TECHNISCHE
. UNIVERSITAT
BERLIN

Data Integration and Large-scale Analysis (DIA)
13 Distributed Machine Learning Systems

Prof. Dr. Matthias Boehm

Technische Universitat Berlin
Berlin Institute for the Foundations of Learning and Data

Big Data Engineering (DAMS Lab)

AN BIFOLD

Last update: Jan 29, 2026

Announcements / Administrative Items

= #1 Video Recording

= Hybrid lectures: in-person BH-N 243, zoom live streaming, video recording zoom
" https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SCI9BOU10cFdmem9zT202UT09

= #2 Exercise/Project Submission
= Submission deadline: Jan 30, 11.59pm
= Pull-requests submitted (not necessarily merged) by deadline

n Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

Announcements / Administrative Items, cont.

0% 12,5% 58,3% 29.2% 0%

= Teaching

*? Wie schwierig ist der Stoff dieser - , n=24
N A . sehr leicht L|_| sehr schwierig _
Evaluation Lehrveranstaltung im Vergleich zum Stoff anderer — e
Lehrveranstaltungen? $=0,6
(n=24) 1 2 3 4 5
. 83,3% 83% 4,2% 0% 4,2%
*9"In der Lehrveranstaltung herrscht ein dimmezy ¥ T —T - stimme nicht zu =24
diskriminierungsfreier und respektvoller Umgang. | | i iy
s=0,9
1 2 3 4 5
. . A . 50% 41,7% 4,2% 4,2% 0%
33) Wie beurteilen Sie msgesamt die sehr gut . - Yl 0. - - - sehr schlecht n=2:l1 6
Lehrveranstaltung? 1T v a1t 5
s=0,8

= Room for Improvements
= More materials / discussion of exercises / practical hands-on
= Better separation of side infos and content relevant for exam
= Too many concepts, weak connection of concepts, more detailed descriptions
= Exam dates a bit early

B Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Course Outline Part B:
Large-Scale Data Management and Analysis

12 Distributed Stream 13 Distributed Machine
Processing Learning Systems
11 Distributed Data-Parallel Computation
Compute/
Storage
10 Distributed Data Storage
09 Cloud Resource Management and Scheduling
Infra
08 Cloud Computing Fundamentals

n Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI Fo LD

FG Big Data Engineering (DAMS Lab) — Teaching

Architecture of DB system Architecture of ML system internals,

Database Systems " BIUEIHEIS ML Systems data science lifecycle
(ADBS, WS) + prog. project (AMLS, SoSe) + prog. project
SE Joint ML and DM
(MLDM, SoSe+WiSe)

SE/PR Large-scale
Data Engineering
(LDE, SoSe+WiSe)

Master Data Integration and
——————————— Large-Scale Analysis

Bachelor (DIA, WiSe)

Intro to Scientific
Methods (WS)

Distributed
Data Management

Data Management /
DEIELEES
(DM, SS+WS)

PP Prog.-Practicals
Data Systems
(PPDS, SoSe+W.iSe)

Data management from
user/application perspective

“NBIFOLD

@ vatthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems

Agenda

= Landscape of ML Systems

Distributed Linear Algebra

Distributed Parameter Servers

Q&A and Exam Preparation

@3 Vatthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Landscape of ML Systems

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

What is an ML System?

Classification
Regression
Recommenders
Clustering
Dim Reduction
Neural Networks

ML Applications Machine
(entire KDD/DS Learning
lifecycle) (ML)

Rapidly Evolving
Runtime Techniques

(Execution, Data Access) Compilation

Techniques

Data Accelerators

Management
HW

Architecture

Operating
Systems

The Data Science Lifecycle Data-centric View:
(aka KDD Process. aka CRlSP-DM) Application/workload/system perspectives

1 /]

Key observation: SotA data

Data integration/cleaning based on ML
Scientist

Data extraction, schema alignment, entity ‘I
resolution, data validation, data cleaning, outlier |
detection, missing value imputation, semantic type :
detection, data augmentation, feature selection, 1
feature engineering, feature transformations ,I

P e o o e e e o o e e e e

[
I
1
|
|
I
\

Data Integration Model Selection Validate & Debug
Data Cleaning Training Deployment
Data Preparation Hyper-parameters Scoring & Feedback

|

Exploratory Process
(experimentation, refinements, ML pipelines)

Data/SW

DevOps
Engineer

Engineer

o Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Driving Factors for ML

1 /]

[Credit: Andrew Ng’14]
= Improved Algorithms and Models

= Success across data and application domains
(e.g., health care, finance, transport, production)
= More complex models which leverage large data

o]
o
c
©
=
=
o
=
]
o

Amount of data

= Availability of Large Data Collections
= |ncreasing automation and monitoring = data
(simplified by cloud computing & services, annotation services) / Data \
= Feedback loops, simulation/data prog./augmentation

- Trend: self-supervised learning (*-GPT-x)

Feedback Loop

Usage <— Model

= HW & SW Advancements
= Higher performance of hardware and infrastructure (cloud)

