

Data Integration and Large-scale Analysis (DIA)

12 Distributed Stream Processing

Prof. Dr. Matthias Boehm

Technische Universität Berlin

Berlin Institute for the Foundations of Learning and Data
Big Data Engineering (DAMS Lab)

Last update: Jan 22, 2026

■ #1 Video Recording

- Hybrid lectures: in-person BH-N 243, zoom live streaming, video recording
- <https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09>

■ #2 Exercise/Project Submission

- Submission deadline: **Jan 30, 11.59pm**
- Pull-requests submitted (not necessarily merged) by deadline
- **Updated exercise task description** (w/ 2.5 extra points on task 4)

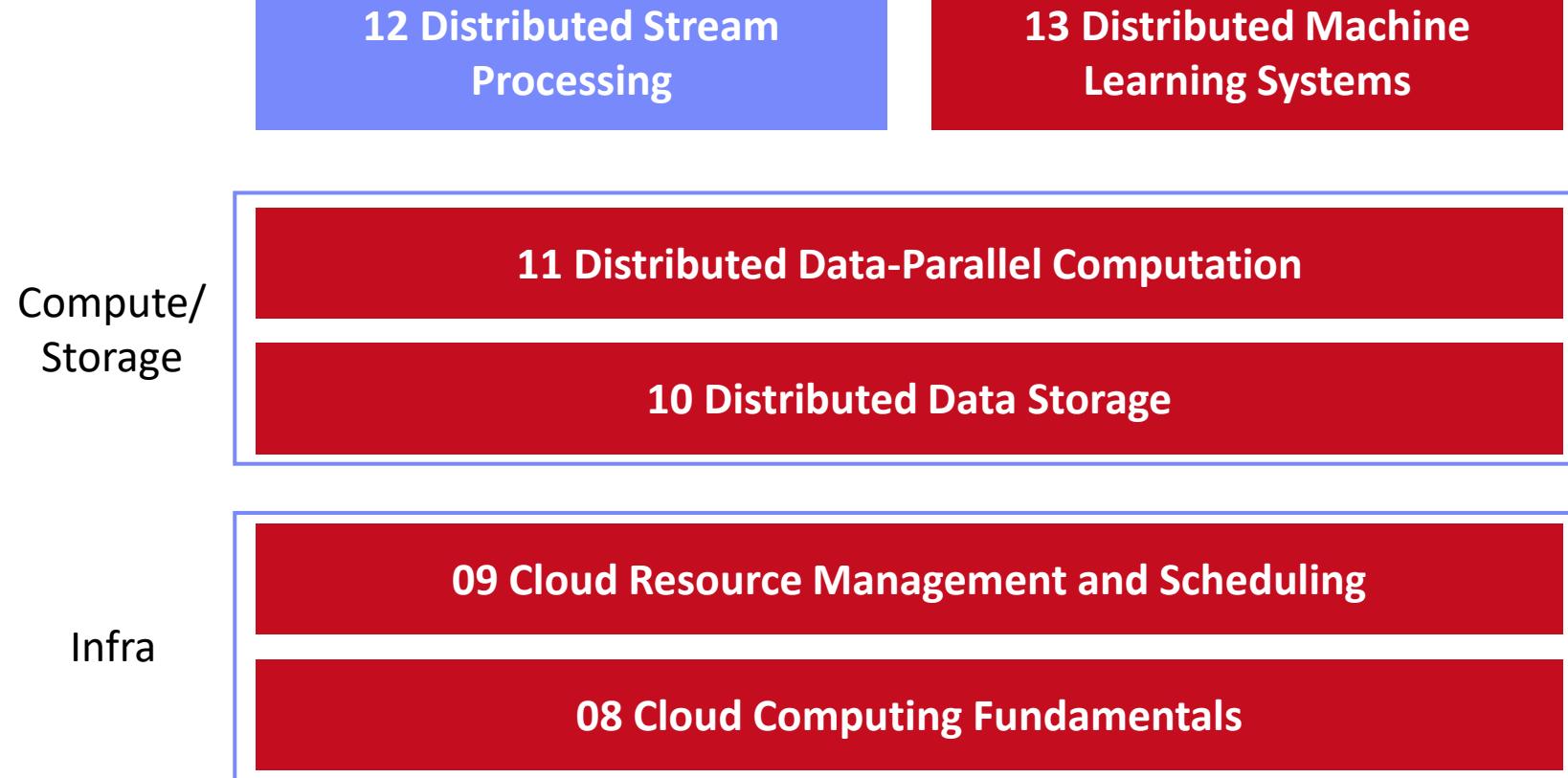
■ #3 Exam Registration

- **1st Exam Slot: Feb 05, 4pm** (start 4.15pm, end 5.45pm, BH-N 243 / A 053, **58/69 seats**)
- **2nd Exam Slot: Feb 12, 4pm** (start 4.15pm, end 5.45pm, BH-N 243, **39/33 seats**)
- **3rd Exam Slot: Mar 12, 4pm** (start 9.45am, end 5.45am, A 151, **10/60 seats**)

Announcements / Administrative Items, cont.

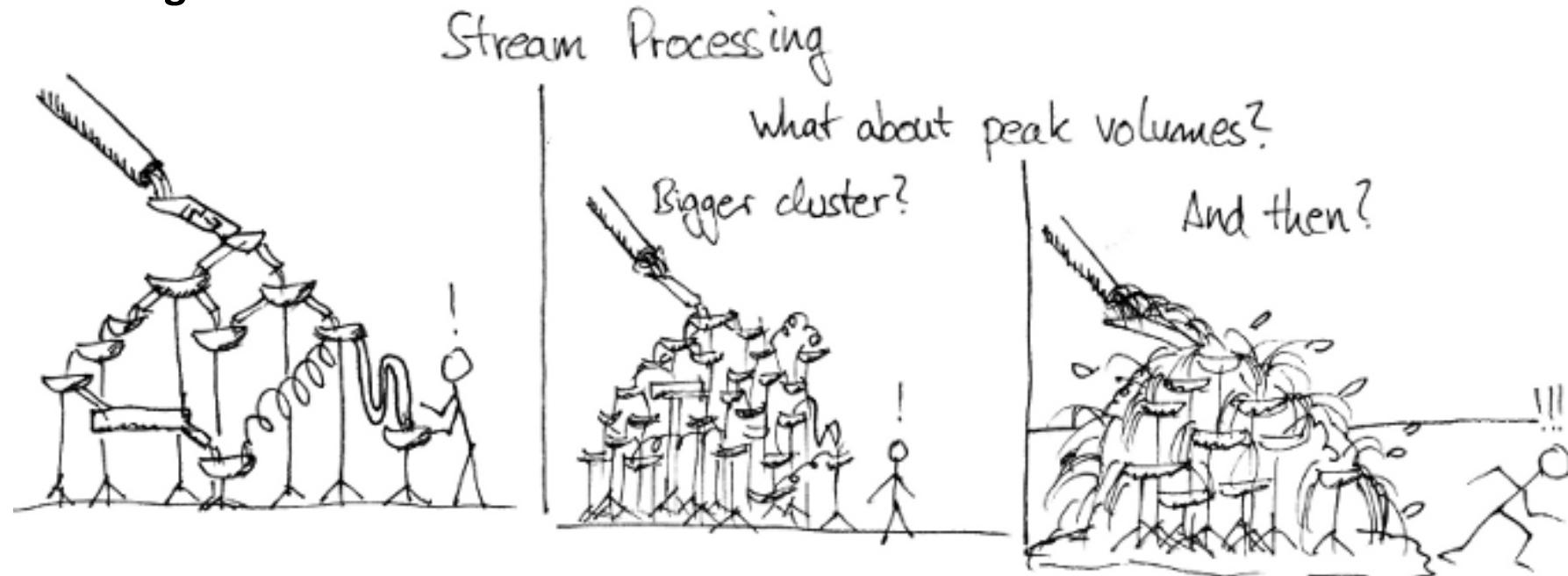
- **#4 Course Evaluation in WiSe 2025/26**
 - <https://befragung.tu-berlin.de/evasys/online.php?pswd=XGS9H>
 - Evaluation period: **Jan 12 – Jan 23**
 - **5min time for filling out the evaluation**
- **#5 BIFOLD FG DEEM – Student Assistant Position**
 - <https://deem.berlin/#jobs-sb00792025>
 - 80h/month, deadline: Feb 11
 - **Topic:** Efficient optimizer/runtime for data science pipelines
 - **System:** Stratum, based on skrub
- **#6 Double Lecture Next Week**

