
Data Integration and Large-scale Analysis (DIA)
13 Distributed Machine Learning Systems

Prof. Dr. Matthias Boehm
Technische Universität Berlin
Berlin Institute for the Foundations of Learning and Data
Big Data Engineering (DAMS Lab)

Last update: Jan 29, 2026

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems2

Announcements / Administrative Items

▪ #1 Video Recording
▪ Hybrid lectures: in-person BH-N 243, zoom live streaming, video recording

▪ https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

▪ #2 Exercise/Project Submission
▪ Submission deadline: Jan 30, 11.59pm

▪ Pull-requests submitted (not necessarily merged) by deadline

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems3

▪ Teaching
Evaluation
(n=24)

▪ Room for Improvements

▪ More materials / discussion of exercises / practical hands-on
▪ Better separation of side infos and content relevant for exam
▪ Too many concepts, weak connection of concepts, more detailed descriptions
▪ Exam dates a bit early

Announcements / Administrative Items, cont.

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems4

Course Outline Part B:
Large-Scale Data Management and Analysis

08 Cloud Computing Fundamentals

09 Cloud Resource Management and Scheduling

10 Distributed Data Storage

11 Distributed Data-Parallel Computation

12 Distributed Stream
Processing

13 Distributed Machine
Learning Systems

Compute/
Storage

Infra

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems5

FG Big Data Engineering (DAMS Lab) – Teaching

Data Management /
Databases

(DM, SS+WS)

Architecture of
Database Systems

(ADBS, WS)

Architecture of
ML Systems
(AMLS, SS)

Data Integration and
Large-Scale Analysis

(DIA, WS)

Master

Bachelor

Data management from
user/application perspective

Distributed
Data Management

ML system internals,
data science lifecycle
+ prog. project

DB system
internals
+ prog. project

Intro to Scientific
Methods (WS)

SE/PR Large-scale
Data Engineering
(LDE, SoSe+WiSe)

Architecture of
ML Systems

(AMLS, SoSe)

Data Integration and
Large-Scale Analysis

(DIA, WiSe)

PP Prog.-Practicals
Data Systems

(PPDS, SoSe+WiSe)

SE Joint ML and DM
(MLDM, SoSe+WiSe)

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems6

▪ Landscape of ML Systems

▪ Distributed Linear Algebra

▪ Distributed Parameter Servers

▪ Q&A and Exam Preparation

Agenda

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems7

Landscape of ML Systems

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems8

What is an ML System?

Machine
Learning

(ML)
Statistics

Data
Mining

ML Applications
(entire KDD/DS

lifecycle)

Classification
Regression

Recommenders
Clustering

Dim Reduction
Neural Networks

ML System

HPC

Prog.
Language
Compilers

Compilation
TechniquesDistributed

Systems

Operating
Systems

Data
Management

Runtime Techniques
(Execution, Data Access)

HW
Architecture

Accelerators

Rapidly Evolving

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems9

The Data Science Lifecycle
(aka KDD Process, aka CRISP-DM)

Data/SW
Engineer

DevOps
Engineer

Data Integration
Data Cleaning

Data Preparation

Model Selection
Training

Hyper-parameters

Validate & Debug
Deployment

Scoring & Feedback

Data
Scientist

Exploratory Process
(experimentation, refinements, ML pipelines)

Key observation: SotA data
integration/cleaning based on ML

Data extraction, schema alignment, entity
resolution, data validation, data cleaning, outlier

detection, missing value imputation, semantic type
detection, data augmentation, feature selection,

feature engineering, feature transformations

Data Integration
Data Cleaning

Data Preparation

Data-centric View:
Application/workload/system perspectives

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems10

▪ Improved Algorithms and Models
▪ Success across data and application domains

(e.g., health care, finance, transport, production)

▪ More complex models which leverage large data

▪ Availability of Large Data Collections
▪ Increasing automation and monitoring ➔ data

(simplified by cloud computing & services, annotation services)

▪ Feedback loops, simulation/data prog./augmentation

→ Trend: self-supervised learning (*-GPT-x)

▪ HW & SW Advancements
▪ Higher performance of hardware and infrastructure (cloud)

▪ Open-source large-scale computation frameworks,

ML systems, and vendor-provides libraries

Driving Factors for ML

Data

ModelUsage

Feedback Loop

[Credit: Andrew Ng’14]

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems11

Stack of ML Systems

ML Apps & Algorithms

Language Abstractions

Fault Tolerance

Execution Strategies

Data Representations

HW & Infrastructure

Eager interpretation, lazy
evaluation, prog. compilation

Approximation, lineage,
checkpointing, checksums, ECC

Supervised, unsupervised, RL
linear algebra, libs, AutoML

Local, distributed, cloud
(data, task, parameter server)