= QOpen-source large-scale computation frameworks,
ML systems, and vendor-provides libraries

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Stack of ML Systems

1 /]

Validation & Deployment &
Hyper-parameter Training Debugging Scoring
Tuning
_ Supervised, unsupervised, RL
Model and Feature ML Apps & Algorithms linear algebra, libs, AutoML

Selection
Eager interpretation, lazy
evaluation, prog. compilation Improve accuracy vs.

performance vs.
resource requirements
=>» Specialization &
Heterogeneity

Language Abstractions
Data Programming &
Augmentation Approximation, lineage,

Fault Tolerance checkpointing, checksums, ECC

Local, distributed, cloud
(data, task, parameter server)

Data Preparation

Execution Strategies
(e.g., one-hot, binning) 2

Dense & sparse tensor/matrix;

Data Representations compress, partition, cache

Data Integration & Data

Cleaning CPUs, NUMA, GPUs, FPGAs,

HW & Infrastructure ASICs, RDMA, SSD/NVM

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Accelerators (GPUs, FPGAs, ASICs)

W

= Memory- vs Compute-intensive Il = Apps
= CPU: dense/sparse, large mem, high mem-bandwidth, moderate compute Lang
= GPU: dense, small mem, slow PCl, very high bandwidth/compute Ops Roofline Faults

Analysis

Graphics Processing Units (GPUs)
= Extensively used for deep learning training and scoring _ —
N) , , Operational Intensity
= NVIDIA Volta: “tensor cores” for 4x4 mm —> 64 2B FMA instruction

Data

I

= Field-Programmable Gate Arrays (FPGAS)
= Customizable HW accelerators for prefiltering, compression, DL
= Examples: Microsoft Catapult/Brainwave Neural Processing Units (NPUs)

= Application-Specific Integrated Circuits (ASIC)
= Spectrum of chips: DL accelerators to computer vision
= Examples: Google TPUs (64K 2B FMA), NVIDIA DLA, Intel NNP, IBM TrueNorth

= Quantum: Examples: IBM Q (Qiskit), Google Sycamore (Cirg = TensorFlow Quantum)

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Data Representation

= ML- vs DL-centric Systems Apps
= ML: dense and sparse matrices or tensors, different sparse Lang

formats (CSR, CSC, COO0), frames (heterogeneous) Example Word Embedding: Faults
= DL: mostly dense tensors,

vec(Berlin) - vec(Germany)
relies on embeddings for NLP, graphs + vec(France) = vec(Paris) LEIEE

T

= Data-Parallel Operations for ML Nodel Node2

= Distributed matrices: RDD<MatrixIndexes,MatrixBlock> ‘-\ ‘-\

= Data properties: distributed caching, partitioning, compression
[Credit: Song Han’16]

= Lossy Compression = Acc/Perf-Tradeoff ¥ =
= Sparsification (reduce non-zerovalues) ™
= Quantization (reduce value domain), learned
= Data types: bfloatl6, Intel Flexpoint (mantissa, exp)

00000

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Execution Strategies

= Batch Algorithms: Data and Task Parallel .S'pcwr‘lgZ 17/ DASK
= Data-parallel operations @ MAHOUT Apache
= Different physical operators SystemML™

Parameter Servers

——— = — — — —

= Mini-Batch Algorithms: Parameter Server
= Data-parallel and model-parallel PS

= Update strategies (e.g., PYTORCH WTT _________ i ‘T ______
AW
async, sync, backup) T @xnet e

1 2 1 2

= Data partitioning strategies Tensorflow WMot () (w2 | | (] (w2

_ CNTK (w3 (wa] | | [ws] [w4]

= Federated ML (trend since 2018)
= Lots of PS Decisions =» Acc/Perf-Tradeoff Workers

= Configurations (#workers, batch size/param schedules, update type/freq)
= Transfer optimizations: lossy compression, sparsification, residual accumulation,

gradient clipping, and momentum corrections

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Fault Tolerance & Resilience

= Resilience Problem —— Plem-00l
08 _|—e— P(err)=0.001
= Increasing error rates at scale (soft/hard mem/disk/net errors) g | "7
= Robustness for preemption %0,4 _
= Need cost-effective resilience 02 -
i D)
= Fault Tolerance in Large-Scale Computation T TP

= Block replication (min=1, max=3) in distributed file systems

= ECC; checksums for blocks, broadcast, shuffle . o

= Checkpointing (MapReduce: all task outputs; Spark/DL: on request) E)Biftr:icfhs\f\?erlssseDr’RI,EAdI\l/Jlaerfr(())rTri]:te:e(:)’wvi\llgzlz
= Lineage-based recomputation for recovery in Spark large-scale field study. SIGMETRICS 2009]

= VL-specific Schemes (exploit app characteristics) [Sebastian Schelter, Stephan Ewen, Kostas ———