Course Outline Part B: Large-Scale Data Management and Analysis



Agenda

- Data Stream Processing
- Distributed Stream Processing
- Data Stream Mining



Data Stream Processing

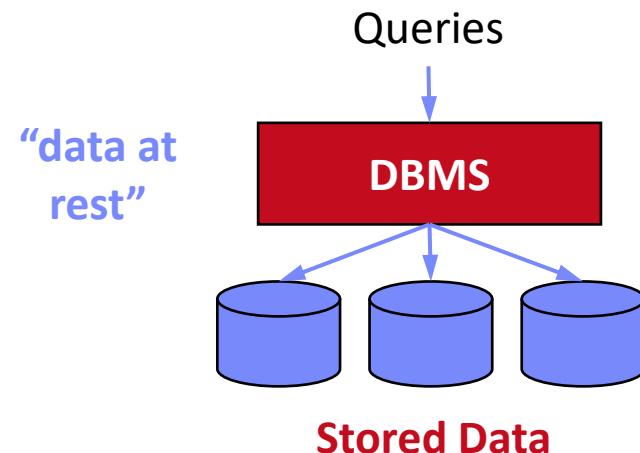
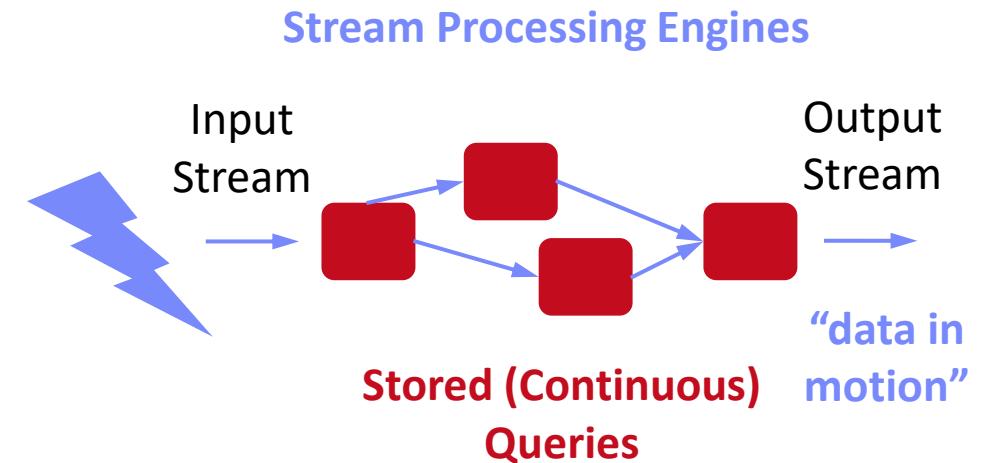
Stream Processing Terminology

▪ Ubiquitous Data Streams

- **Event and message streams** (e.g., click stream, twitter, etc)
- Sensor networks, IoT, and monitoring (traffic, env, networks)

▪ Stream Processing Architecture

- **Infinite input streams**, often with window semantics
- Continuous queries (standing queries)



■ Use Cases

- **Monitoring and alerting** (notifications on events / patterns)
- **Real-time reporting** (aggregate statistics for dashboards)
- **Real-time ETL** and event-driven data updates
- Real-time decision making (fraud detection)
- Data stream mining (summary statistics w/ limited memory)

Continuously active

■ Data Stream

- Unbounded stream of data tuples $S = (s_1, s_2, \dots)$ with $s_i = (t_i, d_i)$
- See **DM 10 NoSQL Systems** (time series)

■ Real-time Latency Requirements

- **Real-time:** guaranteed task **completion by a given deadline** (30 fps)
- **Near Real-time:** few milliseconds to seconds
- In practice, used with much weaker meaning

History of Stream Processing Systems

■ 2000s

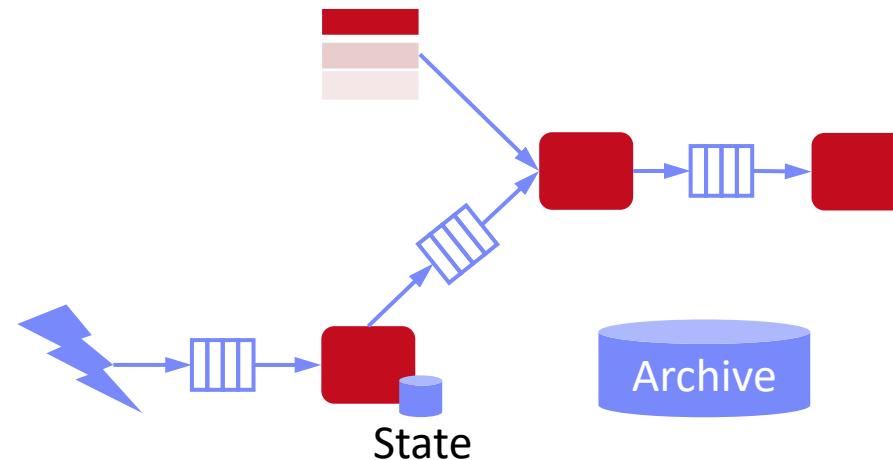
- **Data stream management systems** (DSMS, mostly academic prototypes):
[STREAM](#) (Stanford'01), [Aurora](#) (Brown/MIT/Brandeis'02) → [Borealis](#) ('05),
[NiagaraCQ](#) (Wisconsin), [TelegraphCQ](#) (Berkeley'03), and many others
→ but mostly unsuccessful in industry/practice
- **Message-oriented middleware** and **Enterprise Application Integration** (EAI):
[IBM Message Broker](#), [SAP eXchange Infra.](#), [MS Biztalk Server](#), [TransConnect](#)

