TECHNISCHE
. UNIVERSITAT
BERLIN

Data Integration and Large-scale Analysis (DIA)
12 Distributed Stream Processing

Prof. Dr. Matthias Boehm

Technische Universitat Berlin
Berlin Institute for the Foundations of Learning and Data

Big Data Engineering (DAMS Lab)

AN BIFOLD

Last update: Jan 22, 2026




Announcements / Administrative Items

= #1 Video Recording
= Hybrid lectures: in-person BH-N 243, zoom live streaming, video recording zoom
" https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SCI9BOU10cFdmem9zT202UT09

= #2 Exercise/Project Submission
= Submission deadline: Jan 30, 11.59pm
= Pull-requests submitted (not necessarily merged) by deadline
= Updated exercise task description (w/ 2.5 extra points on task 4)

= #3 Exam Registration
= 1t Exam Slot: Feb 05, 4pm (start 4.15pm, end 5.45pm, BH-N 243 / A 053, 58/69 seats)
= 2"d Exam Slot: Feb 12, 4pm (start 4.15pm, end 5.45pm, BH-N 243, 39/33 seats)
= 3 Exam Slot: Mar 12, 4pm (start 9.45am, end 5.45am, A 151, 10/60 seats)
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Announcements / Administrative Items, cont.

= #4 Course Evaluation in WiSe 2025/26
= https://befragung.tu-berlin.de/evasys/online.php?pswd=XGS9H
= Evaluation period: Jan 12 —Jan 23
= 5min time for filling out the evaluation

= #5 BIFOLD FG DEEM - Student Assistant Position
= https://deem.berlin/#jobs-sb00792025
= 80h/month, deadline: Feb 11
» Topic: Efficient optimizer/runtime for data science pipelines
= System: Stratum, based on skrub

= #6 Double Lecture Next Week
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Course Outline Part B:
Large-Scale Data Management and Analysis

12 Distributed Stream 13 Distributed Machine
Processing Learning Systems
11 Distributed Data-Parallel Computation
Compute/
Storage
10 Distributed Data Storage
09 Cloud Resource Management and Scheduling
Infra
08 Cloud Computing Fundamentals
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Agenda

= Data Stream Processing
= Distributed Stream Processing

= Data Stream Mining
Stream trocesstng

What abeut FEﬂlc Uohmgsﬁ_—
| And Heen
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Data Stream Processing
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Stream Processing Terminology

= Ubiquitous Data Streams
= Event and message streams (e.g., click stream, twitter, etc)
= Sensor networks, loT, and monitoring (traffic, env, networks)

= Stream Processing Architecture
= Infinite input streams, often with window semantics

" Continuous queries : Stream Processing Engines
(standing queries) Queries

Input Output
“data at Stream .\ Stream
— gl
“datain
Stored (Continuous) motion”

Queries

Stored Data
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Stream Processing Terminology, cont.

" Use Cases i
= Monitoring and alerting (notifications on events / patterns)
= Real-time reporting (aggregate statistics for dashboards) Continuously
= Real-time ETL and event-driven data updates - active

= Real-time decision making (fraud detection)
= Data stream mining (summary statistics w/ limited memory)

= Data Stream
" Unbounded stream of data tuples S = (s, s,, ...) with s, = (t,, d)
= See DM 10 NoSQL Systems (time series)

= Real-time Latency Requirements
= Real-time: guaranteed task completion by a given deadline (30 fps)
= Near Real-time: few milliseconds to seconds
= |n practice, used with much weaker meaning
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History of Stream Processing Systems

= 2000s
= Data stream management systems (DSMS, mostly academic prototypes):
STREAM (Stanford’01), Aurora (Brown/MIT/Brandeis’02) = Borealis (‘05),
NiagaraCQ (Wisconsin), TelegraphCQ (Berkeley’03), and many others
=>» but mostly unsuccessful in industry/practice
= Message-oriented middleware and Enterprise Application Integration (EAI):
IBM Message Broker, SAP eXchange Infra., MS Biztalk Server, TransConnect