. Tzoumas, Volker Markl: "All roads lead to
= Estimate contribution from lost partition to avoid stragglers Rome": optimistic recovery for distributed

= Example: user-defined “compensation” functions iterative data processing. CIKM 2013]

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Language Abstractions

= Optimization Scope gNumPy @
= #1 Eager Interpretation (debugging, no opt) 1

= #2 Lazy expression evaluation PYTORCH o7
(some opt, avoid materialization) + @ MAHO;;A;SE)WQMI') -

= #3 Program compilation (full opt, difficult) TensorFlow Apa c[h /e
SystemML™ -

= Optimization Objective
= Most common: min time s.t. memory constraints
= Multi-objective: min cost s.t. time, min time s.t. acc, max acc s.t. time

i . Sparsity-Exploiting Operator
" Trend: Fusion and Code Generation parsity-txp gvp

sum [_ r VT 77
= Custom fused operations - i

= Examples: SystemML, Weld, Taco, . 5 cum | X 0 log
Julia, TF XLA,TVM, TensorRT u]
° L

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

ML Applications

ML Algorithms (cost/benefit — time vs acc)
= Unsupervised/supervised; batch/mini-batch; first/second-order ML
= Mini-batch DL: variety of NN architectures and SGD optimizers

Specialized Apps: Video Analytics in NoScope
= Difference detectors / specialized
models for “short-circuit evaluation”

= AutoML (time vs acc)

) . [Chris Thornton, Frank Hutter, et al:
= Not algorithms but tasks (e.g., doClassify (X, y) +search space) Auto-WEKA: combined selection and

= Examples: MLBase, Auto-WEKA, TuPAQ, Auto-sklearn, Auto-WEKA 2.0 hyperparameter optimization of

classification algorithms. KDD 2013]

= AutoML services at Microsoft Azure, Amazon AWS, Google Cloud

= Data Programming and Augmentation (acc?) (Credit:

= Generate noisy labels for pre-training Jonathan

= Exploit expert rules, simulation models, rotations/shifting, Tremblay18]
and labeling IDEs (Software 2.0)

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI Fo LD

Landscape of ML Systems
including Classification of SystemML/SystemDS S ctomIL" .
#1 Language Abstraction #2 Execution Strategies
—————————— ¥ Microsoft
.$...MAH°UT Linear Algebra | Parameter Server | © CNTK
1 -
jU'I?I N Programs I_(I_\/Iiac_lell fa_ra_llfl)_‘l TensorFlow TSSOl
PYTﬁRCHTen_%rFIOW Computation Graphs Task-Parallel ‘MATLAB R
. " 2 Alzorithm Librari Constructs 2
...... { gorithm Libraries
Spark : Data-Parallel Spark’
coonn| [Operator Libraries Operations %2 MAHOUT

Spqﬁzz Collections

Local (single node) julié . B

P Ml)’ e nnn ;« Graphs /| \———————————_ h s
GIRAPH |
@ MAHOUT Spqﬁ Matrices , HW accelerators : + CNTK
] ... | (GPUS, FPGAS, ASICS)I TensorFlow m
julia T P xumpy Tensors ettt XN
,,,,,, Distributed Spark’
SprKu TensorFlow Frames @ MAHOUT

#4 Data Types #3 Distribution

Distributed Linear Algebra

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Linear Algebra Systems

Comparison Query Optimization
= Rule- and cost-based rewrites and operator ordering
= Physical operator selection and query compilation

= Linear algebra / other ML operators, DAGs, control flow, sparse/dense formats

#1 Interpretation (operation at-a-time)
= Examples: R, PyTorch, Morpheus [PVLDB’17]

= #2 Lazy Expression Compilation (DAG at-a-time)
= Examples: RIOT [CIDR’09], TensorFlow [OSDI'16]
Mahout Samsara [MLSystems’16]
= Examples w/ control structures: Weld [CIDR’17],
OptiML [ICML'11], Emma [SIGMOD’15]

#3 Program Compilation (entire program)
= Examples: SystemML [PVLDB’16], Julia
Cumulon [SIGMOD’13], Tupleware [PVLDB’15]

Optimization Scope

X = read($1); # n x m matrix
y = read($2); # n x 1 vector
maxi = 50; lambda = 0.001;
intercept = $3;

ro= -(t(X) %*% y);
norm_r2 = sum(r r); p=-r;

w = matrix(@, ncol(X), 1); i = 0;
9: while(i<maxi & norm_r2>norm_r2_trgt)
10: {

coONOGOUVhAhWNEPR

11: q = (t(X) %*% X %*% p)+lambda*p;
12: alpha = norm_r2 / sum(p * q);
13: w = w + alpha * p;

14: old_norm_r2 = norm_r2;

15: r =r + alpha * q;

16: norm_r2 = sum(r * r);

17: beta = norm_r2 / old_norm_r2;
18: p=-r+beta*p; i=1+1;
19: }

20: write(w, $4, format="text");

@) wmatthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems

1 /]