■ 2010s

- **Distributed stream processing engines**, and “unified” batch/stream processing
- **Proprietary systems**: Google Cloud Dataflow, MS StreamInsight /
Azure Stream Analytics, IBM InfoSphere Streams / Streaming Analytics, AWS Kinesis
- **Open-source systems**: [Apache Spark Streaming](#) (Databricks),
[Apache Flink](#) (Data Artisans), [Apache Kafka](#) (Confluent), [Apache Storm](#)

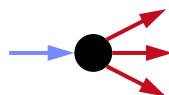
▪ Basic System Architecture

- Data flow graphs (potentially w/ multiple consumers)
- **Nodes**: asynchronous operations w/ state (e.g., separate threads)
- **Edges**: data dependencies (tuple/message streams)
- **Push model**: data production controlled by source



▪ Operator Model

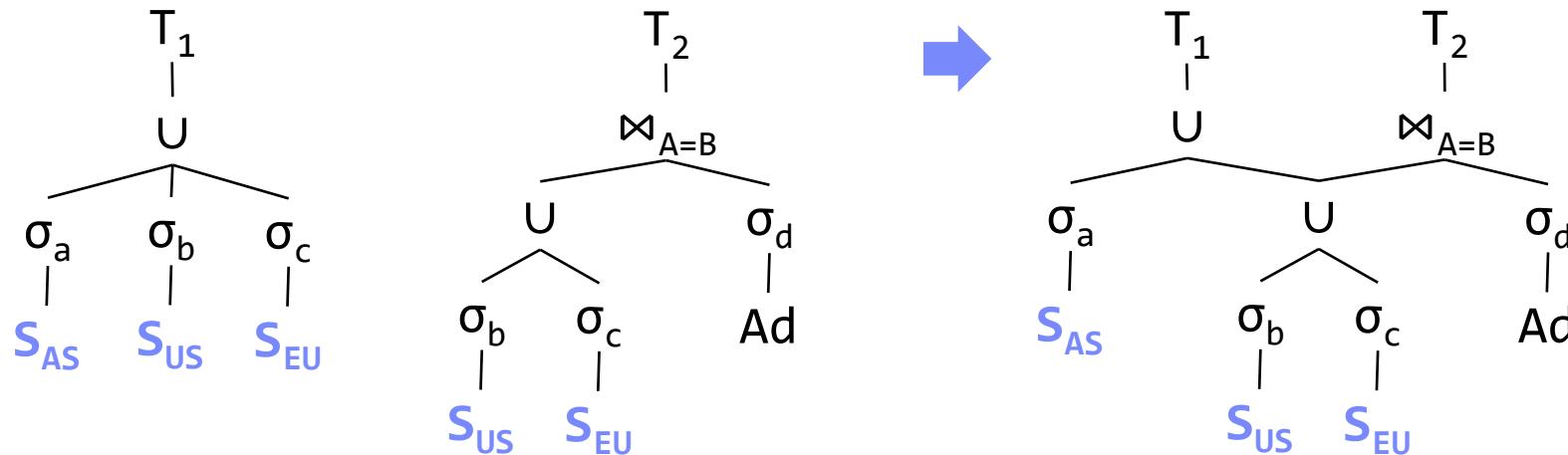
- Read from input queue
- Write to potentially many output queues
- Example Selection $\sigma_{A=7}$



```
while( !stopped ) {  
    r = in.dequeue(); // blocking  
    if( pred(r.A) ) // A==7  
        for( Queue o : out )  
            o.enqueue(r); // blocking  
}
```

▪ Multi-Query Optimization

- Given **set of continuous queries** (deployed), compile minimal DAG w/o redundancy (see **DM 08 Physical Design MV**) → **subexpression elimination**

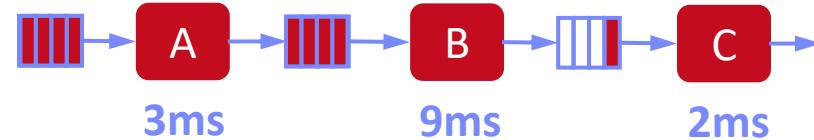


▪ Operator and Queue Sharing

- **Operator sharing:** complex ops w/ multiple predicates for adaptive reordering
- **Queue sharing:** avoid duplicates in output queues via masks

■ #1 Back Pressure

- Graceful handling of overload w/o data loss
- **Slow down sources**
- E.g., blocking queues



Self-adjusting operator scheduling
Pipeline runs at rate of slowest op

■ #2 Load Shedding

- #1 **Random-sampling**-based load shedding
- #2 **Relevance-based** load shedding
- #3 **Summary-based** load shedding (synopses)
- Given SLA, select queries and shedding placement that minimize error and satisfy constraints

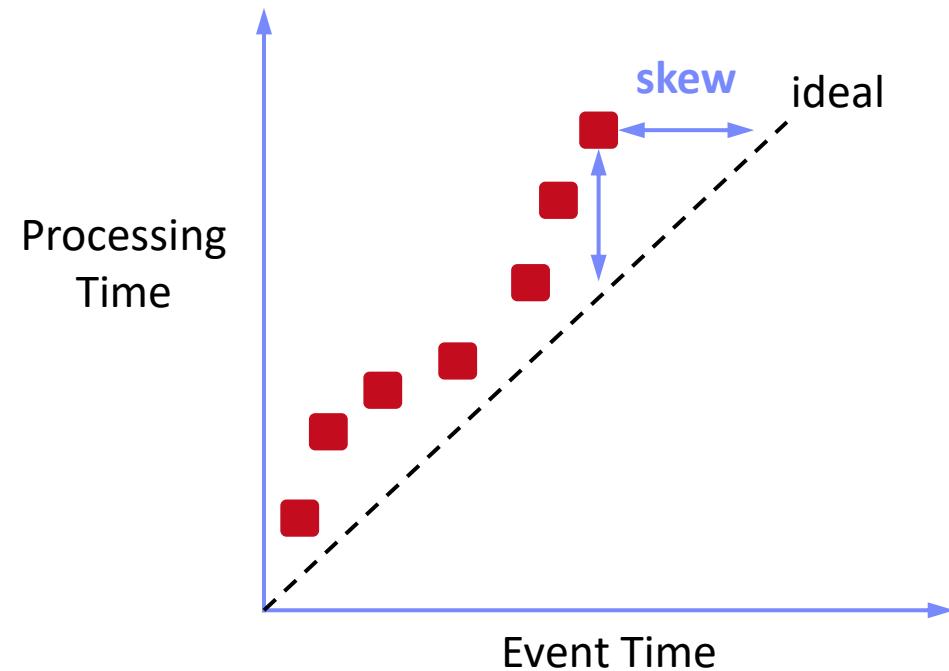
[Nesime Tatbul et al: Load
Shedding in a Data Stream
Manager. VLDB 2003]

■ #3 Distributed Stream Processing (see next part)

- Data flow partitioning (distribute the query)
- Key range partitioning (distribute the data stream)

Time (Event, System, Processing)

- **Event Time**
 - Real time when the event/data item was created
- **Ingestion Time**
 - System time when the data item was received
- **Processing Time**
 - System time when the data item is processed
- **In Practice**
 - Delayed and unordered data items
 - Use of heuristics (e.g., **water marks = delay threshold**)
 - Use of more complex triggers (**speculative and late results**)



■ #1 At Most Once

- “Send and forget”, ensure data is never counted twice
- Might cause data loss on failures