= 2010s
= Distributed stream processing engines, and “unified” batch/stream processing
" Proprietary systems: Google Cloud Dataflow, MS StreamInsight / J\z a
Azure Stream Analytics, IBM InfoSphere Streams / Streaming Analytics, AWS Kinesis SpQﬂ(m Flink
= Open-source systems: Apache Spark Streaming (Databricks), - APACHE
Apache Flink (Data Artisans), Apache Kafka (Confluent), Apache Storm RO K, o scton STORM
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System Architecture — Native Streaming

= Basic System Architecture
= Data flow graphs (potentially w/ multiple consumers)
= Nodes: asynchronous operations w/ state
(e.g., separate threads)
= Edges: data dependencies (tuple/message streams)

= Push model: data production controlled by source \_,
State
= Operator Model
= Read from input queue while( !stopped ) {
= Write to potentially r = in.dequeue(); // blocking
many output queues if( pred(r.A) ) // A==7
= Example Selection o,_, for( Queue o : out )

o.enqueue(r); // blocking

e }
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System Architecture — Sharing

= Multi-Query Optimization
= Given set of continuous queries (deployed), compile minimal DAG w/o redundancy
(see DM 08 Physical Design MV) = subexpression elimination

T T T T
l1 I2 » I1 I2
/\/\
o, O, O, bt Oy 0, U Oy
. N | | PN |
o o 0] (0]
SAS SUS SEU ,b ,C Ad SAS ,b ,C Ad
Sus Sgy Sus  Seu

= Operator and Queue Sharing
= QOperator sharing: complex ops w/ multiple predicates for adaptive reordering
= Queue sharing: avoid duplicates in output queues via masks
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System Architecture — Handling Overload

= #1 Back Pressure
= Graceful handling of overload w/o data loss
= Slow down sources
= E.g., blocking queues

= #2 Load Shedding
= #1 Random-sampling-based load shedding
= #2 Relevance-based load shedding
= #3 Summary-based load shedding (synopses)
= Given SLA, select queries and shedding placement
that minimize error and satisfy constraints

= #3 Distributed Stream Processing (see next part)
= Data flow partitioning (distribute the query)
= Key range partitioning (distribute the data stream)
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Self-adjusting operator scheduling
Pipeline runs at rate of slowest op

[Nesime Tatbul et al: Load
Shedding in a Data Stream
Manager. VLDB 2003]
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Time (Event, System, Processing)

= Event Time 4

= Real time when the event/data item was created skew ,ideal

-~

= Ingestion Time .I ol

= System time when the data item was received Processing et

Time O ,/

= Processing Time I

= System time when the data item is processed 0 O ol

O

= |In Practice ///

= Delayed and unordered data items ‘ Event Time -

= Use of heuristics (e.g., water marks = delay threshold)
= Use of more complex triggers (speculative and late results)
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Durability and Delivery Guarantees

1 /]

= #1 At Most Once 03 Message-oriented
= “Send and forget”, ensure data is never counted twice Middleware, EAI, and
= Might cause data loss on failures Replication

= #2 At Least Once
= “Store and forward” or acknowledgements from receiver,
replay stream from a checkpoint on failures
= Might create incorrect state (processed multiple times)

= #3 Exactly Once
= “Store and forward” w/ guarantees regarding state updates and sent msgs
= QOften via dedicated transaction mechanisms

Sp Qr K é Flink !A(dg'ﬂgigfommg platform
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Window Semantics

= Windowing Approach
= Many operations like joins/aggregation undefined over unbounded streams
= Compute operations over windows of (a) time or (b) elements counts
. . size = 2min
= #1 Tumbling Window
= Every data item is only part of a single window o8 8
= Aka Jumping window

| | | -
12:05 12:07 12:09
= }#2 Sliding Window size = 2min, step = 1min
= Time- or tuple-based sliding windows
* |nsert new and expire old data items S 8 8 8 86 8.
] ] ]

=
| | |

12:05 12:07 12:09
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Stream Joins

= Basic Stream Join For each new r in R:
= Tumbling window: use classic join methods 1. Scan window of stream S
= Sliding window (symmetric for both R and S) to find match tuples
= Applies to arbitrary join pred 2. Insert new r into window
= See DM 08 Query Processing (NLJ) of stream R