PL X HPC
Compilers for
Large-scale ML

DB

“NBIFOLD

. [Dan Moldovan et al.: AutoGraph:
Llnear AIgEbra SYStemS, cont. Imperative-style Coding with Graph-

based Performance. SysML 2019.]
Note: TF 2.0

= Some
Apache
Examples ... S;)stemML"‘ %2 MAHOUT T ()
TensorFlow
X = read("./X"); var X = drmFromHDFS("./X") # read via queues
y = read("./y"); val y = drmFromHDFS("./y") sess = tf.Session()
p = t(X) %*% y; var p = (X.t %*% y).collect #o...
w = matrix(0,ncol(X),1); var w = dense(...) w = tf.Variable(tf.zeros(...,
X = X.par(256).checkpoint() dtype=tf.float64))
while(...) { while(...) { while ...:
q = t(X) %*% X %*% p; g = (X.t %*% X %*% p) vl = tf.matrix_transpose(X)
e .collect v2 = tf.matmult(X, p)
} cen v3 = tf.matmult(vl, v2)
} g = sess.run(v3)

(Custom DSL
w/ R-like syntax;
program compilation)

(Embedded DSL in Scala; (Embedded DSL in Python;
lazy evaluation) lazy [and eager] evaluation)

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

ML Libraries / Model Zoos

1 /]

= #1 Fixed algorithm implementations .mﬂ SparkML/
= Often on top of existing linear MLIib @ J\Z
) NumPy SpQr
algebra or UDF abstractions o
Single-node Example (Python) Distributed Example (Spark Scala)
from numpy import genfromtxt import org.apache.spark.ml
from sklearn.linear_model \ .regression.LinearRegression
import LinearRegression
" #2 Model ZOOS/APIS val X = sc.read.csv('X.csv")
" Pre-trained models X = genfromtxt('X.csv') val y = sc.read.csv('y.csv')
= Hugging Face @ y = genfromtxt('y.csv') val Xy = prepare(X, y).cache()
(https://huggingface.co/models) reg = LinearRegression() val reg = new LinearRegression()
= YOLOV2 —v7 Fit(X, y) Fit(Xy)
= PyTorch/TensorFlow out = reg.score(X, y) val out reg.transform(Xy)

Model Zoos PYTHRCH L

TensorFlow

@23 Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

https://huggingface.co/models

AMLS’23 Project:

DNN Frameworks ~ .
Additional DNN Optimizers

1 /]

= High-level DNN Frameworks & Caffe?
= Language abstraction for DNN construction and model fitting y
eras
" Examples: model = Sequential() opt = keras.optimizers.rmsprop(
Caffe, Keras model.add(Conv2D(32, (3, 3), 1r=0.0001, decay=1e-6)

padding="same',
Let's train the model using RMSprop

input_shape=x_train.shape[1:])) model.compile(loss="'cat.. crossentropy’,

model.add(Activation('relu')) optimizer=opt,

model.add(Conv2D(32, (3, 3))) metrics=["'accuracy'])

model.add(Activation('relu'))

model.add(model.fit(x_train, y_ train,
MaxPooling2D(pool size=(2, 2))) batch_size=batch_size,

model.add(Dropout(0.25)) epochs=epochs,

validation data=(x_test, y test),
shuffle=True)

@xnet

¥ Microsoft

= Low-level DNN Frameworks

= Examples: TensorFlow, MXNet, PyTorch, CNTK PYTHRCH Ten:f;ow CNTK

@E) Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Distributed Matrix Operations

Elementwise Multiplication

(Hadamard Product) Transposition Matrix Multiplication
C=A*B C = t(X) C =X %*% W
S T e | e R 2 W
Ay || Ang) B ||Bpa \\ X || X12) 1:N / N:M // (1.1)
\ . . / !
—— — N joins
—t===_]L = N d AW
Apy [|Aey| | Bey ||Bes S Xou || Xeo) diis
\\ 1]
— J[— o= F =——== |
Apy [|Apss) By || By

1:1 join

Note: also with
row/column vector rhs

€I® Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Physical Operator Selection

W

Common Selection Criteria
= Data and cluster characteristics (e.g., data size/shape, memory, parallelism)
= Matrix/operation properties (e.g., diagonal/symmetric, sparse-safe ops)
= Data flow properties (e.g., co-partitioning, co-location, data locality)

= H#0 Local Operators t(X) %*% (X%*%v)
= SystemML mm, tsmm, mmchain; Samsara/Mllib local 15t I
V n
= #1 Special Operators (special patterns/sparsity) Pass 2n¢
= SystemML tsmm, mapmmchain; Samsara AtA nl _ bass
q
= #2 Broadcast-Based Operators (aka broadcast join) \
= SystemML mapmm, mapmmchain — —

#3 Co-Partitioning-Based Operators (aka improved repartition join)
= SystemML zipmm; Emma, Samsara OpAtB

#4 Shuffle-Based Operators (aka repartition join)
= SystemML cpmm, rmm; Samsara OpAB

Physical Operator Selection — Example Matrix Multiplication, cont.