03 Message-oriented
Middleware, EAI, and
Replication

■ #2 At Least Once

- “Store and forward” or acknowledgements from receiver,
replay stream from a checkpoint on failures
- Might create incorrect state (processed multiple times)

■ #3 Exactly Once

- “Store and forward” w/ guarantees regarding state updates and sent msgs
- Often via dedicated transaction mechanisms

▪ Windowing Approach

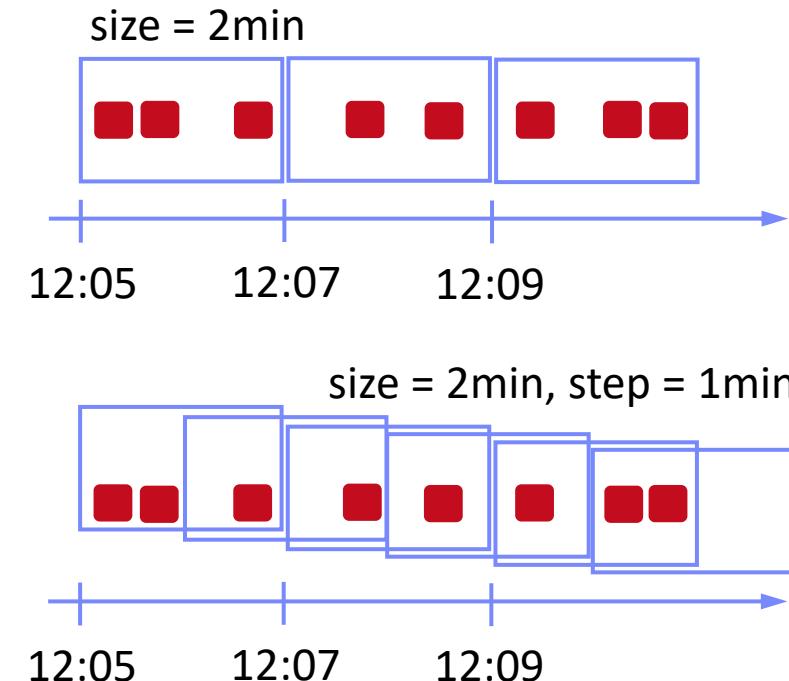
- Many operations like joins/aggregation **undefined over unbounded streams**
- Compute operations over windows of (a) **time** or (b) **elements counts**

▪ #1 Tumbling Window

- Every data item is only part of a single window
- Aka Jumping window

▪ #2 Sliding Window

- Time- or tuple-based sliding windows
- Insert new and expire old data items



▪ Basic Stream Join

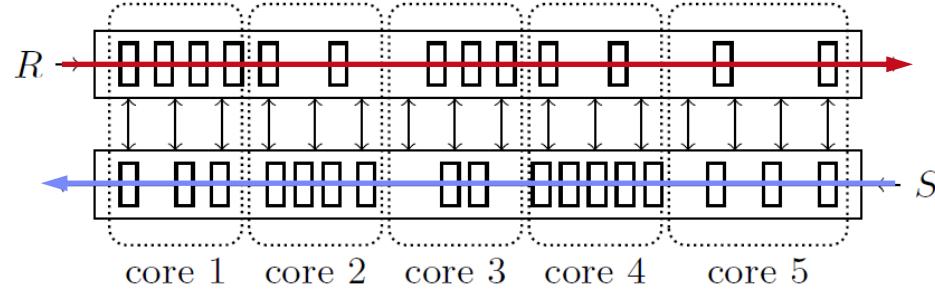
- **Tumbling window:** use classic join methods
- **Sliding window** (symmetric for both R and S)
 - Applies to arbitrary join pred
 - See [DM 08 Query Processing \(NLJ\)](#)

For each new r in R :

1. **Scan** window of stream S to find match tuples
2. **Insert** new r into window of stream R
3. **Invalidate** expired tuples in window of stream R

▪ Excursus: How Soccer Players Would do Stream Joins

- [Handshake-join](#) w/ 2-phase forwarding



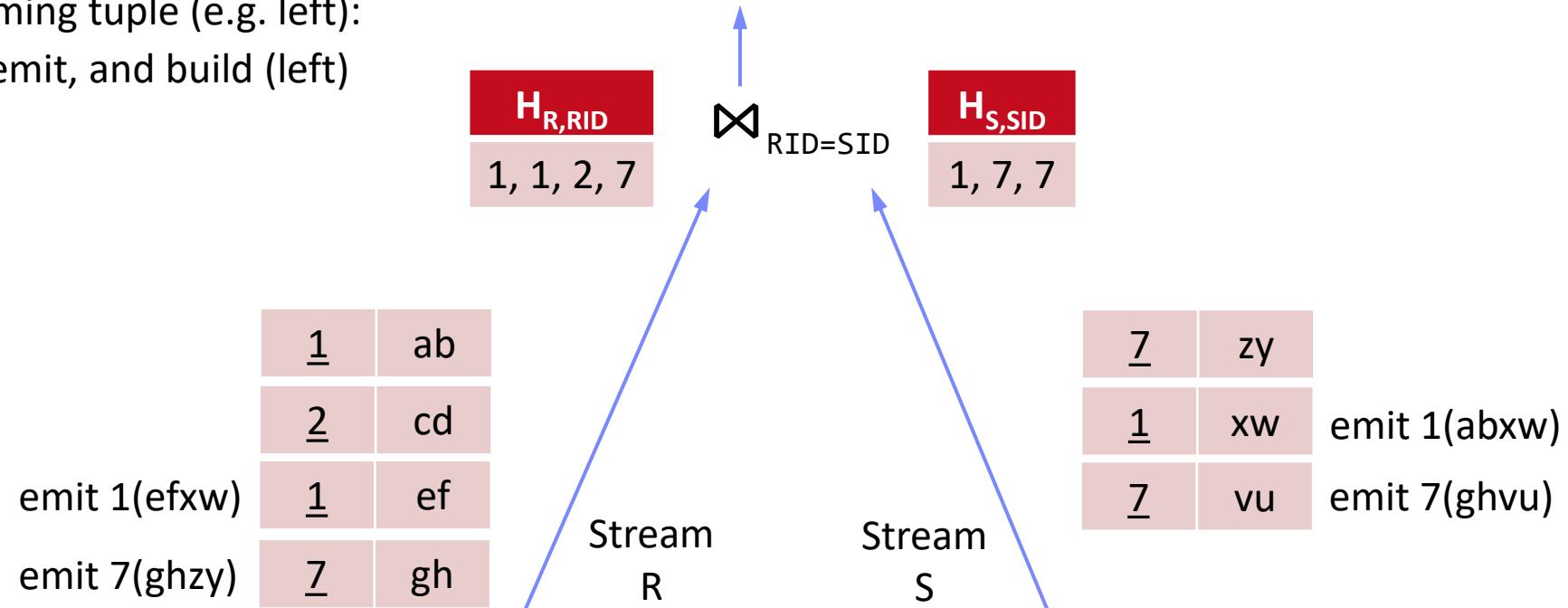
[Jens Teubner, René Müller: How soccer players would do stream joins. **SIGMOD 2011**]

Stream Joins, cont.