Dense & sparse tensor/matrix;
compress, partition, cache

CPUs, NUMA, GPUs, FPGAs,
ASICs, RDMA, SSD/NVM

Hyper-parameter
Tuning

Model and Feature
Selection

Data Preparation
(e.g., one-hot, binning)

Data Integration & Data
Cleaning

Data Programming &
Augmentation

Training
Validation &
Debugging

Deployment &
Scoring

Improve accuracy vs.
performance vs.

resource requirements
➔ Specialization &

Heterogeneity

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems12

▪ Memory- vs Compute-intensive
▪ CPU: dense/sparse, large mem, high mem-bandwidth, moderate compute

▪ GPU: dense, small mem, slow PCI, very high bandwidth/compute

▪ Graphics Processing Units (GPUs)
▪ Extensively used for deep learning training and scoring

▪ NVIDIA Volta: “tensor cores” for 4x4 mm → 64 2B FMA instruction

▪ Field-Programmable Gate Arrays (FPGAs)
▪ Customizable HW accelerators for prefiltering, compression, DL

▪ Examples: Microsoft Catapult/Brainwave Neural Processing Units (NPUs)

▪ Application-Specific Integrated Circuits (ASIC)
▪ Spectrum of chips: DL accelerators to computer vision

▪ Examples: Google TPUs (64K 2B FMA), NVIDIA DLA, Intel NNP, IBM TrueNorth

▪ Quantum: Examples: IBM Q (Qiskit), Google Sycamore (Cirq→ TensorFlow Quantum)

Accelerators (GPUs, FPGAs, ASICs)

Apps

Lang

Faults

Exec

Data

HW

Ops

Operational Intensity

ML

DL

Roofline
Analysis

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems13

▪ ML- vs DL-centric Systems
▪ ML: dense and sparse matrices or tensors, different sparse

formats (CSR, CSC, COO), frames (heterogeneous)

▪ DL: mostly dense tensors,

relies on embeddings for NLP, graphs

▪ Data-Parallel Operations for ML
▪ Distributed matrices: RDD<MatrixIndexes,MatrixBlock>

▪ Data properties: distributed caching, partitioning, compression

▪ Lossy Compression ➔ Acc/Perf-Tradeoff
▪ Sparsification (reduce non-zero values)

▪ Quantization (reduce value domain), learned

▪ Data types: bfloat16, Intel Flexpoint (mantissa, exp)

Data Representation

Apps

Lang

Faults

Exec

Data

HW

Example Word Embedding:
vec(Berlin) – vec(Germany)
+ vec(France) ≈ vec(Paris)

Node1 Node2

[Credit: Song Han’16]

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems14

▪ Batch Algorithms: Data and Task Parallel
▪ Data-parallel operations

▪ Different physical operators

▪ Mini-Batch Algorithms: Parameter Server
▪ Data-parallel and model-parallel PS

▪ Update strategies (e.g.,

async, sync, backup)

▪ Data partitioning strategies

▪ Federated ML (trend since 2018)

▪ Lots of PS Decisions ➔ Acc/Perf-Tradeoff
▪ Configurations (#workers, batch size/param schedules, update type/freq)

▪ Transfer optimizations: lossy compression, sparsification, residual accumulation,

gradient clipping, and momentum corrections

Execution Strategies

Apps

Lang

Faults

Exec

Data

HW

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems15

▪ Resilience Problem
▪ Increasing error rates at scale (soft/hard mem/disk/net errors)

▪ Robustness for preemption

▪ Need cost-effective resilience

▪ Fault Tolerance in Large-Scale Computation
▪ Block replication (min=1, max=3) in distributed file systems

▪ ECC; checksums for blocks, broadcast, shuffle

▪ Checkpointing (MapReduce: all task outputs; Spark/DL: on request)

▪ Lineage-based recomputation for recovery in Spark

▪ ML-specific Schemes (exploit app characteristics)
▪ Estimate contribution from lost partition to avoid stragglers

▪ Example: user-defined “compensation” functions

Fault Tolerance & Resilience

Apps

Lang

Faults

Exec

Data

HW

[Bianca Schroeder, Eduardo Pinheiro, Wolf-
Dietrich Weber: DRAM errors in the wild: a

large-scale field study. SIGMETRICS 2009]

[Sebastian Schelter, Stephan Ewen, Kostas
Tzoumas, Volker Markl: "All roads lead to

Rome": optimistic recovery for distributed
iterative data processing. CIKM 2013]

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems16

▪ Optimization Scope
▪ #1 Eager Interpretation (debugging, no opt)

▪ #2 Lazy expression evaluation

(some opt, avoid materialization)

▪ #3 Program compilation (full opt, difficult)

