality of accurate and relevant attributes

▪ Clear license, associated with provenance, meets community standards

FAIR Data Principles
[https://www.go-fair.org/fair-principles/]

https://www.go-fair.org/fair-principles/
https://www.go-fair.org/fair-principles/
https://www.go-fair.org/fair-principles/
https://www.go-fair.org/fair-principles/
https://www.go-fair.org/fair-principles/

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage13

Object Stores and Distributed File Systems

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage14

▪ Recap: Key-Value Stores
▪ Key-value mapping, where values can be of a variety of data types

▪ APIs for CRUD operations; scalability via sharding (objects or object segments)

▪ Object Store
▪ Similar to key-value stores, but: optimized for large objects in GBs and TBs

▪ Object identifier (key), meta data, and object as binary large object (BLOB)

▪ APIs: often REST APIs, SDKs, sometimes implementation of DFS APIs

▪ Key Techniques
▪ Partitioning

▪ Replication & Distribution

▪ Erasure Coding

(partitioning + parity)

Object Storage

D
D1

D2

D3

Partitioning Replication D11

D21

D31

D12

D22

D32

D11 D21 D31D12 D22D32

Distribution

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage15

▪ Example Object Stores / Protocols
▪ Amazon Simple Storage Service (S3)

▪ OpenStack Object Storage (Swift)

▪ IBM Object Storage

▪ Microsoft Azure Blob Storage

▪ Example Amazon S3
▪ Reliable object store for photos, videos, documents or any binary data

▪ Bucket: Uniquely named, static data container

▪ Object: key, version ID, value, metadata, access control

▪ Single (5GB)/multi-part (5TB) upload and direct/BitTorrent download

▪ Storage classes: STANDARD, STANDARD_IA, GLACIER, DEEP_ARCHIVE

▪ Operations: GET/PUT/LIST/DEL, and SQL over CSV/JSON objects

▪ Eventual consistency → Dec 1 2020: read-after-write and list consistency

Object Storage, cont.

http://s3.aws-eu-central-1.
amazonaws.com/mboehm7datab

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage16

▪ Brief Hadoop History
▪ Google’s GFS + MapReduce [ODSI’04] → Apache Hadoop (2006)

▪ Apache Hive (SQL), Pig (ETL), Mahout/SystemML (ML), Giraph (Graph)

▪ HDFS Overview
▪ Hadoop’s distributed file system, for large clusters and datasets

▪ Implemented in Java, w/ native libraries for compression, I/O, CRC32

▪ Files split into 128MB blocks, replicated (3x), and distributed

Hadoop Distributed File System (HDFS) [Sanjay Ghemawat, Howard
Gobioff, Shun-Tak Leung: The

Google file system. SOSP 2003]

1 2 3 4 5 6M

Head Node Worker Nodes (shared-nothing cluster)

Hadoop Distributed File System (HDFS)

Client

Name
Node

Data
Node

Data
Node

Data
Node

Data
Node

Data
Node

Data
Node

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage17

▪ HDFS NameNode
▪ Master daemon that manages file system

namespace and access by clients

▪ Metadata for all files (e.g., replication,

permissions, sizes, block ids, etc)

▪ FSImage: checkpoint of FS namespace

▪ EditLog: write-ahead-log (WAL) of file write operations (merged on startup)

▪ HDFS DataNode
▪ Worker daemon per cluster node that manages block storage (list of disks)

▪ Block creation, deletion, replication as individual files in local FS

▪ On startup: scan local blocks and send block report to name node

▪ Serving block read and write requests

▪ Send heartbeats to NameNode (capacity, current transfers) and receives replies

(replication, removal of block replicas)

HDFS Daemon Processes

hadoop fs -ls ./data/mnist1m.bin

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage18

▪ Overview InputFormats
▪ InputFormat: implements access to distributed collections in files

▪ Split: record-aligned block of file (aligned with HDFS block size)

▪ RecordReader: API for reading key-value pairs from file splits

▪ Examples: FileInputFormat, TextInputFormat, SequenceFileInputFormat

▪ Example
Text Read

HDFS InputFormats and RecordReaders

FileInputFormat.addInputPath(job, path); # path: dir/file
TextInputFormat infmt = new TextInputFormat();
InputSplit[] splits = infmt.getSplits(job, numSplits);

LongWritable key = new LongWritable();
Text value = new Text();
for(InputSplit split : splits) {

RecordReader<LongWritable,Text> reader = infmt.getRecordReader(split,job,Reporter.NULL);
while(reader.next(key, value))

... //process individual text lines
}

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage19

▪ Sequence Files
▪ Binary files for key/value pairs, w/ optional compression (MR/Spark I/O, MR intermediates)

▪ InputFormat with readers, writers, and sorters

▪ Example Uncompressed SequenceFile
▪ Header: SEQ+version (4 bytes), keyClassName, valueClassName,

compression, blockCompression, compressor class (codec), meta data

▪ Splittable binary representation of key-value pair collection

HDFS InputFormats and RecordReaders, cont.