[Zachary G. Ives, Daniela Florescu, Marc Friedman, Alon Y. Levy, Daniel S. Weld: An Adaptive Query Execution System for Data Integration. SIGMOD 1999]

Double-Pipelined Hash Join

- Join of bounded streams (or unbounded w/ invalidation)
- Equi join predicate, symmetric and non-blocking**
- For every incoming tuple (e.g. left):
probe (right)+emit, and build (left)



Distributed Stream Processing

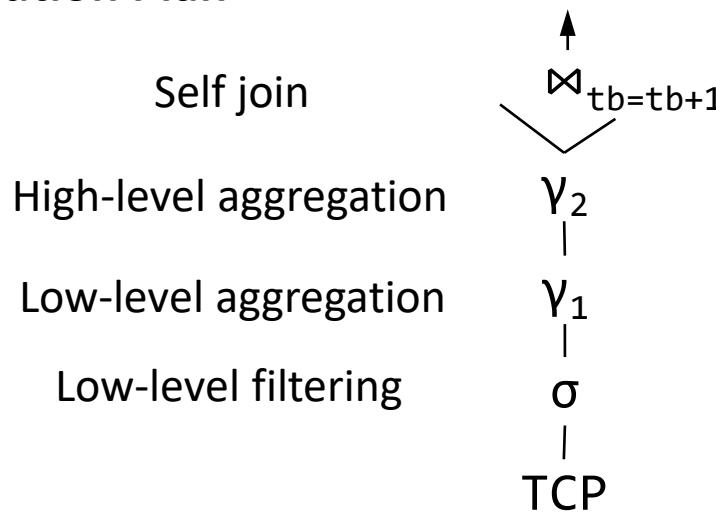
Query-Aware Stream Partitioning

[Theodore Johnson, S. Muthu Muthukrishnan, Vladislav Shkapenyuk, Oliver Spatscheck: Query-aware partitioning for monitoring massive network data streams. **SIGMOD 2008**]

■ Example Use Case

- AT&T network monitoring with Gigascope (e.g., OC768 network)
- 2x40 Gbit/s traffic \rightarrow 112M packets/s \rightarrow **26 cycles/tuple** on 3Ghz CPU
- Complex query sets (apps w/ **~50 queries**) and massive data rates

■ Baseline Query Execution Plan



Query **flow_pairs**:

```
SELECT S1.tb, S1.srcIP, S1.max, S2.max
FROM heavy_flows S1, heavy_flows S2
WHERE S1.srcIP = S2.srcIP and S1.tb = S2.tb+1
```

Query **heavy_flows**:

```
SELECT tb,srcIP,max(cnt) as max_cnt
FROM flows
GROUP BY tb, srcIP
```

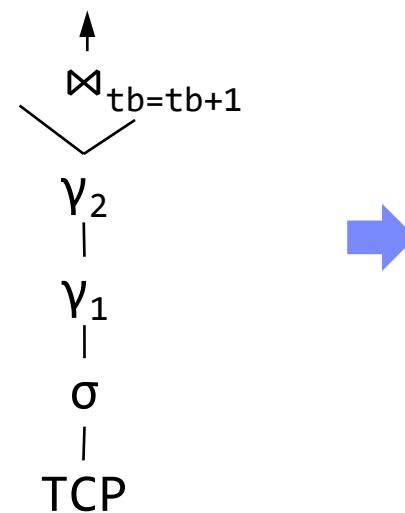
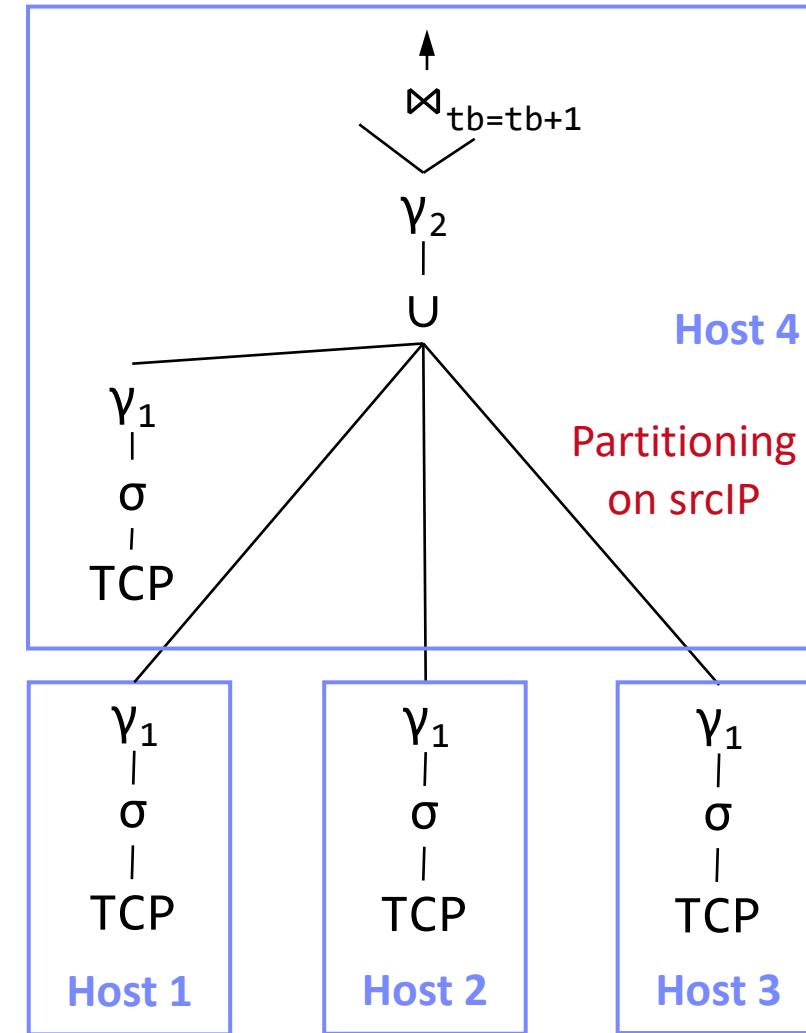
Query **flows**:

```
SELECT tb, srcIP, destIP, COUNT(*) AS cnt
FROM TCP WHERE ...
GROUP BY time/60 AS tb,srcIP,destIP
```

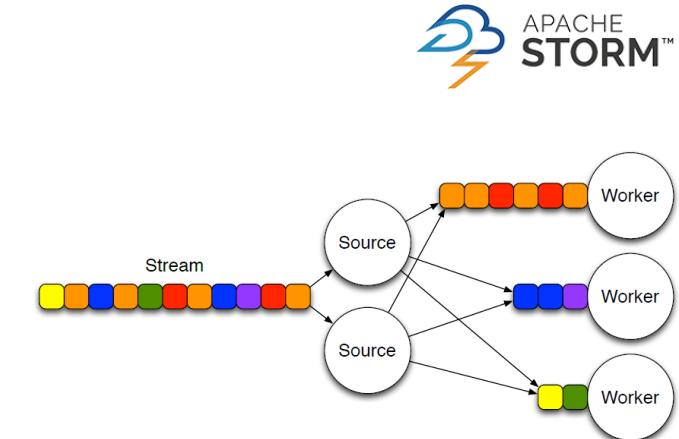
Query-Aware Stream Partitioning, cont.