▪ Optimization Objective
▪ Most common: min time s.t. memory constraints

▪ Multi-objective: min cost s.t. time, min time s.t. acc, max acc s.t. time

▪ Trend: Fusion and Code Generation
▪ Custom fused operations

▪ Examples: SystemML, Weld, Taco,

Julia, TF XLA,TVM, TensorRT

Language Abstractions

Apps

Lang

Faults

Exec

Data

HW

Sparsity-Exploiting Operator

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems17

▪ ML Algorithms (cost/benefit – time vs acc)
▪ Unsupervised/supervised; batch/mini-batch; first/second-order ML

▪ Mini-batch DL: variety of NN architectures and SGD optimizers

▪ Specialized Apps: Video Analytics in NoScope
▪ Difference detectors / specialized

models for “short-circuit evaluation”

▪ AutoML (time vs acc)
▪ Not algorithms but tasks (e.g., doClassify(X, y) + search space)

▪ Examples: MLBase, Auto-WEKA, TuPAQ, Auto-sklearn, Auto-WEKA 2.0

▪ AutoML services at Microsoft Azure, Amazon AWS, Google Cloud

▪ Data Programming and Augmentation (acc?)
▪ Generate noisy labels for pre-training

▪ Exploit expert rules, simulation models, rotations/shifting,

and labeling IDEs (Software 2.0)

ML Applications

Apps

Lang

Faults

Exec

Data

HW

[Credit:
Jonathan

Tremblay‘18]

[Credit: Daniel Kang‘17]

[Chris Thornton, Frank Hutter, et al:
Auto-WEKA: combined selection and

hyperparameter optimization of
classification algorithms. KDD 2013]

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems18

Landscape of ML Systems
including Classification of SystemML/SystemDS

#3 Distribution

Local (single node)

HW accelerators
(GPUs, FPGAs, ASICs)

Distributed

#4 Data Types

Collections

Graphs

Matrices

Tensors

Frames

#1 Language Abstraction

Operator Libraries

Algorithm Libraries

Computation Graphs

Linear Algebra
Programs

#2 Execution Strategies

Data-Parallel
Operations

Task-Parallel
Constructs

Parameter Server
(Modell-Parallel)

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems19

Distributed Linear Algebra

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems20

▪ Comparison Query Optimization
▪ Rule- and cost-based rewrites and operator ordering

▪ Physical operator selection and query compilation

▪ Linear algebra / other ML operators, DAGs, control flow, sparse/dense formats

▪ #1 Interpretation (operation at-a-time)
▪ Examples: R, PyTorch, Morpheus [PVLDB’17]

▪ #2 Lazy Expression Compilation (DAG at-a-time)
▪ Examples: RIOT [CIDR’09], TensorFlow [OSDI’16]

Mahout Samsara [MLSystems’16]

▪ Examples w/ control structures: Weld [CIDR’17],

OptiML [ICML’11], Emma [SIGMOD’15]

▪ #3 Program Compilation (entire program)
▪ Examples: SystemML [PVLDB’16], Julia

Cumulon [SIGMOD’13], Tupleware [PVLDB’15]

Linear Algebra Systems

Compilers for
Large-scale ML

DB
PL HPC

1: X = read($1); # n x m matrix
2: y = read($2); # n x 1 vector
3: maxi = 50; lambda = 0.001;
4: intercept = $3;
5: ...
6: r = -(t(X) %*% y);
7: norm_r2 = sum(r * r); p = -r;
8: w = matrix(0, ncol(X), 1); i = 0;
9: while(i<maxi & norm_r2>norm_r2_trgt)
10: {
11: q = (t(X) %*% X %*% p)+lambda*p;
12: alpha = norm_r2 / sum(p * q);
13: w = w + alpha * p;
14: old_norm_r2 = norm_r2;
15: r = r + alpha * q;
16: norm_r2 = sum(r * r);
17: beta = norm_r2 / old_norm_r2;
18: p = -r + beta * p; i = i + 1;
19: }
20: write(w, $4, format="text");

Optimization Scope

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems21

▪ Some
Examples …

Linear Algebra Systems, cont.

X = read("./X");
y = read("./y");
p = t(X) %*% y;
w = matrix(0,ncol(X),1);

while(...) {
q = t(X) %*% X %*% p;
...

}

var X = drmFromHDFS("./X")
val y = drmFromHDFS("./y")
var p = (X.t %*% y).collect
var w = dense(...)
X = X.par(256).checkpoint()

while(...) {
q = (X.t %*% X %*% p)

.collect
...

}

read via queues
sess = tf.Session()
...
w = tf.Variable(tf.zeros(...,

dtype=tf.float64))

while ...:
v1 = tf.matrix_transpose(X)
v2 = tf.matmult(X, p)
v3 = tf.matmult(v1, v2)
q = sess.run(v3)
...