Header
Sy

n
c

Record Record Record

Sy
n

c

Record

Record
Length

Key
Length

Key Value
SystemDS: values are
1k x 1k matrix blocks

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage20

▪ HDFS Write
▪ #1 Client RPC to NameNode

to create file → lease/replica DNs

▪ #2 Write blocks to DNs, pipelined

replication to other DNs

▪ #3 DNs report to NN via heartbeat

▪ HDFS Read
▪ #1 Client RPC to NameNode

to open file → DNs for blocks

▪ #2 Read blocks sequentially from

closest DN w/ block

▪ InputFormats and RecordReaders

as abstraction for multi-part files

(incl. compression/encryption)

HDFS Write and Read

M

Name
Node

1 2

Data
Node

Data
Node

Client

HDFS Client D1

D2

1. Create
foo.txt

D

D1 D2

foo.txt:
D1-1,2
D2-1,2

D1 D2

M

Name
Node

1 2

Data
Node

Data
Node

HDFS Client D1

D2

1. Open
foo.txt

D1 D2

foo.txt:
D1-1,2
D2-1,2

D1 D2

2
3

2

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage21

▪ Data Locality
▪ HDFS is generally rack-aware (node-local, rack-local, other)

▪ Schedule reads from closest data node

▪ Replica placement (rep 3): local DN, other-rack DN, same-rack DN

▪ MapReduce/Spark: locality-aware execution (function vs data shipping)
▪

▪ Custom Locality Information
▪ Custom InputFormat and

FileSplit implementations

▪ Return customized mapping

of locations on getLocations()

▪ Can use block locations of arbitrary files

HDFS Data Locality

public class MyFileSplit extends FileSplit
{
public MyFileSplit(FileSplit x, ...) {}
@Override
public String[] getLocations() {
return new String[]{“node1”,“node7”};

}
}

FileStatus st = fs.getFileStatus(new Path(fname));
BlockLocation[] tmp1 = fs.getFileBlockLocations(st, 0, st.getLen());

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage22

▪ HDFS Federation
▪ Eliminate NameNode as

namespace scalability bottleneck

▪ Independent NameNodes,

responsible for name spaces

▪ DataNodes store blocks of all NameNodes

▪ Client-side mount tables

▪ GFS Multiple Cells
▪ “We also ended up doing what we call a "multi-cell"

approach, which basically made it possible to put

multiple GFS masters on top of a pool of chunkservers.”

-- Sean Quinlan

HDFS Federated NameNodes

[Credit: https://hadoop.apache.org/docs/current/hadoop-
project-dist/hadoop-hdfs/Federation.html]

[Kirk McKusick, Sean Quinlan:
GFS: evolution on fast-forward.

Commun. ACM 53(3) 2010]

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/Federation.html

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage23

▪ HDFS FileSystem Implementations (subset)
▪ LocalFileSystem (file), DistributedFileSystem (hdfs)

▪ FTPFileSystem, HttpFileSystem, ViewFilesystem (ViewFs – mount table)

▪ NativeS3FileSystem (s3, s3a), NativeSwiftFileSystem, NativeAzureFileSystem

▪ Other proprietary: IBM GPFS, Databricks FS (DBFS)

▪ Google Colossus
▪ More fine-grained accesses, Google Cloud Storage

▪ High-Performance Computing
▪ IBM GPFS (General Parallel File System) / Spectrum Scale

▪ BeeGFS (Fraunhofer GFS) – focus on usability, storage/metadata servers

▪ Lustre (Linux + Cluster) – GPL license, LNET protocol / metadata / object storage

▪ RedHat GFS2 (Global File System) – Linux cluster file system, close to local

▪ NAS (Network Attached Storage), SAN (Storage Area Network)

▪ GekkoFS (Uni Mainz / Barcelona SC) – data-intensive HPC applications

Other DFS

Scope: Focus on high IOPs
(instead of bandwidth)

with block write

[WIRED: Google Remakes
Online Empire With 'Colossus',
https://www.wired.com/2012/