W

= Examples
Distributed . e Y e vl v,
MM Operators Broadcast-base 11 Shuffle-base , ,
MM (mapmm) v MM (cpmm)
. :
2,1
Xll X1'2 Y31 Y3,2
Xo1 || X5 Yo || Yao

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FO LD

Sparsity-Exploiting Operators

W

= Goal: Avoid dense intermediates and unnecessary computation

. sum(W * (X - U %*% t(V))"2)
= #1 Fused Physical Operators .
= E.g., SystemML [PVLDB’16] ~ —

wsloss, wcemm, wdivmm —l
sum |[|Bw |=«||HE

X
O O

non-zeros of “sparse driver” _ -

uv'

= Selective computation over

= #2 Masked Physical Operators 0/ (C %*% E %*% t(B))

= E.g., Cumulon MaskMult [SIGMOD’13]
* Create mask of “sparse driver” / \
= Pass mask to single masked

matrix multiply operator M
o — E t(B)

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Overview Data Access Methods

W

Nodel Node2

#1 (Distributed) Caching
= Keep read only feature matrix in (distributed) memory

#2 Buffer Pool Management -
= Graceful eviction of intermediates, out-of-core ops -

#3 Scan Sharing (and operator fusion)
= Reduce the number of scans as well as read/writes

Socket1 Socket2

gt

#4 NUMA-Aware Partitioning and Replication
= Matrix partitioning / replication = data locality

#5 Index Structures
= Qut-of-core data, I/O-aware ops, updates

#6 Compression %
= Fit larger datasets into available memory

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Distributed Parameter Servers

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Background: Mini-batch ML Algorithms

W

= Mini-batch ML Algorithms

= |terative ML algorithms, where each iteration
only uses a batch of rows to make the next
model update (in epochs or w/ sampling)

= For large and highly redundant training sets

= Applies to almost all iterative, model-based
ML algorithms (LDA, reg., class., factor., DNN)

= Stochastic Gradient Descent (SGD)

— LEIG N — W

— L) — W~

Epoch

= Statistical vs Hardware Efficiency (batch size)
= Statistical efficiency: # accessed data points to achieve certain accuracy

= Hardware efficiency: number of independent computations to
achieve high hardware utilization (parallelization at different levels)
= Beware higher variance / class skew for too small batches!

=» Training Mini-batch ML algorithms sequentially is hard to scale

@D wmatthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Background: Mini-batch DNN Training (LeNet)

Initialize W1-W4, bl-ba [Yann LeCun, Leon Bottou, Yoshua

Initialize SGD w/ Nesterov momentum optimizer Bengio, and Patrick Haffner: Gradient-
iters = ceil(N / batch_size) Based Learning Applied to Document

Recognition, Proc of the IEEE 1998]

for(e in 1:epochs) {
for(i in 1:iters) {
X _batch = X[((i-1) * batch_size) %% N + 1:min(N, beg + batch _size - 1),]
y batch = Y[((i-1) * batch_size) %% N + 1:min(N, beg + batch _size - 1),]

layer 1: convl -> relul -> pooll
layer 2: conv2 -> relu2 -> pool2
layer 3: affine3 -> relu3 -> dropout NN Forward
layer 4: affined4 -> softmax Pass
outad4 = affine::forward(outd3, W4, b4)
probs = softmax::forward(outa4d)

layer 4: affined4 <- softmax
doutad = softmax::backward(dprobs, outa4) NN Backward
[doutd3, dW4, db4] = affine::backward(doutad4, outr3, W4, b4) P

layer 3: affine3 <- relu3 <- dropout i ass
layer 2: conv2 <- relu2 <- pool2 — Gradients
layer 1: convl <- relul <- pooll

Optimize with SGD w/ Nesterov momentum W1-W4, bl-b4 7] Model
[W4, vW4] = sgd_nesterov::update(W4, dW4, 1lr, mu, vW4) L
[b4, vb4] = sgd_nesterov::update(b4, db4, 1lr, mu, vb4) Updates

Overview Parameter Servers

= System Architecture M Parameter Servers
= M Parameter Servers
= N Workers
= QOptional Coordinator
W .. Model
AW .. Gradient

= Key Techniques
= Data partitioning D - workers Di
(e.g., disjoint, reshuffling)
= Updated strategies
(e.g., synchronous, asynchronous)
= Batch size strategies N Workers
(small/large batches, hybrid methods)

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

History of Parameter Servers

15t Gen: Key/Value
. . [Alexander J. Smola, Shravan M.
" Distributed key-value store for Narayanamurthy: An Architecture for

parameter exchange and synchronization Parallel Topic Models. PVLDB 2010]
= Relatively high overhead

[Jeffrey Dean et al.: Large Scale Distributed

= 2nd Gen: Classic Parameter Servers Deep Networks. NeurlPS 2012]
= Parameters as dense/Sparse matrices
= Different update/consistency strategies [Mu Li et al: Scaling Distributed Machine