3. Invalidate expired tuples
in window of stream R

= Excursus: How Soccer Players Would do Stream Joins [lens Teubner, René Milller: How | ==
= Handshake-join w/ 2-phase forwarding soccer players would do stream | —
joins. SIGMOD 2011]
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. [Zachary G. Ives, Daniela Florescu, Marc

Stream Joins, cont. Friedman, Alon Y. Levy, Daniel . Weld: An
Adaptive Query Execution System for Data

Integration. SIGMOD 1999]

= Double-Pipelined Hash Join
= Join of bounded streams (or unbounded w/ invalidation)

= Equi join predicate, symmetric and non-blocking
= For every incoming tuple (e.g. left):

probe (right)+emit, and build (left) m T
] en
1,7,7

RID=SID
1,1,2,7
1 ab 7 zy
2 cd 1 XW  emit 1(abxw)
emit 1(efxw) 1 ef 7 vu emit 7(ghvu)
Stream Stream
emit 7(ghzy) 7 gh R S
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Distributed Stream Processing
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. . [Theodore Johnson, S. Muthu Muthukrishnan,
QUETV'AWB re Stream Pa rtltlonlng Vladislav Shkapenyuk, Oliver Spatscheck:

Query-aware partitioning for monitoring
massive network data streams. SIGMOD 2008]

= Example Use Case
= AT&T network monitoring with Gigascope (e.g., OC768 network)
= 2x40 Gbit/s traffic > 112M packets/s = 26 cycles/tuple on 3Ghz CPU
= Complex query sets (apps w/ ~50 queries) and massive data rates

= Baseline Query Query flow_pairs:
. SELECT S1.tb, Sl1.srcIP, Sl1.max, S2.max
Execution Plan

FROM heavy flows S1, heavy flows S2

! WHERE S1.srcIP = S2.srcIP and S1.tb = S2.tb+1
Self join M ib=tbe1
N Query heavy flows:
High-level aggregation Y- SELECT tb,srcIP,max(cnt) as max_cnt
| FROM flows
Low-level aggregation Y1 GROUP BY tb, srcIP

Query flows:

SELECT tb, srcIP, destIP, COUNT(*) AS cnt
| FROM TCP WHERE ...

TCP GROUP BY time/60 AS tb,srcIP,destIP
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Query-Aware Stream Partitioning, cont.

A
Mtb=tb+1
= Optimized Query Execution Plan N
= Distributed plan operators Y2
= Pipeline and task parallelism tlj
Host 4
Y1 L
| Partitioning
:q o) on srclP
tb=tb+1 I
N TCP
Y2
| £ £ S
V4 Vll V,1 Vll
I
(0] 0) (0]
7 | | |
TCP TCP TCP TCP
Host 1 Host 2 Host 3
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Stream Group Partitioning 11 Distributed, Data-Parallel
Computation

1 /]

Large-Scale Stream Processing
= Limited pipeline parallelism and task parallelism (independent subqueries)
= Combine with data-parallelism over stream groups

#1 Shuffle Grouping APACHE
= Tuples are randomly distributed across consumer tasks
= Good load balance

#2 Fields Grouping
= Tuples partitioned by grouping attributes
= Guarantees order within keys, but load imbalance if skew

#3 Partial Key Grouping
= Apply “power of two choices” to streaming [Md Anis Uddin Nasir et al: The ———
- i .. power of both choices: Practical load | —=

= Key splitting: select among 2 candidates per key (associative agg) balancing for distributed stream |
processing engines. ICDE 2015]

#4 Others: Global, None, Direct, Local
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Example Apache Storm 575 RSy

= Example Topology DAG
= Spouts: sources of streams
= Bolts: UDF compute ops
= Tasks mapped to worker processes
and executors (threads)

Config conf = new Config();
conf.setNumWorkers(3);

topBuilder.setSpout("Spoutl"”, new FooS1(), 2);
topBuilder.setBolt("Boltl", new FooB1(), 3).shuffleGrouping("Spoutl");
topBuilder.setBolt("Bolt2", new FooB2(), 2).shuffleGrouping("Spoutl");
topBuilder.setBolt("Bolt3", new FooB3(), 2)
.shuffleGrouping("Boltl").shuffleGrouping("Bolt2");

StormSubmitter.submitTopology (..., topBuilder.createTopology());
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Example Twitter Heron [Credit: Karthik Ramasamy]