07/google-colossus/]

https://www.wired.com/2012/07/google-colossus/
https://www.wired.com/2012/07/google-colossus/
https://www.wired.com/2012/07/google-colossus/
https://www.wired.com/2012/07/google-colossus/

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage24

▪ Overview and
System Architecture
▪ Widely used, open-source,

POSIX-compliant,

distributed parallel file system

▪ Primary domain:

high-performance computing

and simulation environments

Lustre Filesystem

[https://wiki.lustre.org/
Introduction_to_Lustre]

https://wiki.lustre.org/Introduction_to_Lustre
https://wiki.lustre.org/Introduction_to_Lustre

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage25

Key-Value Stores and Cloud DBMS

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage26

▪ Motivation
▪ Basic key-value mapping via simple API

(more complex data models can be mapped to key-value representations)

▪ Reliability at massive scale on commodity HW (cloud computing)

▪ System Architecture
▪ Key-value maps, with values of different data types

▪ APIs for CRUD operations (create, read, update, delete)

▪ Scalability via sharding (horizontal partitioning)

▪ Example Systems
▪ Dynamo (2007, AP) → Amazon DynamoDB (2012)

▪ Redis (2009, CP/AP)

Motivation and Terminology

[Giuseppe DeCandia et al:
Dynamo: amazon's highly available

key-value store. SOSP 2007]

users:1:a “Inffeldgasse 13, Graz”

users:1:b “[12, 34, 45, 67, 89]”

users:2:a “Mandellstraße 12, Graz”

users:2:b “[12, 212, 3212, 43212]”

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage27

▪ Motivation
▪ Simple, highly-available data storage for small objects in ~1MB range

▪ Aim for good load balance (99.9th percentile SLAs)

▪ #1 System Interface
▪ Simple get(k, ctx) and put(k, ctx) ops

▪ #2 Partitioning
▪ Consistent hashing of nodes and keys on circular ring

for incremental scaling

▪ Nodes hold multiple virtual nodes for load balance

(add/rm, heterogeneous)

▪ #3 Replication
▪ Each data item replicated N times (at coord node and N-1 successors)

▪ Eventual consistency w/ async update propagation via vector clocks

▪ Replica synchronization via Merkle trees

Example Systems: Dynamo

Amazon
e-Commerce

Platform

[Giuseppe DeCandia et al:
Dynamo: amazon's highly available

key-value store. SOSP 2007]

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage28

▪ Redis Data Types
▪ Redis is not a plain KV-store, but “data structure server” with persistent log (appendfsync no/everysec/always)

▪ Key: ASCII string (max 512MB, common key schemes: comment:1234:reply.to)

▪ Values: strings, lists, sets, sorted sets, hashes (map of string-string), etc

▪ Redis APIs
▪ SET/GET/DEL: insert a key-value pair, lookup value by key, or delete by key

▪ MSET/MGET: insert or lookup multiple keys at once

▪ INCRBY/DECBY: increment/decrement counters

▪ Others: EXISTS, LPUSH, LPOP, LRANGE, LTRIM, LLEN, etc

▪ Other systems
▪ Classic KV stores (AP): Riak, Aerospike, Voldemort,

LevelDB, RocksDB, FoundationDB, Memcached

▪ Wide-column stores: Google BigTable (CP),

Apache HBase (CP), Apache Cassandra (AP)

Example Systems, cont.

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage29

▪ LSM Overview
▪ Many KV-stores rely on LSM-trees as their storage engine

(e.g., BigTable, DynamoDB, LevelDB, Riak, RocksDB, Cassandra, HBase)

▪ Approach: Buffers writes in memory, flushes data as sorted runs to storage,

merges runs into larger runs of next level (compaction)

▪ System Architecture
▪ Writes in C0

▪ Reads against C0 and C1

(w/ buffer for C1)

▪ Compaction (rolling merge):

sort, merge, including deduplication

Log-structured Merge Trees [Patrick E. O'Neil, Edward Cheng, Dieter Gawlick,
Elizabeth J. O'Neil: The Log-Structured Merge-

Tree (LSM-Tree). Acta Inf. 1996]

C0
writes

in-memory
buffer (C0)

max capacity T

on-disk
storage (C1)

C1t+1

reads

C1t

compaction

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage30

▪ LSM Tiering
▪ Keep up to T-1 runs per level L

▪ Merge all runs of Li into 1 run of Li+1

▪ L1
▪ L2
▪ L3

Log-structured Merge Trees, cont.