Optimized Query Execution Plan

- Distributed plan operators
- Pipeline and task parallelism



- **Large-Scale Stream Processing**
 - Limited pipeline parallelism and task parallelism (independent subqueries)
 - Combine with **data-parallelism over stream groups**
- **#1 Shuffle Grouping**
 - Tuples are randomly distributed across consumer tasks
 - Good load balance
- **#2 Fields Grouping**
 - Tuples partitioned by grouping attributes
 - Guarantees order within keys, but load imbalance if skew
- **#3 Partial Key Grouping**
 - Apply **“power of two choices”** to streaming
 - **Key splitting:** select among 2 candidates per key (associative agg)
- **#4 Others: Global, None, Direct, Local**

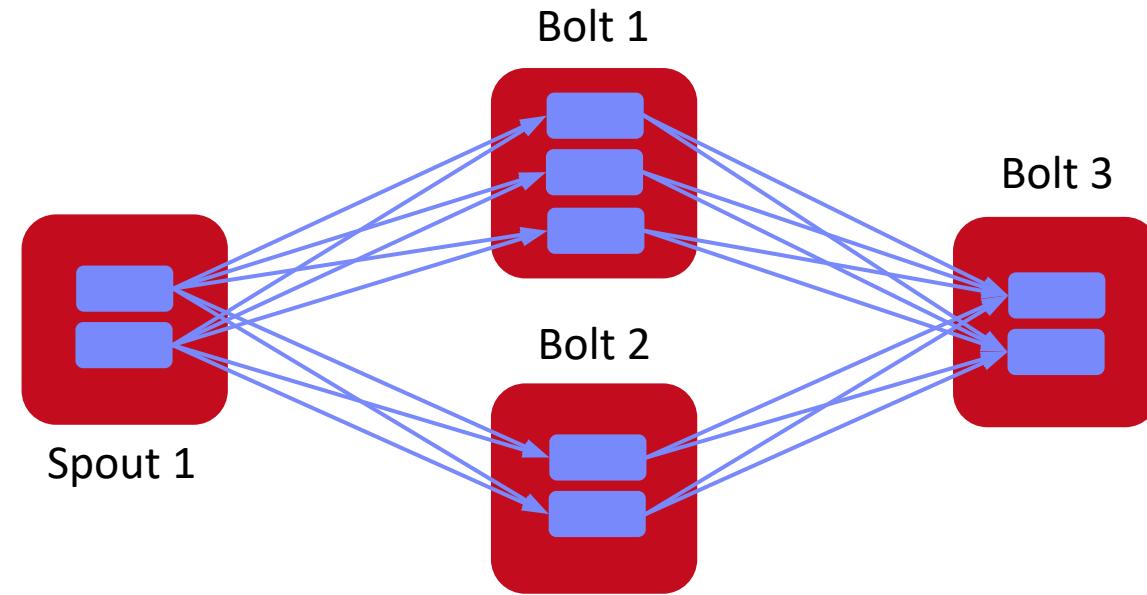


[Md Anis Uddin Nasir et al: The power of both choices: Practical load balancing for distributed stream processing engines. ICDE 2015]

Example Apache Storm

■ Example Topology DAG

- **Spouts:** sources of streams
- **Bolts:** UDF compute ops
- Tasks mapped to worker processes and executors (threads)



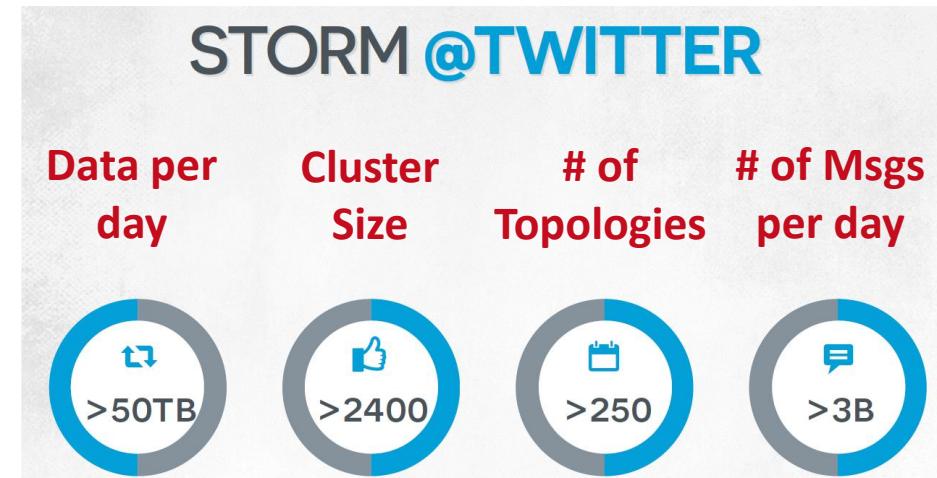
```
Config conf = new Config();
conf.setNumWorkers(3);
```

```
topBuilder.setSpout("Spout1", new FooS1(), 2);
topBuilder.setBolt("Bolt1", new FooB1(), 3).shuffleGrouping("Spout1");
topBuilder.setBolt("Bolt2", new FooB2(), 2).shuffleGrouping("Spout1");
topBuilder.setBolt("Bolt3", new FooB3(), 2)
    .shuffleGrouping("Bolt1").shuffleGrouping("Bolt2");
```

```
StormSubmitter.submitTopology(..., topBuilder.createTopology());
```

Example Twitter Heron

[Credit: Karthik Ramasamy]



▪ Motivation

- Heavy use of Apache Storm at Twitter
- Issues: debugging, performance, shared cluster resources, back pressure mechanism

▪ Twitter Heron

- API-compatible distributed streaming engine
- De-facto streaming engine at Twitter since 2014

▪ Dhalion (Heron Extension)

- Automatically reconfigure Heron topologies to meet throughput SLO

▪ Now back pressure implemented in Apache Storm 2.0 (May 2019)

[Sanjeev Kulkarni et al: Twitter Heron: Stream Processing at Scale. **SIGMOD 2015**]

[Avrilia Floratou et al: Dhalion: Self-Regulating Stream Processing in Heron. **PVLDB 2017**]

Discretized Stream (Batch) Computation

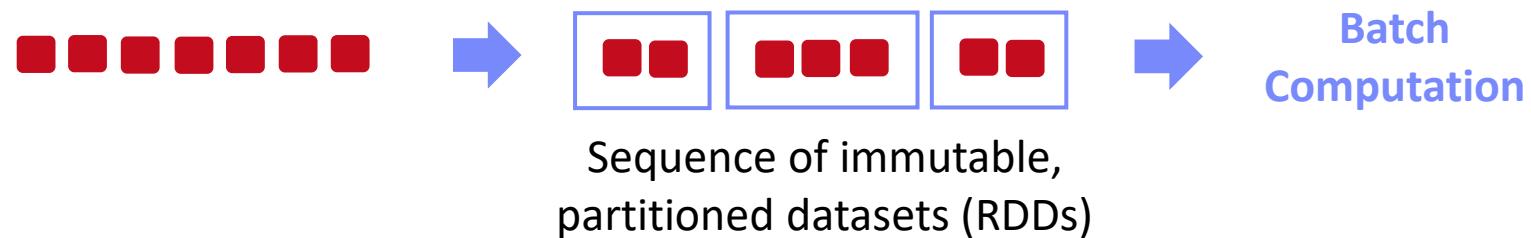
▪ Motivation

- **Fault tolerance** (low overhead, fast recovery)
- Combination w/ **distributed batch analytics**