(Custom DSL
w/ R-like syntax;

program compilation)

(Embedded DSL in Scala;
lazy evaluation)

(Embedded DSL in Python;
lazy [and eager] evaluation)

(1.x)

Note: TF 2.0

[Dan Moldovan et al.: AutoGraph:
Imperative-style Coding with Graph-

based Performance. SysML 2019.]

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems22

▪ #1 Fixed algorithm implementations
▪ Often on top of existing linear

algebra or UDF abstractions

▪ #2 Model Zoos / APIs
▪ Pre-trained models

▪ Hugging Face

(https://huggingface.co/models)

▪ YOLOv2 – v7

▪ PyTorch/TensorFlow

Model Zoos

ML Libraries / Model Zoos

Single-node Example (Python)

from numpy import genfromtxt
from sklearn.linear_model \

import LinearRegression

X = genfromtxt('X.csv')
y = genfromtxt('y.csv')

reg = LinearRegression()
.fit(X, y)

out = reg.score(X, y)

Distributed Example (Spark Scala)

import org.apache.spark.ml
.regression.LinearRegression

val X = sc.read.csv('X.csv')
val y = sc.read.csv('y.csv')
val Xy = prepare(X, y).cache()

val reg = new LinearRegression()
.fit(Xy)

val out reg.transform(Xy)

SparkML/
MLlib

https://huggingface.co/models

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems23

▪ High-level DNN Frameworks
▪ Language abstraction for DNN construction and model fitting

▪ Examples:

Caffe, Keras

▪ Low-level DNN Frameworks
▪ Examples: TensorFlow, MXNet, PyTorch, CNTK

DNN Frameworks

model = Sequential()
model.add(Conv2D(32, (3, 3),
padding='same',

input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(

MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
...

opt = keras.optimizers.rmsprop(
lr=0.0001, decay=1e-6)

Let's train the model using RMSprop
model.compile(loss='cat…_crossentropy',

optimizer=opt,
metrics=['accuracy'])

model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
shuffle=True)

AMLS’23 Project:
Additional DNN Optimizers

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems24

Distributed Matrix Operations

Elementwise Multiplication
(Hadamard Product) Transposition Matrix Multiplication

Note: also with
row/column vector rhs

1:N / N:M
joins

1:1 join

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems25

▪ Common Selection Criteria
▪ Data and cluster characteristics (e.g., data size/shape, memory, parallelism)

▪ Matrix/operation properties (e.g., diagonal/symmetric, sparse-safe ops)

▪ Data flow properties (e.g., co-partitioning, co-location, data locality)

▪ #0 Local Operators
▪ SystemML mm, tsmm, mmchain; Samsara/Mllib local

▪ #1 Special Operators (special patterns/sparsity)
▪ SystemML tsmm, mapmmchain; Samsara AtA

▪ #2 Broadcast-Based Operators (aka broadcast join)
▪ SystemML mapmm, mapmmchain

▪ #3 Co-Partitioning-Based Operators (aka improved repartition join)
▪ SystemML zipmm; Emma, Samsara OpAtB

▪ #4 Shuffle-Based Operators (aka repartition join)
▪ SystemML cpmm, rmm; Samsara OpAB

Physical Operator Selection

X

v

X

1st

pass 2nd

pass

q
┬

t(X) %*% (X%*%v)

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems26

▪ Examples
Distributed
MM Operators

Physical Operator Selection – Example Matrix Multiplication, cont.

X1,1

X2,1

X3,1

X1,2

X2,2

X3,2

X4,1 X4,2

Y
1,1

Y
2,1

Broadcast-based
MM (mapmm)

Y1,1

Y2,1

Y3,1

Y1,2

Y2,2

Y3,2

Y4,1 Y4,2

X1,1

X2,1

X1,3X1,2

X2,2

X1,4

X2,3 X2,4

Shuffle-based
MM (cpmm)

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems27

▪ Goal: Avoid dense intermediates and unnecessary computation

▪ #1 Fused Physical Operators
▪ E.g., SystemML [PVLDB’16]

wsloss, wcemm, wdivmm

▪ Selective computation over

non-zeros of “sparse driver”

▪ #2 Masked Physical Operators
▪ E.g., Cumulon MaskMult [SIGMOD’13]

▪ Create mask of “sparse driver”

▪ Pass mask to single masked

matrix multiply operator

Sparsity-Exploiting Operators

U V
┬W –sum X

^2

*

sum(W * (X – U %*% t(V))^2)

O / (C %*% E %*% t(B))/

O E t(B)

mm

mm

C

M

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems28

▪ #1 (Distributed) Caching
▪ Keep read only feature matrix in (distributed) memory

▪ #2 Buffer Pool Management
▪ Graceful eviction of intermediates, out-of-core ops