[Niv Dayan: Log-Structured-
Merge Trees, Comp115

guest lecture, 2017]

write-
optimized

read-
optimized

[Stratos Idreos, Mark Callaghan:
Key-Value Storage Engines
(Tutorial), SIGMOD 2020]

▪ LSM Leveling
▪ Keep 1 run per level L

▪ Merge run of Li with Li+1

▪ L1
▪ L2
▪ L3

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage31

▪ Motivation DBaaS
▪ Simplified setup, maintenance, tuning and auto scaling

▪ Multi-tenant systems (scalability, learning opportunities)

▪ Different types based on workload (OLTP vs OLAP, NoSQL)

▪ Elastic Data Warehouses
▪ Motivation: Intersection of data warehousing, cloud computing, distributed storage

▪ Example Systems

▪ #1 Snowflake
▪ #2 Google BigQuery (Dremel)
▪ #3 Amazon Redshift
▪ #4 ByteDance ByConity
▪ Azure SQL Data Warehouse /

#5 Azure SQL Database Hyperscale (Socrates)

Cloud Databases (DBaaS)

Microsoft

Commonalities:
SQL, column stores,

data on object store / DFS,
elastic cloud scaling

02 Data Warehousing,
ETL, and SQL/OLAP

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage32

▪ Motivation (impl started late 2012)
▪ Enterprise-ready DWH solution for the cloud (elasticity, semi-structured)

▪ Pure SaaS experience, high availability, cost efficient

▪ Cloud Services
▪ Manage virtual DHWs, TXs, and queries

▪ Meta data and catalogs

▪ Virtual Warehouses
▪ Query execution in EC2 w/ caching/intermediates

▪ Data Storage
▪ Storage in AWS S3

▪ PAX / hybrid columnar

▪ Min-max pruning

Example Snowflake [Benoît Dageville et al.: The
Snowflake Elastic Data

Warehouse. SIGMOD 2016]

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage33

▪ Background Dremel
▪ Scalable and fast in-situ analysis of read-only nested data (DFS, BigTable)

▪ Data model: protocol buffers - strongly-typed nested records

▪ Storage model: columnar storage of nested data

(efficient splitting and assembly records)

▪ Query execution via multi-level serving tree

▪ BigQuery System Architecture
▪ Public impl of internal Dremel system (2012)

▪ SQL over structured, nested data (OLAP, BI)

▪ Extensions: web Uis, REST APIs and ML

▪ Data storage: Colossus (NextGen GFS)

Example Google BigQuery [Sergey Melnik et al.: Dremel:
Interactive Analysis of Web-Scale

Datasets. PVLDB 3(1) 2010]

[Kazunori Sato: An Inside Look at Google
BigQuery, Google BigQuery White Paper 2012.]

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage34

▪ Motivation (release 02/2013)
▪ Simplicity and cost-effectiveness

(fully-managed DWH at petabyte scale)

▪ System Architecture
▪ Data plane: data storage and SQL execution

▪ Control plane: workflows for monitoring,

and managing databases, AWS services

▪ Data Plane
▪ Initial engine licensed from ParAccel

▪ Leader node + compute nodes in EC2

(w/ local storage)

▪ Replication across nodes + S3 backup

▪ Query compilation in C++ code

▪ Support for flat and nested files

Example Amazon Redshift [Anurag Gupta et al.: Amazon
Redshift and the Case for Simpler

Data Warehouses. SIGMOD 2015]

[Mengchu Cai et al.: Integrated
Querying of SQL database data

and S3 data in Amazon Redshift.
IEEE Data Eng. Bull. 41(2) 2018]

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage35

▪ System Architecture
▪ Virtual Warehouses

(disaggregated storage and compute)

▪ On-demand elasticity

▪ Column store on object storage (e.g., S3)

▪ Open-source

(https://github.com/ByConity/ByConity)

Example ByteDance ByConity

[https://byconity.github.io/blog/
2023-05-24-byconity-announcement-

opensources-its-cloudnative-data-warehouse]

https://github.com/ByConity/ByConity
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse
https://byconity.github.io/blog/2023-05-24-byconity-announcement-opensources-its-cloudnative-data-warehouse

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 10 Distributed Storage36

▪ Motivation and Terminology

▪ Object Stores and Distributed File Systems

▪ Key-Value Stores and Cloud DBMS

▪ Next Lectures (Large-scale Data Management and Analysis)
▪ 11 Distributed, Data-Parallel Computation [Jan 15]

▪ 12 Distributed Stream Processing [Jan 22]

▪ 13 Distributed Machine Learning Systems [Jan 29]

▪ Exercise/Project Submission [Jan 30]

Summary and Q&A

Happy Holidays!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