. . . Learning with the Parameter Server. OSDI 2014]
= Flexible configuration and fault tolerance

rd .
3" Gen: Parameter Servers W/ [Jiawei Jiang, Bin Cui, Ce Zhang, Lele Yu:

improved data communication Heterogeneity-aware Distributed Parameter

= Prefetching and range-based pull/push Servers. SIGMOD 2017]

= Lossy or lossless compression w/ compensations [iawei Jiang et al: SketchML: Accelerating
Distributed Machine Learning with Data

- Examples Sketches. SIGMOD 2018]

= TensorFlow, MXNet, PyTorch, CNTK, Petuum

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Basic Worker Algorithm (batch)

for(i in 1:epochs) {
for(j in 1:iterations) {
params = pullModel(); # W1-W4, bl-b4 1lr, mu
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);

pushGradients(gradient);

[Jeffrey Dean et al.: Large Scale Distributed
Deep Networks. NeurlPS 2012]

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Extended Worker Algorithm (nfetch batches)

W

gradientAcc = matrix(0,...); nfetch batches require
for(i in 1l:epochs) { local gradient accrual and
for(j in 1:iterations) { local model update

if(step mod nfetch = 0)
params = pullModel();
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);
gradientAcc += gradient; # parallel to updateModel
params = updateModel(params, gradients);
step++;
if(step mod nfetch = 0) {
pushGradients(gradientAcc); step = 0;

gradlentACC = matrlx(@, oo) ’ [Jeffrey Dean et al.: Large Scale Distributed
} Deep Networks. NeurlPS 2012]

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Update Strategies

= Bulk Synchronous Parallel (BSP)

" Update model w/
accrued gradients

= Barrier for N workers | Batch 2 Batch 3

= Asynchronous Parallel (ASP) but, stale
= Update model for each gradient model
= No barrier updates

= Synchronous w/ Backup Workers Batch 1 Batch 2
* Update model oot [oo i ot
g . w/ Batch 1 Batch 2 Batch 3 TensorFlow: A System for
accrued gradients e Scle ahine

- i Learning. OSDI 2016
Barrier for N of N+b workers Batch 1 earning]

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI Fo LD

Federated Learning — Problem Setting and Overview

= Motivation Federated ML
= Learn model w/o central data consolidation
= Privacy + data/power caps vs personalization and sharing
= Applications Characteristics
= #1 On-device data more relevant than server-side data
= #2 On-device data is privacy-sensitive or large
= #3 Labels can be inferred naturally from user interaction
= Example: Language modeling for mobile keyboards and voice recognition

= Challenges
= Massively distributed (data stored across many devices)
= Limited and unreliable communication

= Unbalanced data (skew in data size, non-IID) [Jakub Konecny: Federated Learning - Privacy-
. T Preserving Collaborative Machine Learning without
" Unreliable compute nodes / data availability Centralized Training Data, UW Seminar 2018]

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Federated Learning — A Federated ML Training Algorithm

W

WhilE(I conve r‘ged) { [Brendan McMahan, Eider Moore, Daniel
1. Select random subset (e.g. 1000) Ramage, Seth Hampson, Blaise Agtieray |

£ th 1i 1i t Arcas: Communication-Efficient Learning

O € (On 1ne) clients of Deep Networks from Decentralized

2. In parallel, send current parameters 6. Data. AISTATS 2017]

to those clients At each client

2a. Receive parameters 6. from server [pull]

2b. Run some number of minibatch SGD steps,
producing 6’

2c. Return 6°-6, (model averaging) [push]

3. 0,,, = 6, + data-weighted average of client updates

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Example DIA Exams (90min for 100/100 points) TECHNISCHE
https://mboehm?7.github.io/teaching/ws2021 dia/ExamDIA v1.pdf No Lecture . ,UNIVERSITAT

https://mboehm7.github.io/teaching/ws2122 dia/ExamDIA v1.pdf Materials or
https://mboehm7.github.io/teaching/ws2324 dia/ExamDIA v1.pdf Mobile Devices
https://mboehm7.github.io/teaching/ws2425 dia/ExamDIA v1.pdf

BERLIN

Data Integration and Large-scale Analysis (DIA)
14 Q&A and Exam Preparation [continues at 5.45pm]

Prof. Dr. Matthias Boehm

Technische Universitat Berlin

Berlin Institute for the Foundations of Learning and Data
Big Data Engineering (DAMS Lab)

[@)ss4_ Last update: Jan 29, 2026 \‘ BIFOLD

https://mboehm7.github.io/teaching/ws2021_dia/ExamDIA_v1.pdf
https://mboehm7.github.io/teaching/ws2122_dia/ExamDIA_v1.pdf
https://mboehm7.github.io/teaching/ws2324_dia/ExamDIA_v1.pdf
https://mboehm7.github.io/teaching/ws2425_dia/ExamDIA_v1.pdf

Task 1: Entity Resolution

1]

= a) Explain the phases of a typical entity resolution pipeline and name example techniques
for the individual phases. [16/100 points]

Prepare Blocking/
Data Sorting

ooz
e

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Task 1: Entity Resolution, cont.