▪ #3 Scan Sharing (and operator fusion)
▪ Reduce the number of scans as well as read/writes

▪ #4 NUMA-Aware Partitioning and Replication
▪ Matrix partitioning / replication → data locality

▪ #5 Index Structures
▪ Out-of-core data, I/O-aware ops, updates

▪ #6 Compression
▪ Fit larger datasets into available memory

Overview Data Access Methods

Node1 Node2

Socket1 Socket2

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems29

Distributed Parameter Servers

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems30

▪ Mini-batch ML Algorithms
▪ Iterative ML algorithms, where each iteration

only uses a batch of rows to make the next

model update (in epochs or w/ sampling)

▪ For large and highly redundant training sets

▪ Applies to almost all iterative, model-based

ML algorithms (LDA, reg., class., factor., DNN)

▪ Stochastic Gradient Descent (SGD)

▪ Statistical vs Hardware Efficiency (batch size)
▪ Statistical efficiency: # accessed data points to achieve certain accuracy

▪ Hardware efficiency: number of independent computations to

achieve high hardware utilization (parallelization at different levels)

▪ Beware higher variance / class skew for too small batches!

➔ Training Mini-batch ML algorithms sequentially is hard to scale

Background: Mini-batch ML Algorithms

Data

Batch 2

Batch 1

Epoch

W’

W’’

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems31

Background: Mini-batch DNN Training (LeNet)

Initialize W1-W4, b1-b4
Initialize SGD w/ Nesterov momentum optimizer
iters = ceil(N / batch_size)

for(e in 1:epochs) {
for(i in 1:iters) {

X_batch = X[((i-1) * batch_size) %% N + 1:min(N, beg + batch_size - 1),]
y_batch = Y[((i-1) * batch_size) %% N + 1:min(N, beg + batch_size - 1),]

layer 1: conv1 -> relu1 -> pool1
layer 2: conv2 -> relu2 -> pool2
layer 3: affine3 -> relu3 -> dropout
layer 4: affine4 -> softmax
outa4 = affine::forward(outd3, W4, b4)
probs = softmax::forward(outa4)

layer 4: affine4 <- softmax
douta4 = softmax::backward(dprobs, outa4)
[doutd3, dW4, db4] = affine::backward(douta4, outr3, W4, b4)
layer 3: affine3 <- relu3 <- dropout
layer 2: conv2 <- relu2 <- pool2
layer 1: conv1 <- relu1 <- pool1

Optimize with SGD w/ Nesterov momentum W1-W4, b1-b4
[W4, vW4] = sgd_nesterov::update(W4, dW4, lr, mu, vW4)
[b4, vb4] = sgd_nesterov::update(b4, db4, lr, mu, vb4)

}
}

NN Forward
Pass

NN Backward
Pass

→ Gradients

Model
Updates

[Yann LeCun, Leon Bottou, Yoshua
Bengio, and Patrick Haffner: Gradient-

Based Learning Applied to Document
Recognition, Proc of the IEEE 1998]

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems32

▪ System Architecture
▪ M Parameter Servers

▪ N Workers

▪ Optional Coordinator

▪ Key Techniques
▪ Data partitioning D → workers Di

(e.g., disjoint, reshuffling)

▪ Updated strategies

(e.g., synchronous, asynchronous)

▪ Batch size strategies

(small/large batches, hybrid methods)

Overview Parameter Servers

M

N

W .. Model
ΔW .. Gradient

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems33

▪ 1st Gen: Key/Value
▪ Distributed key-value store for

parameter exchange and synchronization

▪ Relatively high overhead

▪ 2nd Gen: Classic Parameter Servers
▪ Parameters as dense/sparse matrices

▪ Different update/consistency strategies

▪ Flexible configuration and fault tolerance

▪ 3rd Gen: Parameter Servers w/
improved data communication
▪ Prefetching and range-based pull/push

▪ Lossy or lossless compression w/ compensations

▪ Examples
▪ TensorFlow, MXNet, PyTorch, CNTK, Petuum

History of Parameter Servers

[Alexander J. Smola, Shravan M.
Narayanamurthy: An Architecture for

Parallel Topic Models. PVLDB 2010]

[Jeffrey Dean et al.: Large Scale Distributed
Deep Networks. NeurIPS 2012]

[Mu Li et al: Scaling Distributed Machine
Learning with the Parameter Server. OSDI 2014]

[Jiawei Jiang, Bin Cui, Ce Zhang, Lele Yu:
Heterogeneity-aware Distributed Parameter

Servers. SIGMOD 2017]

[Jiawei Jiang et al: SketchML: Accelerating
Distributed Machine Learning with Data

Sketches. SIGMOD 2018]