[Matei Zaharia et al: Discretized streams: fault-tolerant streaming computation at scale. **SOSP 2013**]

▪ Discretized Streams (DStream)

- **Batching of input tuples** (100ms – 1s) based on ingest time
- Periodically run distributed jobs of **stateless, deterministic tasks** → **DStreams**
- State of all tasks materialized as RDDs, recovery via lineage



▪ Criticism: High latency, required for batching

- **Apache Spark Streaming (Databricks)**
 - **Micro-batch computation** with exactly-once guarantee
 - Back-pressure and water mark mechanisms
 - **Structured streaming** via SQL (2.0), **continuous streaming** (2.3)
- **Apache Flink (Data Artisans, now Alibaba)**
 - **Tuple-at-a-time** with exactly-once guarantee
 - Back-pressure and water mark mechanisms
 - Batch processing viewed as special case of streaming
- **Google Cloud Dataflow**
 - **Tuple-at-a-time** with exactly-once guarantee
 - MR → FlumeJava → MillWheel → Dataflow (managed batch/stream service)
- ➔ **Apache Beam (API+SDK from Dataflow)**
 - **Abstraction for Spark, Flink, Dataflow** w/ common API, etc
 - Individual runners for the different runtime frameworks

[<https://flink.apache.org/news/2019/02/13/unified-batch-streaming-blink.html>]

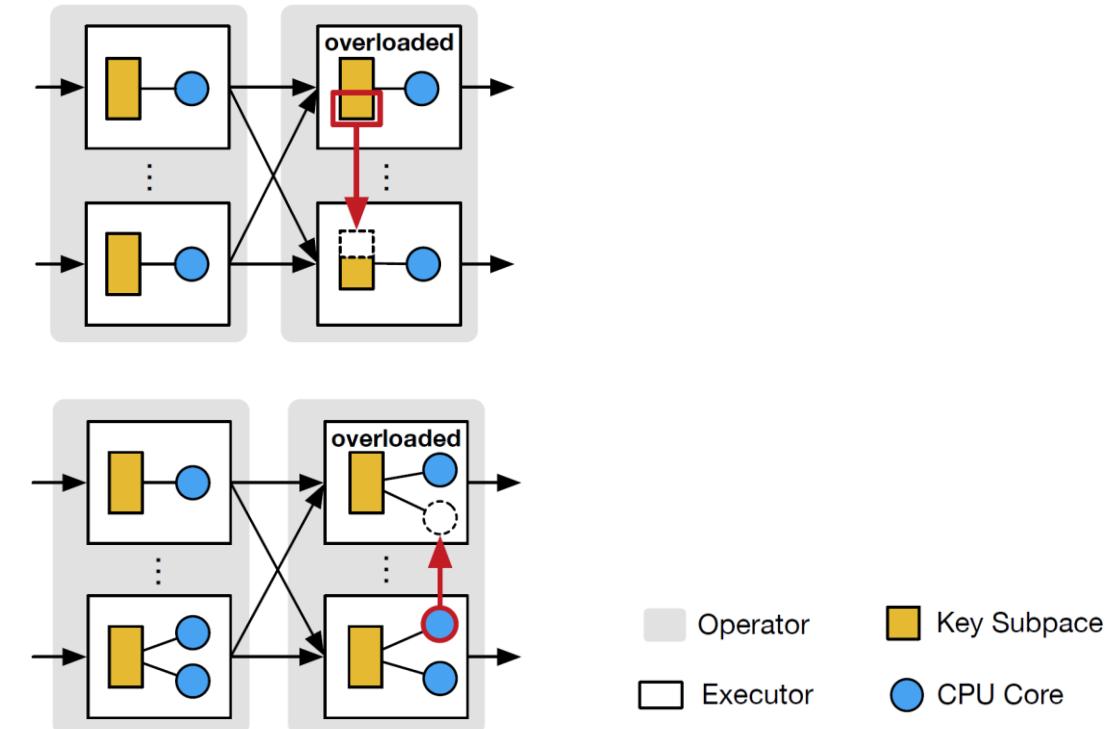
[T. Akidau et al.: The Dataflow Model: A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-Order Data Processing. **PVLDB** 2015]

beam

Resource Elasticity

[Li Wang, Tom Z. J. Fu, Richard T. B. Ma, Marianne Winslett, Zhenjie Zhang: Elasticutor: Rapid Elasticity for Realtime Stateful Stream Processing. **SIGMOD 2019**]

- **#1 Static**
 - Static, operator-level key partitioning
- **#2 Resource-Centric**
 - Dynamic, operator-level key partitioning
 - **Global synchronization** for key repartitioning and state migration
- **#3 Executor-Centric**
 - Static, operator-level key partitioning
 - **CPU core reassessments** via local and remote tasks



Data Stream Mining

Selected Example Algorithms

▪ Streaming Analysis Model

- Independent of actual storage model and processing system
- Unbounded stream of data item $S = (s_1, s_2, \dots)$
- Evaluate function $f(S)$ as aggregate over stream or window of stream
- Standing vs ad-hoc queries

▪ Recap: Classification of Aggregates

- **Additive** aggregation functions (**SUM, COUNT**)
- **Semi-additive** aggregation functions (**MIN, MAX**)
- **Additively computable** aggregation functions (**AVG, STDDEV, VAR**)
- ~~Aggregation functions (**MEDIAN, QUANTILES**)~~ → approximations

02 Data Warehousing,
ETL, and SQL/OLAP

➔ Selected Algorithms

- Higher-Order Statistics (e.g., **STDDEV**)
- Approximate # Distinct Items (e.g., KMV, HyperLogLog)
- Approximate Heavy Hitters (e.g. CountMin-Sketch)

■ Overview Order Statistics

- Many order statistics computable via p^{th} central moment
- Examples: Variance σ^2 , skewness, kurtosis

$$m_p = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^p$$

■ Incremental Computation of Variance

- #1 Default 2-pass algorithm (mean, and squared diffs)
- #2 Textbook 1-pass algorithm (incrementally maintainable)
→ numerically unstable
- #3 Incremental update rules for m_p
with Kahan addition (variance since 1979)

[Yuanyuan Tian, Shirish Tatikonda, Berthold Reinwald: Scalable and Numerically Stable Descriptive Statistics in SystemML. ICDE 2012]

$$\sigma^2 = \frac{n}{n-1} m_2$$

$$\frac{1}{n} \sum_{i=1}^n x_i^2 - \frac{1}{n^2} \left(\sum_{i=1}^n x_i \right)^2$$

$$n = n_a + n_b, \quad \delta = \mu_b - \mu_a, \quad \mu = \mu_a \oplus n_b \frac{\delta}{n}$$

$$M_p = M_{p,a} \oplus M_{p,b} \oplus \left\{ \sum_{j=1}^{p-2} \binom{p}{j} \left[\left(-\frac{n_b}{n} \right)^j M_{p-j,a} \right. \right.$$

$$\left. \left. + \left(\frac{n_a}{n} \right)^j M_{p-j,b} \right] \delta^j + \left(\frac{n_a n_b}{n} \delta \right)^p \left[\frac{1}{n_b^{p-1}} - \left(\frac{-1}{n_a} \right)^{p-1} \right] \right\}$$