STORM @TWITTER

Data per Cluster # of # of Msgs
Size Topologies per day

1 /]

= Motivation
= Heavy use of Apache Storm at Twitter
= |ssues: debugging, performance, shared

cluster resources, back pressure mechanism

Twitter Heron [Sanjeev Kulkarni et al: Twitter
= APl-compatible distributed streaming engine Heron: Stream Processing at
= De-facto streaming engine at Twitter since 2014 Scale. SIGMOD 2015]

Dhalion (HEI‘OI’I Extensmn) [Avrilia Floratou et al: Dhalion: Self- | =

= Automatically reconfigure Heron topologies Regulating Stream Processing in
Heron. PVLDB 2017]

to meet throughput SLO

Now back pressure implemented in Apache Storm 2.0 (May 2019)
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Discretized Stream (Batch) Computation
( ) p s Qﬁ(‘g

W

= Motivation

[Matei Zaharia et al: Discretized
= Fault tolerance (low overhead, fast recovery) streams: fault-tolerant streaming
= Combination w/ distributed batch analytics computation at scale. SOSP 2013]

= Discretized Streams (DStream)
= Batching of input tuples (100ms — 1s) based on ingest time
= Periodically run distributed jobs of stateless, deterministic tasks - DStreams
= State of all tasks materialized as RDDs, recovery via lineage

ssessss o [gs/sss|ss| » _

Computation

Sequence of immutable,
partitioned datasets (RDDs)

= Criticism: High latency, required for batching
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Unified Batch/Streaming Engines

1 /]

= Apache Spark Streaming (Databricks) Squl’(\z

= Micro-batch computation with exactly-once guarantee

= Back-pressure and water mark mechanisms

= Structured streaming via SQL (2.0), continuous streaming (2.3)
[https://flink.apache.org/news/

2019/02/13/unified-batch-
streaming-blink.html]

= Apache Flink (Data Artisans, now Alibaba)
= Tuple-at-a-time with exactly-once guarantee
= Back-pressure and water mark mechanisms
= Batch processing viewed as special case of streaming

[T. Akidau et al.: The Dataflow Model: A Practical | —ee
Approach to Balancing Correctness, Latency,and |~
Cost in Massive-Scale, Unbounded, Out-of-Order

= Google Cloud Dataflow

= Tuple-at-a-time with exactly-once guarantee Data Processing. PVLDB 2015]

= MR -2 Flumelava = MillWheel - Dataflow (managed batch/stream service) @ 3
=» Apache Beam (API+SDK from Dataflow)

= Abstraction for Spark, Flink, Dataflow w/ common API, etc beam

» |ndividual runners for the different runtime frameworks
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ici [Li Wang, Tom Z. J. Fu, Richard T. B. Ma, Marianne | —=
Resource EIaStICIty Winslett, Zhenjie Zhang: Elasticutor: Rapid Elasticity for '

Realtime Stateful Stream Processing. SIGMOD 2019]

= #1 Static
= Static, operator-level key partitioning

overloaded

= #2 Resource-Centric -
= Dynamic, operator-level key partitioning

= Global synchronization for
key repartitioning and state migration —>

= #3 Executor-Centric
= Static, operator-level key partitioning
= CPU core reassignments
via local and remote tasks

overloaded

7N
H 1

Operator ] Key Subpace

Y

7)(7) B

[] Executor @ CPU Core
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Data Stream Mining

Selected Example Algorithms
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Overview Stream Mining

= Streaming Analysis Model
= |Independent of actual storage model and processing system
= Unbounded stream of data item S =(s,, s,, ...)
= Evaluate function f(S) as aggregate over stream or window of stream
= Standing vs ad-hoc queries

= Recap: Classification of Aggregates 02 Data Warehousing,
= Additive aggregation functions (SUM, COUNT) ETL, and SQL/OLAP
= Semi-additive aggregation functions (MIN, MAX)
= Additively computable aggregation functions (AVG, STDDEV, VAR)

=_Aggregationfunctions{MEBIANQUANTILES} = approximations

=» Selected Algorithms
= Higher-Order Statistics (e.g., STDDEV)
= Approximate # Distinct Items (e.g., KMV, HyperLoglLog)
= Approximate Heavy Hitters (e.g. CountMin-Sketch)
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Higher-Order Statistics