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems34

for(i in 1:epochs) {

for(j in 1:iterations) {

params = pullModel(); # W1-W4, b1-b4 lr, mu

batch = getNextMiniBatch(data, j);

gradient = computeGradient(batch, params);

pushGradients(gradient);
}

}

Basic Worker Algorithm (batch)

[Jeffrey Dean et al.: Large Scale Distributed
Deep Networks. NeurIPS 2012]

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems35

gradientAcc = matrix(0,...);
for(i in 1:epochs) {

for(j in 1:iterations) {
if(step mod nfetch = 0)

params = pullModel();
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);
gradientAcc += gradient; # parallel to updateModel
params = updateModel(params, gradients);
step++;
if(step mod nfetch = 0) {

pushGradients(gradientAcc); step = 0;
gradientAcc = matrix(0, ...);

}
} }

Extended Worker Algorithm (nfetch batches)

nfetch batches require
local gradient accrual and

local model update

[Jeffrey Dean et al.: Large Scale Distributed
Deep Networks. NeurIPS 2012]

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems36

▪ Bulk Synchronous Parallel (BSP)
▪ Update model w/

accrued gradients

▪ Barrier for N workers

▪ Asynchronous Parallel (ASP)
▪ Update model for each gradient

▪ No barrier

▪ Synchronous w/ Backup Workers
▪ Update model w/

accrued gradients

▪ Barrier for N of N+b workers

Update Strategies

Batch 1

Batch 1

Batch 1

Batch 1

Batch 2

Batch 2

Batch 2

Batch 2

Batch 3

Batch 3

Batch 3

Batch 3

Batch 1

Batch 1

Batch 1

Batch 1

Batch 2

Batch 2

Batch 2

Batch 2

Batch 3

Batch 3

Batch 3

Batch 3 but, stale
model

updates

Batch 1

Batch 1

Batch 1

Batch 1

Batch 2

Batch 2

Batch 2

Batch 2

Batch 3

Batch 3

Batch 3

Batch 3
[Martín Abadi et al:

TensorFlow: A System for
Large-Scale Machine

Learning. OSDI 2016]

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems37

▪ Motivation Federated ML
▪ Learn model w/o central data consolidation

▪ Privacy + data/power caps vs personalization and sharing

▪ Applications Characteristics

▪ #1 On-device data more relevant than server-side data
▪ #2 On-device data is privacy-sensitive or large
▪ #3 Labels can be inferred naturally from user interaction

▪ Example: Language modeling for mobile keyboards and voice recognition

▪ Challenges
▪ Massively distributed (data stored across many devices)

▪ Limited and unreliable communication

▪ Unbalanced data (skew in data size, non-IID)

▪ Unreliable compute nodes / data availability

Federated Learning – Problem Setting and Overview

W ΔW

[Jakub Konečný: Federated Learning - Privacy-
Preserving Collaborative Machine Learning without

Centralized Training Data, UW Seminar 2018]

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems38

while(!converged) {
1. Select random subset (e.g. 1000)

of the (online) clients
2. In parallel, send current parameters θt

to those clients

2a. Receive parameters θt from server [pull]
2b. Run some number of minibatch SGD steps,

producing θ’
2c. Return θ’-θt (model averaging) [push]

3. θt+1 = θt + data-weighted average of client updates
}

Federated Learning – A Federated ML Training Algorithm

At each client

[Brendan McMahan, Eider Moore, Daniel
Ramage, Seth Hampson, Blaise Agüera y
Arcas: Communication-Efficient Learning

of Deep Networks from Decentralized
Data. AISTATS 2017]

Data Integration and Large-scale Analysis (DIA)
14 Q&A and Exam Preparation [continues at 5.45pm]

Prof. Dr. Matthias Boehm
Technische Universität Berlin
Berlin Institute for the Foundations of Learning and Data
Big Data Engineering (DAMS Lab)

Last update: Jan 29, 2026

Example DIA Exams (90min for 100/100 points)
https://mboehm7.github.io/teaching/ws2021_dia/ExamDIA_v1.pdf
https://mboehm7.github.io/teaching/ws2122_dia/ExamDIA_v1.pdf
https://mboehm7.github.io/teaching/ws2324_dia/ExamDIA_v1.pdf
https://mboehm7.github.io/teaching/ws2425_dia/ExamDIA_v1.pdf

No Lecture
Materials or

Mobile Devices

https://mboehm7.github.io/teaching/ws2021_dia/ExamDIA_v1.pdf
https://mboehm7.github.io/teaching/ws2122_dia/ExamDIA_v1.pdf
https://mboehm7.github.io/teaching/ws2324_dia/ExamDIA_v1.pdf
https://mboehm7.github.io/teaching/ws2425_dia/ExamDIA_v1.pdf

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems40

Task 1: Entity Resolution

▪ a) Explain the phases of a typical entity resolution pipeline and name example techniques
for the individual phases. [16/100 points]