1 /]

= b) Assume two publication datasets A and B that need deduplication.
Explain the following two categories of schema matching techniques. [4/100 points]

= Schema-based Matching:
= Find similarities among (groups of) attributes of S1 and S2
= Examples: match paper title and author attributes
based on attribute similarity

= Instance-based Matching:
= Find similarities among (groups of) attributes of S1 and S2,
with the help of instance data in S1 and S2
= Examples: match paper titles and author attributes
based on term frequencies, string similarity of example papers
(e.g., after capitalization of words, splitting of author lists)

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Task 2: Data Warehousing

1 /]

= a) Describe the system architecture of a data warehouse, name its components, and briefly describe
their purpose. [5/100 points]

Analysis-centric
independent subsets

(e.g., geo, org,

functional)
subject-oriented, integrated,
time-varying, non-volatile
collection of data Data Warehouse Materialized, non-
(consolidated raw data, volatile integration

o aggregates, metadata)
Async replication,

and ETL vs ELT Staging Area

Operational
source
systems

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Task 2: Data Warehousing, cont.

1 /]

= b) Given below entity relationship (ER) diagram, create the corresponding star and snowflake schemas.
Data types can be ignored, but indicate primary and foreign key constraints. [5+5/100 points]

CEPS RS 2P

Movie

= Star
Schema

@ED matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems

re(,en (S

Rating

User

unctional dependencies:
Movie.Name = Genre
City = Country

MID I —

Name
Length
Genre

=
O

-
o

O
O

Score

ulD
Name
City
Country

“NBIFOLD

Task 2: Data Warehousing, cont.

CSPES RS P

T Ty

Movie Rating User
@ i‘fi‘ie.g‘l‘;‘i’ i City
@@ @ City = Country Country
Uib
= Snowflake Name
Schema City
MID ~—— MID
Name uID | Months |
 Genre Length DID T / Month
GID <—— GID Score \ DID Year
GName Day
Month

Year

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Task 3: Data Cleaning

1]

a) In the context of missing value imputation, describe the following EHNIZEZIIRIEERTCN

types of missing data. [9/100 points] ; ;V'anatger znzl:)'(') (3500)
ecretary
3 Manager 3600
. . 4 Technician null (2400)
= Missing Completely at Random (MCAR): 5 Technician 5500
» Missing values are randomly distributed across all records 6 Secretary null (2000)
= Missing at Random (MAR): _ID_| _Position | Salary ($)
.. . L iy . 1 Manager 3500
* Missing values are randomly distributed within one ? E—— 2200
or more sub-groups of records 3 Manager 3600
.. 4 Technician null
= Missing values depend on the recorded but not E o SETD | ID | Position | Salary($)
on the missing values, and can be recovered 6 Secretary 2000 1 Manager 3500
2 Secretary null
= Not Missing at Random (NMAR): i TM::]nayg_er gggg
.. ecnnician
= Missing data depends on the missing values themselves 5 Technician 2500
= E.g., missing low salary, age, weight, etc. 6 Secretary null

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI Fo LD

Task 3: Data Cleaning, cont.

= b) Given the data below, name two techniques for missing value imputation
(1x MCAR, 1x MAR), and impute the values. [5/100 points]

= MCAR: mean imputation
(4500+2000+4000+2500)/4 = 3250

= MAR: linear regression, functional dependencies
(Age * 100) = 5000 and 3500

Name | Age | Salary
Red 45 4500
Orange | 50 NULL
Yellow 20 2000
Green 40 4000
Blue 25 2500
Violet 35 NULL

@™ atthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems

1 /]

“NBIFOLD

Task 3: Data Cleaning, cont.

1 /]

= ¢) Explain the difference between Outlier Detection and Anomaly Detection,
with at least one example strategy for each. [6/100 points]

= Qutlier Detection @ median N
= Remove likely incorrect values from data analysis U I A | e
= Classification, clustering, pattern recognition (e.g., outlierBylQR) Qi-15 7R az+1s+iar 1

IQR Outlier

= Anomaly Detection ECG qtdb
Sell02
» Find rare / anomalous data points / subsequences v (excerp0)
Premature Ventricular

= Classification / max k-nearest neighbor (e.g., matrix profile) Wmsmmme

0 1000 2000 3000

Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Task 4: Data Provenance

1 /]

a) Explain the general goal and concept of data provenance, and
distinguish why-provenance and how-provenance. [5/100 points]

Data Provenance:
= Track and understand data origins and transformations of data (where?, when?, who?, why?, how?)
= Information about the origin and creation process of data

Why-Provenance:
= Which input tuples contributed to an output tuple t in query Q
= Representation: Set of witnesses w for tuple t

How-Provenance:
= How tuples where combined in the computation of an output
= Representation: provenance polynomials

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Task 4: Data Provenance, cont.