11 Distributed,
Data-Parallel
Computation

Number of Distinct Items

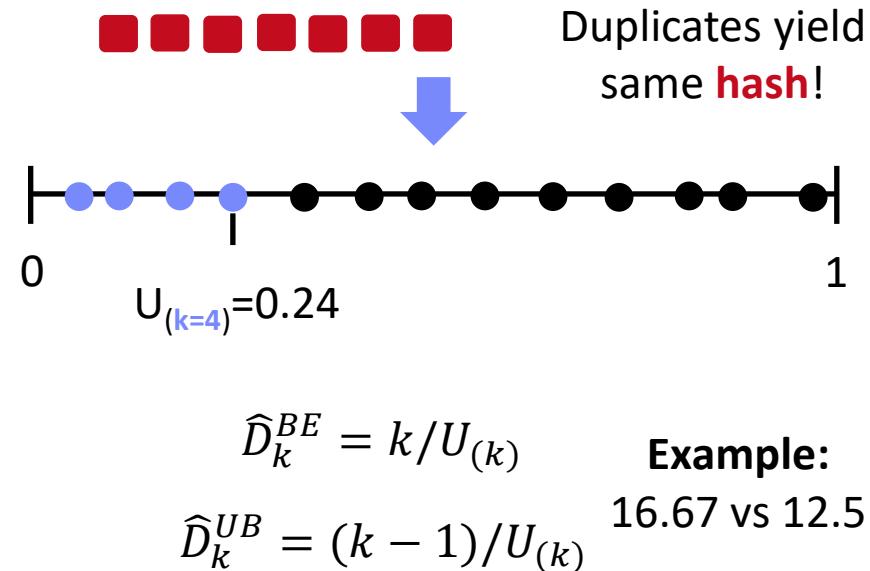
[Kevin S. Beyer, Peter J. Haas, Berthold Reinwald, **Yannis Sismanis**, Rainer Gemulla: On synopses for distinct-value estimation under multiset operations. **SIGMOD 2007**]

■ Problem

- **Estimate # distinct items** in a dataset / data stream w/ limited memory
- Support for set operations (union, intersect, difference)

■ K-Minimum Values (KMV)

- Hash values d_i to $h_i \in [0, M]$
- Domain $M = O(D^2)$ to avoid collisions $\rightarrow \mathbf{O(k \log D)}$ space
- **Store k minimum hash values**
(e.g., via priority queue) in normalized form $h_i \in [0,1]$
- Basic estimator:
- **Unbiased estimator:**

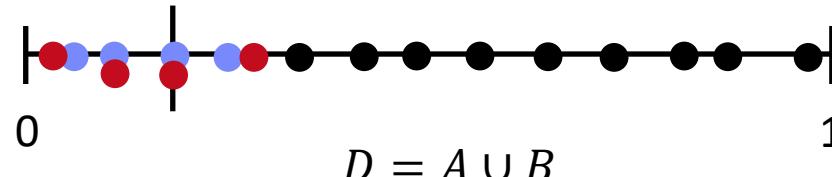


Number of Distinct Items, cont.

▪ KMV Set Operations

- Union and intersection directly on partition synopses
- Difference via **Augmented KMV** (AKMV) that include counters of multiplicities of k-minimum values

11 Distributed, Data-Parallel Computation



▪ HyperLogLog

- Hash values and maintain maximum **# of leading zeros** $p \rightarrow \hat{D} = 2^p$
- Stochastic averaging over m sub-streams (p maintain in registers M)
- **HyperLogLog++**

[P. Flajolet, Éric Fusy, O. Gandouet, and F. Meunier:
Hyperloglog: The analysis of a near-optimal
cardinality estimation algorithm. **AOFA 2007**]

[Stefan Heule, Marc Nunkesser, Alexander Hall:
HyperLogLog in practice: algorithmic engineering of a state
of the art cardinality estimation algorithm. **EDBT 2013**]

Stream Summarization

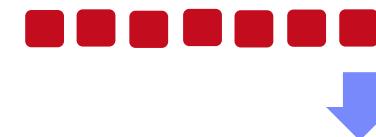
[Graham Cormode, S. Muthukrishnan: An Improved Data Stream Summary: The **Count-Min Sketch** and Its Applications. LATIN 2004]

■ Problem

- **Summarize stream in sketch/synopsis w/ limited memory**
- Finding quantiles, frequent items (heavy hitters), etc

■ Count-Min (CM) Sketch

- Two-dimensional count array of width w and depth d
- d hash functions map $\{1 \dots n\} \rightarrow \{1 \dots w\}$
- **Update (s_i, c_i):** compute d hashes for s_i and increase counts of all locations
- **Point query (s_i):** compute d hashes for s_i and estimate frequency as $\min(\text{count}[j, h_j(s_i)])$

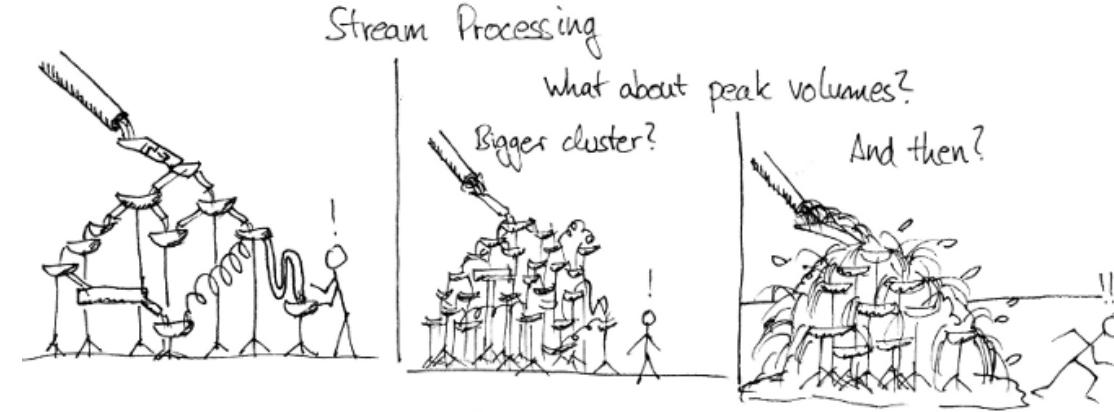


Unlikely similar
hash collisions

	h_1		h_2		h_3		h_4		h_d
h_1		6					2		1
h_2	1		3	5					
h_3	3		4			1	1		
h_4		1	2	1	5				
h_d		7	1	1					

Summary and Q&A

- **Data Stream Processing**
- **Distributed Stream Processing**
- **Data Stream Mining**



- **Next Lectures (Large-scale Data Management and Analysis)**
 - 13 [Distributed Machine Learning Systems](#) [Jan 29, 4pm]
 - 14 [Exam Preparation](#) [Jan 29, 6pm]