Prepare
Data

Blocking/
Sorting

Matching Clustering

A1

A2

C1 D1

B1 B2

C2 B3

A1
A2

C1
D1

B1 B2

C2

B3

A1
A2

C1
D1

B1 B2

C2

B3

A

C

D

B

r1, r4

r2, r7

r3

r5, r6, r8

16/100

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems41

▪ b) Assume two publication datasets A and B that need deduplication.
Explain the following two categories of schema matching techniques. [4/100 points]

▪ Schema-based Matching:
▪ Find similarities among (groups of) attributes of S1 and S2

▪ Examples: match paper title and author attributes

based on attribute similarity

▪ Instance-based Matching:
▪ Find similarities among (groups of) attributes of S1 and S2,

with the help of instance data in S1 and S2

▪ Examples: match paper titles and author attributes

based on term frequencies, string similarity of example papers

(e.g., after capitalization of words, splitting of author lists)

Task 1: Entity Resolution, cont. 20/100

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems42

▪ a) Describe the system architecture of a data warehouse, name its components, and briefly describe
their purpose. [5/100 points]

Task 2: Data Warehousing 25/100

S1

Data Warehouse
(consolidated raw data,
aggregates, metadata)

S3
S4

S2

Async replication,
and ETL vs ELT

Materialized, non-
volatile integration

Data
Mart 1

Data
Mart 2

Data
Mart 3

Operational
source

systems

Analysis-centric
independent subsets

(e.g., geo, org,
functional)

Staging Area

subject-oriented, integrated,
time-varying, non-volatile

collection of data

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems43

▪ b) Given below entity relationship (ER) diagram, create the corresponding star and snowflake schemas.
Data types can be ignored, but indicate primary and foreign key constraints. [5+5/100 points]

▪ Star
Schema

Task 2: Data Warehousing, cont. 30/100

Ratings
MID
UID
DID
Score

Movies
MID
Name
Length
Genre

Users
UID
Name
City
Country

Dates
DID
Day
Month
Year

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems44

▪ Snowflake
Schema

Task 2: Data Warehousing, cont. 35/100

Ratings
MID
UID
DID
Score

Movies
MID
Name
Length
GID

Users
UID
Name
City

Dates
DID
Day
Month

Genre
GID
GName

Cities
City
Country

Months
Month
Year

Years
Year

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems45

▪ a) In the context of missing value imputation, describe the following
types of missing data. [9/100 points]

▪ Missing Completely at Random (MCAR):
▪ Missing values are randomly distributed across all records

▪ Missing at Random (MAR):
▪ Missing values are randomly distributed within one

or more sub-groups of records

▪ Missing values depend on the recorded but not

on the missing values, and can be recovered

▪ Not Missing at Random (NMAR):
▪ Missing data depends on the missing values themselves

▪ E.g., missing low salary, age, weight, etc.

Task 3: Data Cleaning 44/100

ID Position Salary ($)

1 Manager null
2 Secretary 2200
3 Manager 3600
4 Technician null
5 Technician 2500
6 Secretary null

ID Position Salary ($)

1 Manager 3500
2 Secretary 2200
3 Manager 3600
4 Technician null
5 Technician 2500
6 Secretary 2000

ID Position Salary ($)

1 Manager 3500
2 Secretary null
3 Manager 3600
4 Technician 2500
5 Technician 2500
6 Secretary null

(3500)

(2400)

(2000)

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems46

▪ b) Given the data below, name two techniques for missing value imputation
(1x MCAR, 1x MAR), and impute the values. [5/100 points]

▪ MCAR: mean imputation

(4500+2000+4000+2500)/4 = 3250

▪ MAR: linear regression, functional dependencies

(Age * 100) = 5000 and 3500

Task 3: Data Cleaning, cont. 49/100

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems47

▪ c) Explain the difference between Outlier Detection and Anomaly Detection,
with at least one example strategy for each. [6/100 points]

▪ Outlier Detection
▪ Remove likely incorrect values from data analysis

▪ Classification, clustering, pattern recognition (e.g., outlierByIQR)

▪ Anomaly Detection
▪ Find rare / anomalous data points / subsequences

▪ Classification / max k-nearest neighbor (e.g., matrix profile)

Task 3: Data Cleaning, cont. 55/100

IQR
Q1 – 1.5 * IQR Q3 + 1.5 * IQR

Outlier

Q1 Q3median

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems48

▪ a) Explain the general goal and concept of data provenance, and
distinguish why-provenance and how-provenance. [5/100 points]

▪ Data Provenance:
▪ Track and understand data origins and transformations of data (where?, when?, who?, why?, how?)