1 /]

= b) Given below tables R and S (w/ tuples r, and s.), query Q and the results O,
specify the provenance polynomials for tuples in O. [3/100 points]

R S SELECT DISTINCT S.D
FROM R, S
A B C D ’
WHERE R.B=5.C O Provenance Polynomials?
I X 1 St 1 A A
| Y 2 T) B //
Ts 7 1 S3 2 A I[I:> B 4/ //
Sa 2 C//C / r
A:rlxsl+r3xsl+r2xs3
(equivalent: (rl + r3) x s1 +r2 x s3)
B:r2xs2 C:r2xs4

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Task 5: Cloud Computing

1 /]

a) Explain the motivation of cloud computing in terms of overall goal,
key drivers, and advantages. [4/100 points]

“Computing as utility”

= Argument #1: Pay as you go 100% oo .
= No upfront cost for infrastructure
= Variable utilization = over-provisioning Ut.i“'
= Pay per use or acquired resources zation

Argument #2: Economies of Scale
= Purchasing and managing IT infrastructure at scale =» lower cost
(applies to both HW resources and IT infrastructure/system experts)
= Focus on scale-out on commodity HW over scale-up =» lower cost

Time

= Argument #3: Elasticity
= Assuming perfect scalability, work done in constant time * resources
= Given virtually unlimited resources allows to reduce time as necessary

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Task 5: Cloud Computing, cont.

1 /]

= b) Explain the concept of resource allocation for multiple resources such as CPU and memory
(dominant resource calculation in YARN). [3/100 points]

= Multi-Metric Scheduling
= Multiple metrics: dominant resource calculator 12/48GB
= All constraints of relevant metrics must be respected

= Focus on bottleneck 2 |
1 |

resource during scheduling 6/8GB §1/32GBY 2/8GB lmms 1
6
8GB

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Task 6: Distributed, Data-parallel Computation

1 /]

= Given a distributed dataset (left), describe a data-parallel approach of imputing the missing values
(NULL) of Attrl with its mode, and Attr2 with its mean. Describe strategies for improving the
performance. Finally, fill in the concrete imputed values (right). [12+5+3/100 points]

Imputed
Attrl | Attr2 Attrl | Attr2
X 3 - X 3
1: data-parallel group-by [Attrl,count]
i > (X:5),(Y,3),(2,1) i
AULLL T 2: data-parallel sum(Attr2) with X |1
b > 37 shuffling L~ |
< 5 3: data-parallel count(Attr2) < 5
Y |NULL > 10 . — Y | 3.7
X N 4: Apply mode and mean to input data < I
X 2 X 2
Performance Improvements:
Y 5 , , Y 5
* Pre-aggregation/combine (groupByKey = reduceByKey)
NULL | NULL . . : X | 3.7
- ; e Caching for multi-pass computation z 5
* Fusion of passes 1-3 with multiple outputs
NULL| 4 X 4

Task 7: Stream Processing

1]

= a) Assume an input stream S with schema S(A,T) (where T is event time, and A is an integer column)
and a continuous query Q with stream window aggregation. Compute the maximum output stream
rate (tuples/second) for the following windows. [4/100 points]

S > OA-3 | > OA-T . YA,Count(*)' > O

Sms 2ms window w
Max 200 tuples/s Max 3 tuples/window
= Tumbling Window > 15 Tupl /
= Sliding Window - 30 Tuples/s
(size 500ms, step 100ms): 58 8 &8 '8 as

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Task 7: Stream Processing, cont.

1 /]

b) Explain the following three techniques for handling overload situations
in stream processing engines? [6/100 points]

#1 Back Pressure -"’n—’-—’ma"
3ms 9ms

» Graceful handling of overload w/o data loss 2ms
= Slow down sources
= E.g., blocking queues

#2 Load Shedding
= #1 Random-sampling-based load shedding
= #2 Relevance-based load shedding
= #3 Summary-based load shedding (synopses)

Self-adjusting operator scheduling
Pipeline runs at rate of slowest op

#3 Distributed Stream Processing
= Data flow partitioning (distribute the query)
= Key range partitioning (distribute the data stream

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

Summary and Q&A

W

Landscape of ML Systems

Distributed Linear Algebra
Distributed Parameter Servers a n S

Q&A and Exam Preparation

#1 Project/Exercise Submission
= Create pull-request or submit exercises by Jan 30 EOD

#2 Exam Registration
= 1t Exam Slot: Feb 05, 4pm (start 4.15pm, end 5.45pm, BH-N 243 / A 053, 75/69 seats)
= 27 Exam Slot: Feb 12, 4pm (start 4.15pm, end 5.45pm, BH-N 243, 56/33 seats)
= 3 Exam Slot: Mar 12, 4pm (start 4.15am, end 5.45am, A 151, 17/60 seats)

m Matthias Boehm | FG DAMS | DIA WiSe 2025/26 — 13 Distributed Machine Learning Systems \‘ BI FOLD

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