= Overview Order Statistics 1<
= Many order statistics computable via p*" central moment m, = EZ(x — x)P
= Examples: Variance o2, skewness, kurtosis =1
* Incremental Computation of Variance g2 =" m,
= #1 Default 2-pass algorithm (mean, and squared diffs) n—1
= }#2 Textbook 1-pass algorithm (incrementally maintainable) 1 n 1 n 2
=>» numerically instable —Z x? — — Z X;
n n
" #3 Incremental update rules for m, i=1 i=1
with Kahan addition (variance since 1979) 5 o
n=Ng +Np, 0 =WUpb— flay I = a D Np— 11 DIStrIbUtEd,
' llel
[Yuanyuan Tian, Shirish Tatikonda, Berthold M, =M, . ® M, , ® {pz: <p> (=22 M, ;. Data Para. e
Reinwald: Scalable and Numerically Stable =1 Computation
Descriptive Statistics in SystemML. ICDE 2012] i (%)J‘]\/fp_j_b](;j n (m;lnb 5)1)[”})1_1 _ (;_j)p—l]}

b
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Number Of DiStinCt |tems [Kevin S. Beyer, Peter J. Haas, Berthold Reinwald, Yannis | ===

Sismanis, Rainer Gemulla: On synopses for distinct-value
estimation under multiset operations. SIGMOD 2007]

* Problem
= Estimate # distinct items in a dataset / data stream w/ limited memory
= Support for set operations (union, intersect, difference)

= K-Minimum Values (KMV) SEeEeeEn Duplicates yield
» Hashvalues d; to h; € [0, M] ‘ same hash!
= Domain M = 0(D?) to avoid | |
collisions = O(k log D) space |
) . 0 1
Store k minimum hash values Uy._.=0.24
(e.g., via priority queue) in
normalized form h; € [0,1 ~BE _
: : . € [01] D" = /Uy Example:
= Basic estimator: 16.67 vs 12.5
= Unbiased estimator: D =(k—1)/Uyy =~ '

“NBIFOLD
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Number of Distinct Items, cont.

1 /]

11 Distributed, Data-Parallel

= KMV Set Operations Computation
= Union and intersection directly |‘~1—+—“-0—0—0—0—H—0-0—0|
on partition synopses 0 1
= Difference via Augmented KMV D=AUB
(AKMV) that include counters of KMV (Dy) = KMV (A) @ KMV (B)

multiplicities of k-minimum values

= HyperLoglLog

[P. Flajolet, Eric Fusy, O. Gandouet, and F. Meunier: e
= Hash values and maintain maximum Hyperloglog: The analysis of a near-optimal
# of Ieading zeros p > D‘ — 2D cardinality estimation algorithm. AOFA 2007]
= Stochastic averaging over m sub-streams
(p maintain in registers M) [Stefan Heule, Marc Nunkesser, Alexander Hall: [~
= HyperlLoglLog++ HyperLoglLog in practice: algorithmic engineering of a state |
of the art cardinality estimation algorithm. EDBT 2013]
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Stream Summarization [Graham Cormode, S. Muthukrishnan: An

Improved Data Stream Summary: The Count-Min
Sketch and Its Applications. LATIN 2004]

W

S8 EN Unlikely similar
= Count-Min (CM) Sketch ‘ hash collisions

= Two-dimensional count array of width w and depth d

" Problem
= Summarize stream in sketch/synopsis w/ limited memory
* Finding quantiles, frequent items (heavy hitters), etc

= d hash functions map{1..n} 2> {1 ... w}

h, 6 2 1
= Update (s,c;): compute d hashes for s, h, 1 3 c
and increase counts of all locations
= Point query (s;): compute d hashes for s, s 3 4 1 1
and estimate frequency as min(count[j,h,(s;)1) h, 1 2 1 5
hg 71 1
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Summary and Q&A S*m?m Vroce g

Data Stream Processing

Distributed Stream Processing

Data Stream Mining

Next Lectures (Large-scale Data Management and Analysis)
= 13 Distributed Machine Learning Systems [Jan 29, 4pm]
= 14 Exam Preparation [Jan 29, 6pm]
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