▪ Information about the origin and creation process of data

▪ Why-Provenance:
▪ Which input tuples contributed to an output tuple t in query Q

▪ Representation: Set of witnesses w for tuple t

▪ How-Provenance:
▪ How tuples where combined in the computation of an output

▪ Representation: provenance polynomials

Task 4: Data Provenance 60/100

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems49

▪ b) Given below tables R and S (w/ tuples ri and si), query Q and the results O,
specify the provenance polynomials for tuples in O. [3/100 points]

Task 4: Data Provenance, cont. 63/100

A: r1 x s1 + r3 x s1 + r2 x s3
(equivalent: (r1 + r3) x s1 + r2 x s3)

B: r2 x s2 C: r2 x s4

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems50

▪ a) Explain the motivation of cloud computing in terms of overall goal,
key drivers, and advantages. [4/100 points]

▪ Argument #1: Pay as you go
▪ No upfront cost for infrastructure

▪ Variable utilization ➔ over-provisioning

▪ Pay per use or acquired resources

▪ Argument #2: Economies of Scale
▪ Purchasing and managing IT infrastructure at scale ➔ lower cost

(applies to both HW resources and IT infrastructure/system experts)

▪ Focus on scale-out on commodity HW over scale-up ➔ lower cost

▪ Argument #3: Elasticity
▪ Assuming perfect scalability, work done in constant time * resources

▪ Given virtually unlimited resources allows to reduce time as necessary

Task 5: Cloud Computing 67/100

Utili-
zation

Time

100%
“Computing as utility”

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems51

▪ b) Explain the concept of resource allocation for multiple resources such as CPU and memory
(dominant resource calculation in YARN). [3/100 points]

▪ Multi-Metric Scheduling
▪ Multiple metrics: dominant resource calculator

▪ All constraints of relevant metrics must be respected

▪ Focus on bottleneck

resource during scheduling

Task 5: Cloud Computing, cont. 70/100

12/48GB

2/8GB1/32GB6/8GB 32GB

8GB

8GB
6

1
2

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems52

▪ Given a distributed dataset (left), describe a data-parallel approach of imputing the missing values
(NULL) of Attr1 with its mode, and Attr2 with its mean. Describe strategies for improving the
performance. Finally, fill in the concrete imputed values (right). [12+5+3/100 points]

Task 6: Distributed, Data-parallel Computation 90/100

1: data-parallel group-by [Attr1,count]
→ (X:5),(Y,3),(Z,1)

2: data-parallel sum(Attr2)
→ 37

3: data-parallel count(Attr2)
→ 10

4: Apply mode and mean to input data

Performance Improvements:
• Pre-aggregation/combine (groupByKey→ reduceByKey)
• Caching for multi-pass computation
• Fusion of passes 1-3 with multiple outputs

with
shuffling

X

X

X

3.7

3.7

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems53

▪ a) Assume an input stream S with schema S(A,T) (where T is event time, and A is an integer column)
and a continuous query Q with stream window aggregation. Compute the maximum output stream
rate (tuples/second) for the following windows. [4/100 points]

▪ Tumbling Window
(size 200ms):

▪ Sliding Window
(size 500ms, step 100ms):

Task 7: Stream Processing 94/100

Max 200 tuples/s Max 3 tuples/window

→ 15 Tuples/s

→ 30 Tuples/s

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems54

▪ b) Explain the following three techniques for handling overload situations
in stream processing engines? [6/100 points]

▪ #1 Back Pressure
▪ Graceful handling of overload w/o data loss

▪ Slow down sources

▪ E.g., blocking queues

▪ #2 Load Shedding
▪ #1 Random-sampling-based load shedding

▪ #2 Relevance-based load shedding

▪ #3 Summary-based load shedding (synopses)

▪ #3 Distributed Stream Processing
▪ Data flow partitioning (distribute the query)

▪ Key range partitioning (distribute the data stream

Task 7: Stream Processing, cont. 100/100

B CA

Self-adjusting operator scheduling
Pipeline runs at rate of slowest op

2ms9ms3ms

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 – 13 Distributed Machine Learning Systems55

▪ Landscape of ML Systems

▪ Distributed Linear Algebra

▪ Distributed Parameter Servers

▪ Q&A and Exam Preparation

▪ #1 Project/Exercise Submission
▪ Create pull-request or submit exercises by Jan 30 EOD

▪ #2 Exam Registration
▪ 1st Exam Slot: Feb 05, 4pm (start 4.15pm, end 5.45pm, BH-N 243 / A 053, 75/69 seats)

▪ 2nd Exam Slot: Feb 12, 4pm (start 4.15pm, end 5.45pm, BH-N 243, 56/33 seats)

▪ 3rd Exam Slot: Mar 12, 4pm (start 4.15am, end 5.45am, A 151, 17/60 seats)

Summary and Q&A

Thanks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

